Asia Mathematika

An International Journal. ISSN: 2457-0834 (online)

Volume 2, Issue 2, August 2018, Pages: 49-51

Characteristic equation of a matrix via Bell polynomials

A. Zúñiga-Segundo1, J. López-Bonilla2 and S. Vidal-Beltrán2

1ESFM, Instituto Politécnico Nacional, Edif. 9, Dpto. Física, Lindavista 07738, CDMX, México
2ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, Col. Lindavista CP 07738 CDMX, México


We show that the coefficients of the characteristic equation of any matrix A_nxn can be written in terms of the complete Bell polynomials.


Bell polynomials, Characteristic equation



[1] C. Lanczos, Applied analysis, Dover, New York (1988).

[2] L. Hogben, Handbook of linear algebra, Chapman & Hall / CRC Press, London (2006).

[3] A. K. Hazra, Matrix: Algebra, calculus and generalized inverse, Cambridge Int. Sci. Pub. (2006).

[4] H. Wayland, Expansion of determinantal equations into polynomial form, Quart. Appl. Math. 2 (1945) 277-306.

[5] A. S. Householder, F. L. Bauer, On certain methods for expanding the characteristic polynomial, Numerische Math. 1 (1959) 29-37.

[6] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford (1965).

[7] D. Lovelock, H. Rund, Tensors, differential forms, and variational principles, John Wiley and Sons, New York (1975).

[8] U. J. J. Leverrier, Sur les variations séculaires des éléments elliptiques des sept planétes principales, J. de Math. Pures Appl. Série 1, 5 (1840) 220-254.

[9] A. N. Krylov, On the numerical solution of the equation, that in technical problems, determines the small oscillation frequencies of material systems, Bull. de l’Acad. Sci. URSS 7, No. 4 (1931) 491-539.

[10] H. Takeno, A theorem concerning the characteristic equation of the matrix of a tensor of the second order, Tensor NS 3 (1954) 119-122.

[11] E. B. Wilson, J. C. Decius, P. C. Cross, Molecular vibrations, Dover, New York (1980) 216-217.

[12] I. Guerrero-Moreno, J. López-Bonilla, J. Rivera-Rebolledo, Leverrier-Takeno coefficients for the characteristic polynomial of a matrix, J. Inst. Eng. (Nepal) 8, No. 1-2 (2011) 255-258.

[13] J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, Trace of the Laplace transform of exp (t Anxn), Asia Mathematika 2, No. 1 (2018) 1-4.

[14] L. S. Brown, Quantum field theory, Cambridge University Press (1994).

[15] T. L. Curtright, D. B. Fairlie, A Galileon primer, arXiv: 1212.6972v1 [hep-th] 31 Dec. 2012.

[16] J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, An alternative to Gower’s inverse matrix, World Scientific News 102 (2018) 166-172.

[17] J. Riordan, Combinatorial identities, John Wiley and Sons, New York (1968).

[18] L. Comtet, Advanced combinatorics, D. Reidel Pub., Dordrecht, Holland (1974).

[19] D. A. Zave, A series expansion involving the harmonic numbers, Inform. Process. Lett. 5, No. 3 (1976) 75-77.

[20] X. Chen, W. Chu, The Gauss (_2^)F_1 (1)-summation theorem and harmonic number identities, Integral Transforms and Special Functions 20, No. 12 (2009) 925-935.

[21] J. Quaintance, H. W. Gould, Combinatorial identities for Stirling numbers, World Scientific, Singapore (2016).

[22] W. P. Johnson, The curious history of Faà di Bruno’s formula, The Math. Assoc. of America 109 (2002) 217-234.

[23] J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, Bell polynomials, Prespacetime 9, No. 5 (2018) 451-453

Visitors count

Join us