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On decomposition of ng̈ -continuity in nano Topological spaces
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Abstract: This article focuses on decomposition of a weaker form of nano continuity, namely ng̈ -continuity, by providing

the concepts of ng̈ t -sets, ng̈ α∗ -sets, ng̈ t -continuity and ng̈ α∗ -continuity.
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1. Introduction

Various interesting problems arise when one considers nano continuous (in short, n-cts) and nano generalized

continuous (in shor, ng-cts). Decomposition of n-cts are obtained by many mathematician with the help of

ng-cts maps in nano topological spaces (in short, ntss)([5, 6, 19]). This article, we obtained decomposition

of ng̈ -continuous (in short, ng̈ -cts) in ntss using ng̈ p -continuous (in short, ng̈ p -cts) [20], ng̈α -continuous (in

short, ng̈α -cts) [20], ng̈ t -continuous (in short, ng̈ t -cts) and ng̈ α∗ -continuous (in short, ng̈ α∗ -cts).

2. Preliminaries

Definition 2.1. [11] If (K, τR(P )) is the ntss with respect to P where P ⊆ K and if S ⊆ K, then

1. The nano interior of the set S is defined as the union of all nano open(in short, no) subsets contained in S and

it is denoted by ninte(S). That is, ninte(S) is the largest no subset of S.

2. The nano closure of the set S is defined as the intersection of all nano closed (in short, nc)sets containing S and

it is denoted by nclo(S). That is, nclo(S) is the smallest nc set containing S.

Definition 2.2. [11] A subset S of a ntss (K, τR(P )) is said to be

1. nano α -closed (in short, nαc) if nclo(ninte(nclo(S))) ⊆ S.

2. nano semi-closed (in short, nsc) if ninte(nclo(S)) ⊆ S.

3. nano pre-closed (in short, npc) if nclo(ninte(S)) ⊆ S.

The complements of the above mentioned nc are called their respective no respectively.

The nano α -closure [18] (respectively, nano semi-closure [2, 3], nano pre-closure [1]) of a subset S of K,

denoted by nαclo(S) (respectively. nsclo(S), npclo(S)) is defined to be the intersection of all nαc (respectively.

nsc, npc) sets of (K, τR(P )) containing S.
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The nano α -interior [18] (respectively, nano semi-interior [2, 3], nano pre-interior[1]) of a subset S of K,

denoted by nα inte(S) (respectively. nsinte(S), npinte(S)) is defined to be the union of all nαo (respectively.

nso, npo) sets of (K, τR(P )) containing S.

Definition 2.3. A subset S of a ntss (K, τR(P )) is called :

1. nsg-open (in short, nsgo ) [2] if T ⊆ nsinte(S) whenever T ⊆ S and T is nano semi-closed in (K, τR(P )).

2. ng̈ -open (in short, ng̈o) [18] if T ⊆ ninte(S) whenever T ⊆ S and T is nsg-closed in (K, τR(P )).

3. ng̈ α -open (in short, ng̈ αo) [18] if T ⊆ nα inte(S) whenever T ⊆ S and T is nsg-closed in (K, τR(P )).

4. ng̈ p -open (in short, ng̈ po) [20] if T ⊆ npinte(S) whenever T ⊆ S and T is nsg-closed in (K, τR(P )).

The complement of above mentioned no-sets are called their respective nc-sets.

Definition 2.4. A subset S of a ntss (K, τR(P )) is said to be

1. nt-set (in short, nts) [10] if ninte(S) = ninte(nclo(S)).

2. nα*-set (in short, nα*s) [16] if ninte(S)= ninte(nclo(inte(S))).

3. an nη -set [8] if S = I ∩ J where I is no & J is a nαc.

4. nη] -set (in short, nη] s) [19] if S = I ∩ J, where I is nsgo & J is nαc in (K, τR(P )).

5. nη]] -set (in short, nη]] s) [19] if S = I ∩ J, where I is ng̈ αo & J is nts in (K, τR(P )).

6. ng̈ lc*-set (in short, ng̈ lc*s) [20] if S = I ∩ J, where I is nsgo & J is nc (K, τR(P ))

Collection of all nη s (respectively, nη] s, nη]] s) in a ntss (K, τR(P )) is denoted by nη (K, τR(P )) (respectively,

nη] (K, τR(P )), nη]] (K, τR(P ))).

Remark 2.1. nαc sets and ng̈c sets are independent.

Example 2.1.1. Let K = {11, 12, 13} with K / R = {{13}, {11, 12} {12, 11}} and P = {11, 12}, τR(P ) =

{φ , {11, 12}, K}. Here, the set {12, 13} is ng̈c but not nαc.

2. Let K = {11, 12, 13} with K / R = {{11}, {12, 13}} and P = {11}, τR(P ) = {φ , {11}, K}. Here, the set

{12} is nαc but not ng̈c.

Remark 2.2. [16]

1. Every nts is an nα*s but not conversely.

2. Union of 2 nα*s need not be an nα*s.

3. Intersection of 2 nα*s is an nα*s.

Definition 2.5. A map f : (K, τR(P )) → (L, σR(Q)) is called:

1. n-cts [12] if f−1 (D) is a no in (K, τR(P )), for every no set D of (L, σR(Q)).

2. nα -continuous (in short, nα -cts) [13] if f−1 (D) is nαo in (K, τR(P )), for every no set D of (L, σR(Q)).
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3. ng̈ -cts [20] if f−1 (D) is ng̈o in (K, τR(P )), for every no set D of (L, σR(Q)).

4. ng̈ α -cts [20](respectively, ng̈ p -cts [20]) if f−1 (D) is ng̈ α o (respectively. ng̈ p o) set in (K, τR(P )), for every

no set D of (L, σR(Q)).

5. ng̈ lc*-continuous (in short, ng̈ lc*-cts )[20] if f−1 (D) ∈ ng̈ lc*(K, τR(P )), for every no set D of (L, σR(Q)).

6. nη] -continuous (in short, nη] -cts ) [18] if f−1 (D) ∈ nη] (K, τR(P )), for every no set D of (L, σR(Q)).

7. nη]] -continuous (in short, nη]] -cts) [18] if f−1 (D) ∈ nη]] (K, τR(P )), for every no set D of (L, σR(Q)).

Theorem 2.1. [20] A map f : (K, τR(P )) → (L, σR(Q)) is n-cts iff it is both ng̈ -cts and ng̈ lc*-cts.

Theorem 2.2. [19]

1. A map f : (K, τR(P )) → (L, σR(Q)) is nα-cts iff it is both ng̈ α -cts and nη] -cts.

2. A map f : (K, τR(P )) → (L, σR(Q)) is ng̈ α -cts iff it is both ng̈ p -cts and nη]] -cts.

3. ng̈ t s & ng̈ α∗s

Definition 3.1. A subset H of a ntss (K, τR(P )) is said to be

1. an ng̈ t -sets (in short, ng̈ t s) if H = I ∩ J, where I is ng̈o in K & J is a nts in K.

2. an ng̈ α∗-sets (in short, ng̈ α∗s) if H = I ∩ J, where I is ng̈o in K & J is a nα*s in K.

Collection of all ng̈ t s (respectively, ng̈ α∗s) in a ntss (K, τR(P )) is denoted by ng̈ t (K, τR(P )) (respec-

tively, ng̈ α *(K, τR(P ))).

Proposition 3.1. Let H be a subset of K. Then

1. if H is a nts, then H ∈ ng̈ t (K, τR(P )).

2. if H is an nα*s, then H ∈ ng̈α*(K, τR(P )).

3. if H is an ng̈o set in K, then H ∈ ng̈ t (K, τR(P )) & H ∈ ng̈α*(K, τR(P )).

Proof. The proof is straightforward from the definitions.

Proposition 3.2. In a ntss K, every ng̈ t s is an ng̈ α∗s but not conversely.

Proof. The proof is straightforward from the definitions.

Example 3.1. Let K and τR(P ) in the Example 2.1(1). Here, the set {11, 13} is ng̈ α∗s but not ng̈ t s.

Remark 3.1. The following examples show that

1. the converse of Proposition 3.1 need not be true.

2. ng̈ t s & ng̈ po sets are independent.

3. ng̈ α∗s & ng̈ αo sets are independent.
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Example 3.2. Let K & τR(P ) in the Example 2.1(1). Here, the set {11} is ng̈ t s but not a nts & the set

{11, 12} is ng̈ α*s but not nα*s.

Example 3.3. Let K & τR(P ) in the Example 2.1(1). Here, the set {13} is both ng̈ t s & ng̈ α*s but not ng̈o

set.

Example 3.4. Let K & τR(P ) in the Example 2.1(1). Here, (a) the set {13} is ng̈ t s but not a ng̈ po, (b) the

set {12, 13} is a ng̈ po set but not ng̈ t s.

Example 3.5. Let K = {11, 12, 13, 14} with K / R = {{11}, {12, 13}, {12, 14}} and P = {11}, τR(P ) =

{φ , {11}, K}. Here, (a) the set {12} is ng̈ α∗s but not ng̈αo, (b) the set {11, 13} is ng̈ αo but not ng̈ α∗s.

Example 3.6. Let K & τR(P ) in the Example 2.1(1). Here, the set {11} is ng̈ α*s and ng̈ t s but it is not

ng̈c.

Remark 3.2. From the above discussions and known results in [[14], [18], [20]], we obtained the following

diagram where A → B represents A implies B, but not conversely.

nano closed - ng̈ -closed - ng̈ t -set

?

ng̈ α∗-set

?

nα-closed ng̈α -closed ng̈ p -closed

�

- -
?

6
?

6

Remark 3.3. ,

1. Union of 2 ng̈ t s need not be an ng̈ t s.

2. Union of 2 ng̈ α∗s need not be an ng̈ α∗s.

Example 3.7. ,

1. Let K and τR(P ) in the Example 2.1(1). Here, the sets are {12} and {13} are ng̈ t -sets but {12} ∪ {13} =

{12, 13} is not an ng̈ t -set.

2. Let K and τR(P ) in the Example 3.5. Here, the sets are {11} and {12} are ng̈ α∗-sets but {11} ∪ {12} = {11,

12} is not an ng̈ α∗s.

Remark 3.4. ,

1. Intersection of any 2 ng̈ t s belongs to ng̈ t (K, τR(P )).

2. Intersection of any 2 of ng̈ α∗s belongs to ng̈ α∗ (K, τR(P )).

Lemma 3.1. ,
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1. A subset H of (K, τR(P )) is ng̈o [18] iff F ⊆ ninte(H) whenever F ⊆ H and F is nsgc in K.

2. A subset H of (K, τR(P )) is ng̈ αo [20] iff F ⊆ nα inte(H) whenever F ⊆ H and F is nsgc in K.

3. A subset H of (K, τR(P )) is ng̈ po [20] iff F ⊆ npinte(H) whenever F ⊆ H and F is nsgc in K.

Theorem 3.1. A subset H is ng̈o in (K, τR(P )) iff it is both ng̈ αo and ng̈ α∗s in (K, τR(P )).

Proof. Necessity. Obvious.

Sufficiency. Suppose H be both ng̈ α o set and ng̈α *s. Since H is an ng̈ α*s, H = I ∩ J, where I is ng̈o and

J is an nα*s. Assume that F ⊆ H, where F is nsgc in K. Since I is ng̈o, by Lemma 3.1 (1), F ⊆ ninte(H). Since

H is ng̈ αo in K, by Lemma 3.1 (2), F ⊆ nα inte(H) = H ∩ ninte(nclo(ninte(H))) = (I ∩ J) ∩ ninte(nclo(ninte(I

∩ J))) ⊆ I ∩ J ∩ ninte(nclo(ninte(I))) ∩ ninte(nclo(ninte(J))) = I ∩ J ∩ ninte(nclo(ninte(I))) ∩ ninte(J) ⊆
ninte(J). Therefore, we obtained F ⊆ ninte(J) and hence F ⊆ ninte(I) ∩ ninte(J) = ninte(H). Hence H is nsgo,

by Lemma 3.1 (1).

Theorem 3.2. A subset H is ng̈o in (K, τR(P )) iff it is both ng̈ po and ng̈ t s in (K, τR(P )).

Proof. The proof is similar to theorem 3.1.

Definition 3.2. A map f : (K, τR(P )) → (L, σR(Q)) is said to be

1. ng̈ t -cts if f−1 (D) ∈ ng̈ t (K, τR(P )), for every no set D of (L, σR(Q)).

2. ng̈ α∗-cts if f−1 (D) ∈ ng̈ α∗(K, τR(P )), for every no set D of (L, σR(Q)).

Theorem 3.3. For a map f : (K, τR(P )) → (L, σR(Q)), the following implications hold:

1. ng̈ -cts ⇒ ng̈ t -cts.

2. ng̈ -cts ⇒ ng̈ α∗-cts.

3. ng̈ t -cts is an ng̈ α∗-cts.

4. ng̈ -cts ⇒ ng̈ α -cts ⇒ ng̈ p -cts. [20]

Proof. (1) and (2). The proof is straightforward from the proposition 3.1.

(3). The proof is straightforward from the proposition 3.2.

Remark 3.5. ,

1. ng̈ t -cts and ng̈ p -cts are independent.

2. ng̈ α∗-cts and ng̈ α -cts are independent.

Remark 3.6.
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ng̈α -cts - ng̈ p -cts

?

6

ng̈ α∗-cts

?

6

ng̈ t -cts�

ng̈ -cts

@
@
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�
��

@
@

@@I

�
�

��	

We obtained some dcomposition of ng̈ -cts

Theorem 3.4. A map f : (K, τR(P )) → (L, σR(Q)) is ng̈ -cts iff it is both ng̈α -cts and ng̈ α∗-cts.

Proof. The proof is straightforward from theorem 3.1.

Theorem 3.5. A map f : (K, τR(P )) → (L, σR(Q)) is ng̈ -cts iff it is both ng̈ p -cts, nη]] -cts and ng̈ α∗-cts.

Proof. The proof is straightforward from theorem 2.2 (2) and theorem 3.4.

Theorem 3.6. A map f : (K, τR(P )) → (L, σR(Q)) is ng̈ -cts iff it is both ng̈ p -cts and ng̈ t -cts.

Proof. The proof is straightforward from theorem 3.2.

Conclusion

We obtained decomposition of ng̈ -cts in ntss using ng̈ p -cts, ng̈α -cts, ng̈ t -cts and ng̈ α∗ -cts. The results of

this study may be help to many researches.
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