Asia Mathematika

An International Journal. ISSN: 2457-0834 (online)

Volume 2, Issue 2, August 2018, Pages: 1-11

On Moore-Penrose Inverse of Matrices over Semirings

Kanak Ray Chowdhury1, Md. Yasin Ali2, Abeda Sultana3, Nirmal Kanti Mitra4

1Department of Mathematics, Mohammadpur Model School and College, Mohammadpur, Dhaka
2School of Science and Engineering, University of Information Technology & Sciences, Dhaka
3Department of Mathematics, Jahangirnagar University, Savar, Bangladesh
4Mathematical and Physical Sciences, Bangladesh University of Business and Technology, Dhaka

Abstract

In this paper, some basic properties of g-inverse of matrices over semiring are presented. Uniqueness properties of Moore-Penrose inverse are furnished. Some fundamental properties of Moore-Penrose inverse of matrices over semiring are established.

Keywords

Idempotent, Additively commutative semiring, Moore-Penrose inverse, Rowspace, Column space.

Preview

Reference

1. Reutenauer C and Straubing H. Inversion of matrices over a commutative semiring. J. Algebra, 1984, 88: 350-360.

2. Rutherford D E. Inverses of Boolean matrices,Proc Glasgow Math Asssoc., 1963,6: 49-53.

3. Rutherford D E. The Cayley Hamilton theorem for semiring, Proc. Roy. Soc. Edinburgh. Soc., A, 1964, 66: 211-215.

4. Moore E H. On reciprocal of the general algebraic matrix. Abstract. Bull. Amer. Math soc., 1920, 36: 304-305.

5. Moore E H. General Analysis, Part 1 Mem. Amer. Philos. Soc., 1935.

6. I. Kaplansky I. Fields and Rings. The University of Chicago Press, Chicago, 1969.

7. Golan J S. Semirings and their Applications. Kluwer Academic Publishers, 1999.

8. Goodearl K R. Von Neuman Regular Rings, Pitman, London, 1979.

9. Chowdhury K R et al. Some structural properties of semirings. Annals of Pure and Applied Mathematics, 2014, 5(2): 158-167.

10. Chowdhury K R et al. On Matrices Over Semirings. Annals of Pure and Applied Mathematics, 2014, 6(1): 1-10.

11. Chowdhury K R et al. Relation Between Lattice and Semiring. J. Mech. Cont. & Math. Sci., 2014, 9(1): 1339-1353.

12. Fang L. Regularity of semigroup rings. Semigroup Forum, 1996, 53:72-81.

13. Petrich M. Introduction to Semiring. Charles E Merrill Publishing Company, Ohio, 1973.

14. Sen MK, Maity SK. Regular additively inverse semirings. Acta Math. Univ., Comenianae, 2006, LXXV 1137-146.

15. Pati S. Moore- Penrose Inverse of Matrices on Idempotent Semirings. Siam. J. Matrix Anal Appl., 2000, 22(2): 617-626.

16. Sirasuntorn N, et al. Inversion of matrices over Boolean semirings. Thai Journal of Mathematics, 2009, 7(1):105-113.

17. Karvellas P H. Inversive semirings. J. Austral. Math Soc., 1974, 18: 277-288.

18. Sreenivasulu P R, Tela G Y. Simple Semirings. International Journal of Engineering inventions, 2003, 2(7) : 16-19.

19. Luce R D. A note on Boolean matrix theory. Proc Amer. Math Soc., 1952, 3:382-388.

20. Penrose R. A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51: 406-413.

21 Ghosh S. Matrices over Semirings. Inform. Sci., 1996, 90: 221-230.

22 Vandiver H S, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc., 1934, 40: 914–920.

Visitors count


Join us