# Asia Mathematika

An International Journal. ISSN: 2457-0834 (online)

Volume 2, Issue 2, August 2018, Pages: 12-28

## Analysis of modeling for induced resistance to plant disease using biological control agents

A. Eswari 1 and S. Saravanakumar 2

1Department of Social Sciences, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam-625604, Tamil Nadu, India.
2Department of Mathematics and Humanities, Sri Ramakrishna Institute of Technologyy, Coimbatore, Tamil Nadu, India

### Abstract

This paper studies the effects of the mathematical model of IR assists researcher promote by a chemical elicitor is proposed and analyzed. The governing non-dimensional equations are solved analytically using perturbation technique. Analysis the epidemiological model to describe that, the analytical expression of susceptible, disease and resisting the infection under appropriate environmental conditions are derived. Further, the graphical representations of the all the above dimensionless quantities for all values of the other dimensionless parameters are investigated. In this work, the numerical solution to the problem is reported using MATLAB program. The obtained analytical solution with experimental value in comparison with the numerical results is satisfactorily noted.

### Keywords

IR model, Differential equations, Simulation, Homotopy perturbation tool, Elicitor treatment.

### Reference

1. D. H. Gent and H. F. Schwartz, Management of Xanthomonas leaf blight of onion with a plant activator, biological control agents, and copper bactericides. Plant Dis. 89 (2005) 631- 639.

2. Dale Walters, Induced Resistance for Plant Disease Control: Maximizing the Efficacy of Resistance Elicitors. Phytopathology. Vol. 95, No. 12 (2005).

3. X.-M. Xu, P. Jeffries, M. Pautasso, and M. J. Jeger, Combined Use of Biocontrol Agents to Manage Plant Diseases in Theory and Practice, Phytopathology. Vol. 101, No. 9 (2011).

4. N. S. Abdul Latif, Wake. G.C. T., Reglinski, P.A.G. Elmer, J.T. Taylor, Modelling induced resistance to plant disease using a dynamical system approach. Front. Plant. Sci., 4 (2013) 1- 3.

5. N. S., Abdul Latif, C. Wake Graeme, Tony Reglinski, Philip A. G. Elmer, Modelling induced resistance to plant diseases, Journal of Theoretical Biology, 347 (2014) 144-150.

6. M.J. Jeger, P. Jefferies, Y. Elad, X.M. Xu, A generic theoretical model for biological control of foliar plant diseases, J. Theoret. Biol. 256 (2009) 201-214.

7. X.M. Xu, N. Salama, P. Jeffries, M.J.Jeger. Numerical studies of biocontrol efficacies of foliar plant pathogens in relation to the characteristics of biocontrol agents, Phytopath., 100 (2010) 814-821.

8. D. H. Gent, E. De Wolf, S.J. Pethybridge. Perceptions of Risk, Risk Aversion, and Barriers to Adoption of decision support systems and integrated pest management: An Introduction, Phytopath., 101 (2011) 640-643.

9. T. Ozis, and A. Yildirim, A Comparative study of He’s Homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities, Int. J. Nonlinear Sci. Numer. Simulat, 8 (2007) 243-248.

10. S. J. Li, and Y. X Liu, An Improved approach to nonlinear dynamical system identification using PID neural networks, Int. J. Nonlinear Sci. Numer. Simulat, 7 (2006) 177-182.

11. M.M., Mousa, S.F Ragab,. and Z. Nturforsch. Application of the Homotopy perturbation method to linear and nonlinear Schrödinger equation, Zeitschrift für Naturforschung, 63 (2008) 140-144.

12. J.H. He, Homotopy perturbation technique, Comp Meth.Appl. Mech. Eng, 178 (1999) 257-262.

13. J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003) 73-79.

14. J. H. He, A simple perturbation approach to Blasius equation, Appl. Math. Comput, 140. (2003) 217-222.

15. P.D. Ariel, Alternative approaches to construction of Homotopy perturbation algorithms Nonlinear. Sci. Letts. A., Vol 1. (2010) 43-52.

16. A. Eswari, L. Rajendran, Analytical solution of steady state current at a microdisk biosensor, J. Electroanal. Chem., 641 (2010) 35-44.

17. A. Eswari, L. Rajendran, Analytical solution of steady state current an enzyme modified microcylinder electrodes, J. Electroanal. Chem., 648 (2010) 36-46

18. A. Eswari, L. Rajendran, Analytical expressions of concentration and current in homogeneous catalytic reactions at spherical microelectrodes: Homotopy perturbation approach, J. Electroanal. Chem., 660 (2011) 200-208.

19. MATLAB 6.1, The MathWorks Inc., Natick, MA, 2000; www.scilabenterprises.com.1. C.Caratheodory, Uber den variabilitatsbereich der Fourier’schen konstanten vonpossitivenharmonischen, Rend.Circ.Palermo,32(1911), 193-217.