Volume 2, Issue 2, August 2018, Pages: 1-11
Kanak Ray Chowdhury1, Md. Yasin Ali2, Abeda Sultana3, Nirmal Kanti Mitra4
1Department of Mathematics, Mohammadpur Model School and College, Mohammadpur, Dhaka
2School of Science and Engineering, University of Information Technology & Sciences, Dhaka
3Department of Mathematics, Jahangirnagar University, Savar, Bangladesh
4Mathematical and Physical Sciences, Bangladesh University of Business and Technology, Dhaka
In this paper, some basic properties of g-inverse of matrices over semiring are presented. Uniqueness properties of Moore-Penrose inverse are furnished. Some fundamental properties of Moore-Penrose inverse of matrices over semiring are established.
Idempotent, Additively commutative semiring, Moore-Penrose inverse, Rowspace, Column space.
1. Reutenauer C and Straubing H. Inversion of matrices over a commutative semiring. J. Algebra, 1984, 88: 350-360.
2. Rutherford D E. Inverses of Boolean matrices,Proc Glasgow Math Asssoc., 1963,6: 49-53.
3. Rutherford D E. The Cayley Hamilton theorem for semiring, Proc. Roy. Soc. Edinburgh. Soc., A, 1964, 66: 211-215.
4. Moore E H. On reciprocal of the general algebraic matrix. Abstract. Bull. Amer. Math soc., 1920, 36: 304-305.
5. Moore E H. General Analysis, Part 1 Mem. Amer. Philos. Soc., 1935.
6. I. Kaplansky I. Fields and Rings. The University of Chicago Press, Chicago, 1969.
7. Golan J S. Semirings and their Applications. Kluwer Academic Publishers, 1999.
8. Goodearl K R. Von Neuman Regular Rings, Pitman, London, 1979.
9. Chowdhury K R et al. Some structural properties of semirings. Annals of Pure and Applied Mathematics, 2014, 5(2): 158-167.
10. Chowdhury K R et al. On Matrices Over Semirings. Annals of Pure and Applied Mathematics, 2014, 6(1): 1-10.
11. Chowdhury K R et al. Relation Between Lattice and Semiring. J. Mech. Cont. & Math. Sci., 2014, 9(1): 1339-1353.
12. Fang L. Regularity of semigroup rings. Semigroup Forum, 1996, 53:72-81.
13. Petrich M. Introduction to Semiring. Charles E Merrill Publishing Company, Ohio, 1973.
14. Sen MK, Maity SK. Regular additively inverse semirings. Acta Math. Univ., Comenianae, 2006, LXXV 1137-146.
15. Pati S. Moore- Penrose Inverse of Matrices on Idempotent Semirings. Siam. J. Matrix Anal Appl., 2000, 22(2): 617-626.
16. Sirasuntorn N, et al. Inversion of matrices over Boolean semirings. Thai Journal of Mathematics, 2009, 7(1):105-113.
17. Karvellas P H. Inversive semirings. J. Austral. Math Soc., 1974, 18: 277-288.
18. Sreenivasulu P R, Tela G Y. Simple Semirings. International Journal of Engineering inventions, 2003, 2(7) : 16-19.
19. Luce R D. A note on Boolean matrix theory. Proc Amer. Math Soc., 1952, 3:382-388.
20. Penrose R. A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51: 406-413.
21 Ghosh S. Matrices over Semirings. Inform. Sci., 1996, 90: 221-230.
22 Vandiver H S, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc., 1934, 40: 914–920.