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Abstract: In this paper, homological properties of Ω-orbits and τ -orbits for self-injective algebras are studied. In

addition, a class of self-injective algebras are proved to be satisfying the Auslander-Reiten conjecture. As a result,

preprojective algebras of Dynkin type are showed to be satisfying the Auslander-Reiten conjecture.
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1. Introduction

Throughout this paper, all algebras are Artin R -algebras, where R is a commutative Artin Ring. Recall that

a ring Λ is called an Artin R -algebra if there is a ring homomorphism φ : R → Λ with the image Imφ in the

center of Λ and Λ is a finitely generated right R -module. All modules are finitely generated right modules and

D = Hom(−, I0(R/J(R))) is the ordinary duality, where J(R) is the Jacobson radical of R and I0(R/J(R)) is

the injective envelope of R/J(R).

An Artin R -algebra Λ is self-injective if Λ is injective as a right Λ-module. Self-injective algebras play

an important role in the representation theory of Artin algebras. Many algebraists work on this topic and

make the theory fruitful; (see [1, 8, 10, 12, 13, 18, 19] and so on). Among these results, Riedtmann [18, 19]

and Asashiba [1] classified self-injective algebras of finite representation type in terms of derived equivalence.

Duglas [8] built a connection between periodic algebras and self-injective algebras of finite representation type.

Recall that an algebra Λ is called of finite representation type if there are finite number of indecomposable

finitely generated right Λ-modules. We note that in these works homological properties of self-injective algebras

were not studied in detail. In this paper we pay more attention to the homological properties of self-injective

algebras.

On the other hand, homological conjectures [21] are important in the representation theory of Artin

algebras. One of them is the Auslander-Reiten conjecure [3] which says the following:

(ARC) For an Artin algebra Λ and a finitely generated right Λ-module M , if ExtiΛ(M,M⊕
Λ) = 0 holds for i ≥ 1, then M is projective.

Auslander and Reiten [3, 4] proved (ARC) for self-injective algebras of finite representation type. Recall

that an self-injective algebra Λ is called a symmetric algebra if Λ ' DΛ as a two-sided Λ-module. In 1980s,

Hoshino [15] proved that (ARC) is true for symmetric algebras of radical cube zero. In 2012, Wei [20] proved

that (ARC) is invariant under derived equivalence, that is, if Λ is derived equivalent to Γ, then Λ satisfies
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(ARC) if and only if Γ satisfies (ARC). For more developments of (ARC), we refer the reader to [6, 7, 16].

We consider the Auslander-Reiten conjecture for self-injective algebras in the present paper.

The paper is organized as follows:

In Section 2, we define Ω-orbit (resp. τ -orbit) and Ω-period (resp. τ -period). In addition, we give some

preliminaries for later use.

In Section 3, we study the homological properties of Ω-periods and the τ -periods. We also determine

when two indecomposable modules are in the same Ω-orbit (τ -orbit). Moreover, we show that the Ω-period

and the τ -period for any right modules M over self-injective algebras of finite representation type are quite

similar to the the order of elements in a finite group. We also give a connection between Ω-periods and the

τ -periods for symmetric algebras of finite representation type. One of the main results is the following:

Theorem 1.1. (Theorem 3.2) Let Λ be a self-injective algebra. Then the following are equivalent:

(1) Two indecomposable modules M and N are in the same Ω-orbit (resp. τ -orbit).

(2) τ iM and τ iN (resp. ΩiM and ΩiN ) are in the same Ω-orbit (resp. τ -orbit) for any i ∈ Z .

(3) There is a non-zero integer i0 such that τ i0M and τ i0N (resp. Ωi0M and Ωi0N ) are in the same

Ω-orbit (resp. τ -orbit).

In Section 4, we establish a new class of self-injective algebras over which the Auslander-Reiten conjecture

holds and prove the following theorem.

Theorem 1.2. (Theorem 4.1) Let Λ be a self-injective algebra with only finite number of indecomposable

modules M satisfies ExtkΛ(M,M) = 0 for some k ≥ 1 . Then Λ satisfies the Auslander-Reiten conjecture.

As a result of Theorem 1.2, a preprojective algebra Λ of Dynkin type (see Definition 2.5) satisfies (ARC).

But Λ is neither of finite representation type nor of radical cube zero in general.

In Section 5, we give some examples to illustrate our main results.

2. Preliminaries

In this section we recall some basic properties of self-injective algebras, syzygies and orbits. We begin this

section with the definition of Artin R -algebras in [5, p26].

Definition 2.1. A ring Λ is called an Artin R -algebra if (1) there is a ring homomorphism φ : R → Λ with

the image of φ in the center of Λ, and (2) Λ is finitely generated as a right R -module.

For a right R -module M , we use I0(M) (resp. P0(M))to denote the injective envelope (resp. projective

cover) of M . Denote by D = HomR(−, I0(R/J(R)) and denote by modΛ (resp. modΛop ) the category of

finitely generated right (resp. left) Λ-modules. Now we recall the following lemma [AuRS, p33, Theorem 4.2]

Lemma 2.1. Let Λ be an Artin R -algebra. Then D : modΛ→ modΛop is a duality.

Denote by · · · → Pi(M)
fi→ · · · → P1(M)

f1→ P0(M)
f0→ M → 0 a minimal projective resolution of M .

Denote by ΩiM ' Kerfi−1 the i -th syzygy of M . Dually, one can define the minimal injective resolution of

M and co-syzygies Ω−iM of M .

Applying the functor (−)∗ = HomΛ(−,Λ) to a minimal projective resolution · · · → P1(M)
f1→ P0(M)

f0→

M → 0 of M , one gets an exact sequence 0 → M∗ → P0(M)∗
f∗1→ P1(M)∗ → Cokerf1

∗ → 0. Denote by
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TrM = Cokerf1
∗ and denote by modΛ (resp. modΛ) the stable subcategory of modΛ modulo projective

modules (resp. injective modules). Then we have the following lemma.

Lemma 2.2. ([5, Proposition 1.6]) (1)Tr : modΛ→ modΛop is a duality.

(2) τ = DTr : modΛ→ modΛ is an equivalence with the quasi-inverse τ− = TrD .

Denote by idΛM (resp. idΛopN the injective dimension of a right Λ-module M (resp. left Λ-module

N ). Now it is time to recall the definition of self-injective algebras (resp. symmetric algebras).

Definition 2.2. ([5]) An algebra Λ is called self-injective if idΛΛ = 0. Moreover, a self-injective algebra Λ is

called a symmetric algebra if DΛ ' Λ holds as a two-sided Λ-module.

In the following we recall some basic properties of syzygy functors for self-injective algebras.

Proposition 2.1. ([2, 4]) Let Λ be a self-injective algebra. Then

(1) Ω : modΛ→ modΛ is an equivalence with the quasi-inverse Ω−1

(2) Ext1
Λ(M,N) ' HomΛ(Ω1M,N) holds for M,N ∈ modΛ .

We also need the following definition of operations of a group on a set.

Definition 2.3. ([17]) Let G be a group with a unit e and let S be a non-empty set. We call a map f : G×S

an action of G on S if the following are satisfied:

(1) f(e, x) = x holds for any x ∈ S .

(2) f(g1g2, x) = f(g1, f(g2, x)) for any g1, g2 ∈ G and x ∈ S . In this case, we denote by f(g, x) = g(x)

for any g ∈ G and x ∈ S .

For any x, y ∈ S , we define a relation x ∼ y if g(x) = y which is an equivalence relation on the set S .

We call the set Ox = {g(x)|g ∈ G} the orbit of x .

We also need the following definitions of Ω-period and τ -period [8].

Definition 2.4. Let Λ be a self-injective algebra and let M ∈ modΛ be non-projective. M is called of Ω-

period (resp. τ -period) n if n is the smallest positive integer with ΩnM ' M (resp. τnM ' M ). If there

is no such a integer then we say that M is not Ω (resp. τ )-periodic. If M is an indecomposable projective

module, then we say M is of Ω-period (resp. τ -period) 0.

The following definition of preprojective algebras is also needed in this paper.

Definition 2.5. Let Q = (Q0, Q1) be a Dynkin quiver of An(n ≥ 2), Dn(n ≥ 4), En(n = 6, 7, 8). Let Q be the

double quiver of Q , which is obtained from Q by adding an arrow a∗ : j → i if there is an arrow a : i→ j in

Q . The preprojective algebra of Q is defined as Λ = ΛQ = KQ/(c), where K is an algebraic closed field and

(c) is the ideal generated by the element c =
∑

a∈Q1
(a∗a− aa∗).

We also need the following properties of preprojective algebras of Dynkin type [9].

Proposition 2.2. Let Λ be a preprojective algebra of a Dynkin quiver Q . Then

(1) Λ is a finite dimensional self-injective algebra.

(2) If Q 6= A2, A3, A4 , then Λ is of infinite representation type, that is, there are infinite many indecom-

posable modules in modΛ .
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We end this section with the definition of Nakayama algebra [AuRS].

Definition 2.6. An algebra Λ is called a Nakayama algebra if every indecomposable projective modules and

every indecomposable injective modules admit a unique composition series.

We remark that a Nakayama algebra Λ is of finite representation type, that is, there are finitely many

indecomposable modules in modΛ.

3. Syzygy-orbits and τ -orbits for self-injective algebras

In this section we study the homological properties of syzygy-orbits and τ -orbits for a self-injective algebra Λ.

We begin with the operations of integer group on sets of non-projective indecomposable Λ-modules.

Denote by I the set of indecomposable non-projective finitely generated right Λ-modules and denote

by Z the additive group of integers. Now we can define two maps as follows:

f1 : Z×I → I via (i,M)→ ΩiM for i ∈ Z and M ∈ I ,

f2 : Z×I → I via (i,M)→ τ iM for i ∈ Z and M ∈ I ,

Then we have the following key proposition.

Proposition 3.1. Let Λ be a self-injective algebra and let fi be as above for i = 1, 2 . Then

(1) fi is a group operation on a set.

(2) For M ∈ I , OM = {ΩiM |i ∈ Z} (resp. TM = {τ iM |i ∈ Z) is a syzygy-orbit (resp. τ -orbit) which

contains M .

Proof. (1) We show the case of f1 since the case of f2 is similar. By Proposition 2.1 (1), one gets ΩiM ∈ I

if M ∈ I . Then f1 is a well-defined map. It is easy to get that f1(0,M) = Ω0M = M and f1(i + j,M) =

Ωi+jM = ΩiΩjM = f1(i, f1(j,M)). Then by Definition 2.6, f1 is an operation of a group on a set.

(2) It is a straight result of (1) and Definition 2.3.

In the following we show the relations between Ω-orbits and Ω-periods.

Proposition 3.2. Let Λ be a self-injective algebra and let OM and TM be a syzygy-orbit and a τ -orbit of M ,

respectively.

(1) If there is an N in OM such that the Ω-period of N is n , then every module in OM is of Ω-period

n . And hence there are n indecomposable modules in OM .

(2) If there is an N in TM such that the τ -period of N is n , then every module in TM is of τ -period

n . And hence there are n indecomposable modules in TM .

Proof. We only prove (1) since the proof of (2) is similar. By the assumption N ∈ OM , one gets N ' ΩtM ,

and hence Ωn+tM ' ΩtM since N is of Ω-period n . By Proposition 2.1 (1), one can show ΩnM ' M and

hence Ωn+iM ' ΩiM for any i ∈ Z . This means that there are only n indecomposable modules in OM . Then

for any i ∈ Z , Ωn(ΩiM) ' Ωi(ΩnM) ' ΩiM . We only have to show n is the minimal positive integer desired.

If there is 0 < m < n such that Ωm(ΩiM) ' ΩiM . Taking i = t , one gets an contradiction since N = ΩtM is

of Ω-period n .

Now we can give a new statement of self-injective algebras of finite representation type.

26



Ying Zhuang, Ziyang Zhu and Xiaojin Zhang

Theorem 3.1. Let Λ be a self-injective algebra. The following are equivalent.

(1) Λ is of finite representation type.

(2) There are only finite number of Ω-orbits and each orbit admits a Ω-periodic element.

(3) There are only finite number of τ -orbits and each orbit admits a τ -periodic element.

Proof. We only show (1)⇔ (2). One can show (1)⇔ (3) similarly.

(1)⇒ (2) Since Λ is of finite representation type, then there are finite number of indecomposable modules

in mod Λ. For any indecomposable M ∈ modΛ, we get a Ω-orbit OM by Proposition 3.1. Then there are

finite number of indecomposable modules in OM . So we can find 0 < i < j ∈ Z such that ΩiM ' ΩjM .

Otherwise, one can get infinite number of indecomposable modules, a contradiction. Then M is of Ω-period

j − i by Proposition 2.1(1).

(2)⇒ (1) By Proposition 3.2(1) and the assumption, one gets that each Ω-orbit has finite indecomposable

modules. Then one gets that Λ admits finite number of indecomposable modules since the number of orbits is

finite.

By Theorem 3.1 we get the following corollary immediately:

Corollary 3.1. Let Λ be a self-injective algebra. If Λ is of finite representation type, then every indecomposable

M ∈ modΛ is Ω-periodic (τ -periodic).

Proof. For any indecomposable projective P ∈ mod Λ, by Definition 2.4 one gets P is of Ω-period (resp.

τ -period) 0. Then by Theorem 3.1, every indecomposable non-projective module M is Ω-periodic ( resp.

τ -periodic). We are done.

To study the Ω-period and τ -period of self-injective algebras of finite representation type, we need the

following commutative properties of the functors Ω and τ .

Proposition 3.3. Let Λ be a self-injective algebra and let M be an indecomposable right Λ-module. Then

Ωiτ jM ' τ jΩiM for any i, j ∈ Z .

Proof. We only show the case of i = ±1 and j = ±1 since other cases follow by inductions on i and j ,

respectively. We show the assertion step by step.

(1) Firstly, we show Ω1τM ' τΩ1M .

If M is projective, then there is nothing to prove. Assume M is not projective. Take a minimal projective

resolution of M : · · · → P2(M) → P1(M) → P0(M) → M → 0. Applying the functor (−)∗ = HomΛ(−,Λ),

since Λ is self-injective, one gets the following exact sequences:

0→M∗ → (P0(M))∗ → (P1(M))∗ → (Ω2M)
∗ → 0 (∗1)

0→ (Ω1M)∗ → (P1(M))∗ → (P2(M))∗ → (Ω3M)∗ → 0 (∗2)

0→ (Ω2M)∗ → (P2(M))∗ → (Ω3M)∗ → 0 (∗3)

Applying the functor D to the exact sequence (∗1), one gets the following exact sequence
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0→ D(Ω2M)∗ → D(P1(M))∗ → D(P0(M))∗ → DM∗ → 0

Then one gets that τM ' D(Ω2M)∗ . Similarly, one gets τΩ1M ' D(Ω3M)∗ . After applying the functor D to

the sequence (∗3), one gets the assertion since Λ is self-injective.

(2) Hereby we prove Ω−1τM ' τΩ−1M .

Denote by N = Ω−1M . Then M ' Ω1N and τΩ−1M = τN by proposition 2.5. One gets Ω−1τM '
Ω−1τΩ1N ' Ω−1Ω1τN ' τN by (1).

(3) The proof of Ω1τ−1M ' τ−1Ω1M

Denote by L = τ−1M . Then Ω1τ−1M ' Ω1L and M ' τL by proposition 2.1. One can show

τ−1Ω1M ' τ−1Ω1τL ' τ−1τΩ1L ' Ω1L by (1). The assertion holds.

(4) We finally show Ω−1τ−1M ' τ−1Ω−1M .

Denote by N = Ω−1M . Then M ' Ω1N and τ−1Ω−1M = τ−1N by proposition 2.5. By (3) one can

show Ω−1τ−1M ' Ω−1τ−1Ω1N ' Ω−1Ω1τ−1N ' τ−1N . The assertion holds.

Now we are in a position to judge when two indecomposable modules are in the same τ -orbit or Ω-orbit.

Theorem 3.2. Let Λ be a self-injective algebra. Then the following are equivalent:

(1) Two indecomposable modules M and N are in the same Ω-orbit (resp. τ -orbit).

(2) τ iM and τ iN (resp. ΩiM and ΩiN ) are in the same Ω-orbit (resp. τ -orbit) for any i ∈ Z .

(3) There is a non-zero positive integer i0 such that τ i0M and τ i0N (resp. Ωi0M and Ωi0N ) are in

the same Ω-orbit (resp. τ -orbit).

Proof. We only prove the case of Ω-orbits. One can show the case of τ -orbits similarly.

(1) ⇒ (2) Since M and N are in the same Ω-orbit, one has N ' ΩjM for some j ∈ Z . Then

τ iN ' τ iΩjM ' Ωjτ iM holds for any i ∈ Z by Proposition 3.3.

(2)⇒ (3) It is trivial.

(3)⇒ (1) Since τ i0N and τ i0M are in a same Ω-orbit, then there is an integer j such that Ωjτ i0M '
τ i0N . By Proposition 3.3, one gets that Ωjτ i0M ' τ i0ΩjM ' τ i0N . By Proposition 2.2(2), N ' ΩjM , we

are done.

Although we do not know much about connections between Ω-orbits and τ -orbits, we have:

Proposition 3.4. Let Λ be a self-injective algebra and M an indecomposable right Λ-module. Then

(1) The Ω-orbit OM is contained in the τ -orbit TM if and only if Ω1M ' τ iM for some i ∈ Z .

(2)The τ -orbit TM is contained in the Ω-orbit OM if and only if τM ' ΩiM for some i ∈ Z .

Proof. We only prove (1). One can prove (2) similarly. The necessity is trivial. Now we show the sufficiency.

For any N ∈ OM , one gets N ' ΩtM ' Ωt−1Ω1M . By the assumption and Proposition 3.3 one gets

N ' Ωt−1τ iM ' τ iΩt−1M . By induction on t , it is not difficult to show N ' τ itM , that is, N ∈ TM .

In the following we focus on the Ω-periods and τ -periods for self-injective algebras. We get the following

theorem which is very similar to the order of elements in a finite group.
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Theorem 3.3. Let Λ be a self-injective algebra and let M and N be indecomposable non-projective right

Λ-modules.

(1) If the Ω-period (resp. τ -period) of M and N is m and n , respectively. Then M ⊕ N is also

Ω-periodic (resp. τ -periodic) and its Ω-period (resp. τ -period) is [m,n] , where [m,n] is the least common

multiple of m and n .

(2) If Λ is of finite representation type, then every L ∈ modΛ without projective direct summands is

Ω-periodic (resp. τ -periodic) and there is an upper bound of the Ω-period (resp. τ -period).

Proof. We only show the case of Ω-period since the case of τ -period is similar.

Denote by t = [m,n] , to show (1) we have to show (a) Ωt(M ⊕ N) ' M ⊕ N , and (b) If there is an

s ∈ Z such that Ωs(M ⊕N) 'M ⊕N , then t|s .

It is clear that if M and N are in the same Ω-orbit, then by Proposition 3.2(1) and the assumption,

m = n and t = n hold, and hence both (a) and (b) hold. In the following we can assume that M and N don’t

live in the same Ω-orbit.

(a) Since Ω is an additive functor, then Ωt(M ⊕N) ' ΩtM ⊕ΩtN . Notice that the Ω-period of M is m

and m|t , then we have that ΩtM ' ΩmqM ' ΩmM 'M for some positive integer q with t = mq . Similarly,

one gets ΩtN ' N .

(b) Because of Ωs(M ⊕N) ' ΩsM ⊕ ΩsN and the assumption M and N don’t live in the same orbit,

one gets ΩsM ' M and ΩsN ' N . Since the Ω-period of M and N is m and n , then m|s and n|s , and

hence t|s .

(2) Since Λ is of finite representation type, then modΛ = addT , where T is a basic additive generator.

Killing the indecomposable projective direct summands of T , we get a basic direct summand T ′ of T . Assume

that T ′ =
⊕n

i=1 Ti . By Corollary 3.1 Ti is Ω-periodic, and we assume that the Ω-period of Ti is ti . Then by

(1), the Ω-period of T ′ is [t1, t2, ..., tn] .

For any L ∈ mod Λ without projective direct summands, L can be written as
⊕n

j=1 T
ij
j for some

non-negative integer ij . By using (1), the Ω-period of Ti
ij is equal to that of Ti if ij > 0. Using (1) again,

one gets the Ω-period of L is a divisor of [t1, t2, ..., tn] .

As a corollary of Proposition 3.4 and Theorem 3.3, we have

Corollary 3.2. Let Λ be a symmetric algebra and let M ∈ mod Λ be indecomposable non-projective. Then

(1) TM is contained in OM .

(2) If in addition Λ is of finite type, then the Ω-period of M is equal to the τ -period of M or two times

of the τ -period of M .

Proof. (1) Since Λ is symmetric, then one gets τM ' Ω2M . So one gets the assertion by Proposition3.4 (2).

(2) Since Λ is of finite representation type, then by Theorem 3.1 M is both Ω-periodic and τ -periodic.

Let s, t be the Ω-period and τ -period of M , respectively. Then ΩsM ' M ' τ tM . We claim that s = t or

s = 2t .

Notice that Λ is symmetric, τM ' Ω2M . By the definition of Ω-period, one can show s|2t since

τ tM ' Ω2tM ' M . On the other hand, ΩsM ' M implies that Ω2sM ' M by Proposition 3.2. That is,

τsM 'M . Since the τ -period of M is t , one can show t|s . Then one has s = t or s = 2t .
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We end this section with the following question:

Question 3.1. Let Λ be an Artin algebra. If all indecomposable right Λ-modules are Ω-periodic, is Λ of finite

representation type?

We should remark that if Λ is of radical cube zero, then there is a positive answer to the question above

[11].

4. 4 Syzygies and Auslander-Reiten Conjecture

In this section, firstly we show some properties of syzygy functors then we show a class of self-injective algebras

satisfying Auslander-Reiten conjecture. As a result, preprojective algebras of Dynkin type are showed to be

satisfying Auslander-Reiten conjecture.

To show the main results of this section, we need the following lemma which is a generalization of

Proposition 2.1 (2).

Lemma 4.1. Let Λ be a self-injective algebra and M,N ∈ mod Λ . Then ExtiΛ(M,N) ' HomΛ(ΩiM,N)

holds for any i ≥ 1 .

Proof. The case of i = 1 is clear form Proposition 2.5 (2). We only need to show the case of i ≥ 2. Applying

the functor HomΛ(−, N) to the following minimal projective resolution of M : · · · → Pi(M) → · · ·P1(M) →
P0(M) → M → 0, one gets ExtiΛ(M,N) ' Exti−1

Λ (Ω1M,N) ' · · · ' Ext1
Λ(Ωi−1M,N) for any i ≥ 2. By

Proposition 2.1 (2), one gets that Ext1
Λ(Ωi−1M,N) ' HomΛ(ΩiM,N). We are done.

Now we can state the following key proposition of this section.

Proposition 4.1. Let Λ be a self-injective algebra and M ∈ modΛ . Then ΩiM satisfies ExtkΛ(ΩiM,ΩiM) = 0

in modΛ for any i ∈ Z if and only if M satisfies ExtkΛ(M,M) = 0 for some k ≥ 1 .

Proof. If i = 0, then there is nothing to prove. If i < 0, then one gets that M ' Ω−iΩiM . So it is

enough to show the case of i > 0. By Lemma 4.1, one gets that ExtkΛ(ΩiM,ΩiM) ' HomΛ(Ωk+iM,ΩiM) '

HomΛ(ΩkM,M) ' ExtkΛ(M,M) . The assertion holds.

As we mentioned above, Auslander and Reiten in [4] showed that if Λ is a self-injective algebra of finite

representation type then Λ satisfies (ARC). In the following we give a generalization of this result.

Theorem 4.1. Let Λ be a self-injective algebra with only finite number of indecomposable modules M satisfies

ExtkΛ(M,M) = 0 for some k ≥ 1 . Then Λ satisfies Auslander-Reiten conjecture.

Proof. Let N be an arbitrary right Λ-module satisfying ExtiΛ(N,N) = 0 for any integer i ≥ 1, by the definition

of (ARC), we need to show N is projective. On the other hand, since Λ is an Artin algebra, then N can

be written into
⊕s

j=1Nj with Nj indecomposable and s a positive integer. Now it is enough to show Nj is

projective for 1 ≤ j ≤ s .

In the following we show that any indecomposable module M is projective if it satisfies ExtiΛ(M,M) = 0

for any integer i ≥ 1. By the assumption, there are only finite number of indecomposable modules M such

that ExtiΛ(M,M) = 0 for any integer i ≥ 1.
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We claim that M is Ω-periodic. Since M is indecomposable and Λ is self-injective, by Proposition 3.1 (2),

one gets an Ω-orbit OM = {ΩjM |j ∈ Z} . So there must be some j1 > j2 such that Ωj1M ' Ωj2M . Otherwise,

we get an infinite Ω-orbit OM by Proposition 2.1. By Lemma 4.1 ΩjM satisfies ExtiΛ(ΩjM,ΩjM) = 0 for

any i ≥ 1 and j ∈ Z , which is a contradiction. So we get Ωj′M 'M , where j′ = j1 − j2 .

Now we show M is projective. Applying the functor HomΛ(−,M) to the following minimal projective

resolution of M :

· · · → Pi(M)→ · · ·P1(M)→ P0(M)→M → 0,

one gets

0 = Extj
′

Λ (M,M) ' Extj
′−1

Λ (Ω1M,M) ' · · ·Ext1
Λ(Ωj′−1M,M) ' Ext1

Λ(Ωj′−1M,Ωj′M).

This means that the short exact sequence 0 → Ωj′M → Pj′−1(M) → Ωj′−1(M) → 0 splits, and hence

Ωj′−1M is projective. Notice that Λ is self-injective, then Ωj′−1M is injective and hence the short exact

sequence 0 → Ωj′−1M → Pj′−2(M) → Ωj′−2(M) → 0 splits. Continue the same process, one gets that

0→ Ω1M → P0(M)→M → 0 splits and hence M is projective.

In the following we give an application of Theorem 4.1 to preprojective algebras of Dynkin type. We

should remark that in general preprojective algebras are neither of finite representation type nor of radical cube

zero (comparing [15] and Proposition 2.2).

Corollary 4.1. Let Λ be a preprojective algebra of Dynkin type. Then Λ satisfies the Auslander-Reiten

conjecture.

Proof. By Proposition 2.2 Λ is a finite dimensional algebra, and hence an Artin algebra. Moreover, Λ is

self-injective. Then by [12], Ext2
Λ(N,N) 6= 0 holds for any non-projective N . That is, there are only finite

indecomposable modules M such that Ext2
Λ(M,M) = 0. Then by Theorem 4.1, the assertion holds.

In the following we consider another class of self-injective algebras which also satisfies the condition of

Theorem 4.1. We should remark that one can get the result by using a result in [5]. Here we give a completely

short proof by using syzygy functors. Recall that an algebra Λ is called of radical square zero if J2(Λ) = 0,

where J(Λ) is the Jacobson radical of Λ. For a Λ-module M , denote by radM (resp. socM ) the radical (resp.

socle) of M , now we can state the following:

Proposition 4.2. Let Λ be a self-injective algebra with radical square zero. Then Λ is a Nakayama algebra.

Proof. By Definition 2.6, it suffices to show all indecomposable projective Λ-modules and all indecomposable

injective Λ-modules admit a unique composition series. Since Λ is self-injective, then it is enough to show every

indecomposable projective Λ-module admits a unique composition series.

For any indecomposable projective P ∈ mod Λ, there is a simple module S such that P0(S) ' P .

Then we get the following exact sequence 0 → Ω1S → P0(S) → S → 0. Since Λ is of radical square zero,

then Ω1S ' radP0(S) is semi-simple. On the other hand, the fact Λ is self-injective implies that P0(S) is

indecomposable injective. Then socP0(S) is simple, and hence Ω1S ⊂ socP0(S) is simple. So P admits a

unique composition series.
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Immediately, we have the following corollary.

Corollary 4.2. Let Λ be a self-injective algebra with radical square zero. Then Λ satisfies Auslander-Reiten

conjecture.

Proof. By Proposition 4.2, Λ is a Nakayama algebra. Then by Definition 2.6, Λ is of finite representation type.

Then by Theorem 4.1, the assertion holds.

We also remark that radical square zero self-injective algebras are not necessarily symmetric algebras.

5. Examples

In this section we give examples to support our results in Section 3 and Section 4.

The following example implies that the number of indecomposable modules in a Ω-orbit is not necessary

to be the divisor of the number of all indecomposable modules in general.

Example 5.1. Let Λ be an algebra given by the quiver 	a with a3 = 0 . Then

(1) Λ is a Nakayama local algebra with 3 indecomposable modules.

(2) The non-projective modules 1 and 1
1 are of Ω-period 2 and the unique Ω-orbit is {1, 1

1} .

Now we give an example to show Theorem 3.3.

Example 5.2. Let Λ be the preprojective algebra of 1→ 2→ 3 . Then

(1) Λ is a self-injective algebra with 12 indecomposable modules.

(2) The two Ω-orbits are

O1 = {2,1 3
2 , 2

1 3 }

O2 = {1, 3, 32, 23, 21, 12}
(3) The two τ -orbits are

τ1 = {2,1 3
2 , 2

1 3 }

τ2 = {1, 3, 32, 23, 21, 12}
(4) By (2) and (3) every indecomposable module M has the same τ -period and Ω-period, which is 3 or

6 .

The following example (comparing Proposition 2.2 and Corollary 4.1) shows that Theorem 4.1 is far from

trivial.

Example 5.3. Let Λ be preprojective algebra of a quiver Q = A5 : 1→ 2→ 3→ 4→ 5 . Then

(1) Λ is self-injective of infinite representation type.

(2) For any non-projective module M ∈ modΛ , one gets Ext2
Λ(M,M) 6= 0 .
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