On decomposition of $n\tilde{g}$-continuity in nano Topological spaces

Selvaraj Ganesan
PG & Research Department of Mathematics,
Raja Doraisingham Government Arts College, Sivagangai-630561, Tamil Nadu, India.
(Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). Orchid iD: 0000-0002-7728-8941

Abstract: This article focuses on decomposition of a weaker form of nano continuity, namely $n\tilde{g}$-continuity, by providing the concepts of $n\tilde{g}\alpha$-sets, $n\tilde{g}\alpha*$-sets, $n\tilde{g}t$-continuity and $n\tilde{g}\alpha*$-continuity.

Key words: $n\tilde{g}\alpha$-closed, $n\tilde{g}p$-closed, $n\tilde{g}t$s, $n\tilde{g}\alpha*$

1. Introduction
Various interesting problems arise when one considers nano continuous (in short, n-cts) and nano generalized continuous (in shor, ng-cts). Decomposition of n-cts are obtained by many mathematician with the help of ng-cts maps in nano topological spaces (in short, ntss)([5, 6, 19]). This article, we obtained decomposition of $n\tilde{g}$-continuous (in short, $n\tilde{g}$-cts) in ntss using $n\tilde{g}p$-continuous (in short, $n\tilde{g}p$-cts) [20], $n\tilde{g}\alpha$-continuous (in short, $n\tilde{g}\alpha$-cts) [20], $n\tilde{g}t$-continuous (in short, $n\tilde{g}t$-cts) and $n\tilde{g}\alpha*$-continuous (in short, $n\tilde{g}\alpha*$-cts).

2. Preliminaries
Definition 2.1. [11] If $(K, \tau_R(P))$ is the ntss with respect to P where $P \subseteq K$ and if $S \subseteq K$, then

1. The nano interior of the set S is defined as the union of all nano open (in short, no) subsets contained in S and it is denoted by $ninte(S)$. That is, $ninte(S)$ is the largest no subset of S.
2. The nano closure of the set S is defined as the intersection of all nano closed (in short, nc) sets containing S and it is denoted by $nclo(S)$. That is, $nclo(S)$ is the smallest nc set containing S.

Definition 2.2. [11] A subset S of a ntss $(K, \tau_R(P))$ is said to be

1. nano α-closed (in short, $n\alpha c$) if $nclo(nclo(nclo(S))) \subseteq S$.
2. nano semi-closed (in short, nsc) if $ninte(nclo(S)) \subseteq S$.
3. nano pre-closed (in short, npc) if $nclo(ninte(S)) \subseteq S$.

The complements of the above mentioned nc are called their respective no respectively.

The nano α-closure [18] (respectively, nano semi-closure [2, 3], nano pre-closure [1]) of a subset S of K, denoted by $n\alpha clo(S)$ (respectively, $nsclo(S)$, $npclo(S)$) is defined to be the intersection of all $n\alpha c$ (respectively, nsc, npc) sets of $(K, \tau_R(P))$ containing S.

©Asia Mathematika, DOI: 10.5281/zenodo.5253049
*Correspondence: sgsgsgsgsg77@gmail.com
The nano α-interior [18] (respectively, nano semi-interior [2, 3], nano pre-interior[1]) of a subset S of K, denoted by $\ nano α-interior \[18\] (respectively, $\ nano$ semi-interior $[2, 3]$, nano pre-interior$[1]$) of a subset S of K, denoted by $\ nano$ α (respectively, $\ nano$ semi, $\ nano$ pre) sets of $(K, \tau_R(P))$ containing S.

Definition 2.3. A subset S of a ntss $(K, \tau_R(P))$ is called:

1. nsg-open (in short, nsgo) [2] if $T \subseteq nsinte(S)$ whenever $T \subseteq S$ and T is nano semi-closed in $(K, \tau_R(P))$.
2. n\tilde{g}-open (in short, n\tilde{g}o) [18] if $T \subseteq ninte(S)$ whenever $T \subseteq S$ and T is nsg-closed in $(K, \tau_R(P))$.
3. n\tilde{g}-α-open (in short, n\tilde{g}-αo) [18] if $T \subseteq ninte(S)$ whenever $T \subseteq S$ and T is nsg-closed in $(K, \tau_R(P))$.
4. n\tilde{g}-p-open (in short, n\tilde{g}-po) [20] if $T \subseteq npinte(S)$ whenever $T \subseteq S$ and T is nsg-closed in $(K, \tau_R(P))$.

The complement of above mentioned no-sets are called their respective nc-sets.

Definition 2.4. A subset S of a ntss $(K, \tau_R(P))$ is said to be:

1. nt-set (in short, nts) [10] if $ninte(S) = ninte(nclo(S))$.
2. nα-*set (in short, nα*-s) [16] if $ninte(S) = ninte(nclo(ninte(S)))$.
3. an η-set if $S = I \cap J$ where I is no & J is a nαc.
4. η^s-set (in short, η^ss) [19] if $S = I \cap J$, where I is nsgo & J is nαc in $(K, \tau_R(P))$.
5. η^d-set (in short, η^ds) [19] if $S = I \cap J$, where I is n\tilde{g}-αo & J is nts in $(K, \tau_R(P))$.
6. n\tilde{g}lc*-set (in short, n\tilde{g}lc*-s) [20] if $S = I \cap J$, where I is nsgo & J is nc $(K, \tau_R(P))$.

Collection of all ηs (respectively, η^ss, η^ds) in a ntss $(K, \tau_R(P))$ is denoted by $\eta(K, \tau_R(P))$ (respectively, $\eta^s(K, \tau_R(P))$, $\eta^d(K, \tau_R(P))$).

Remark 2.1. nαc sets and n\tilde{g}c sets are independent.

Example 2.1. Let $K = \{11, 12, 13\}$ with $K / R = \{\{13\}, \{11, 12\}, \{12, 11\}\}$ and $P = \{11, 12\}$, $\tau_R(P) = \{\phi, \{11, 12\}, K\}$. Here, the set $\{12, 13\}$ is n\tilde{g}c but not nαc.

2. Let $K = \{11, 12, 13\}$ with $K / R = \{\{11\}, \{12, 13\}\}$ and $P = \{11\}$, $\tau_R(P) = \{\phi, \{11\}, K\}$. Here, the set $\{12\}$ is nαc but not n\tilde{g}c.

Remark 2.2. [16]

1. Every nts is an α-*s but not conversely.
2. Union of 2 α-*s need not be an α-*s.
3. Intersection of 2 α-*s is an α-*s.

Definition 2.5. A map $f : (K, \tau_R(P)) \to (L, \sigma_R(Q))$ is called:

1. n-cts [12] if $f^{-1}(D)$ is a n in $(K, \tau_R(P))$, for every no set D of $(L, \sigma_R(Q))$.
2. nα-continuous (in short, nα-cts) [13] if $f^{-1}(D)$ is nαo in $(K, \tau_R(P))$, for every no set D of $(L, \sigma_R(Q))$.

2
3. $n\gamma$-cts [20] if $f^{-1}(D)$ is $n\gamma o$ in $(K, \tau_R(P))$, for every no set D of $(L, \sigma_R(Q))$.

4. $n\gamma_{\alpha}$-cts [20] (respectively, $n\gamma_{\rho}$-cts [20]) if $f^{-1}(D)$ is $n\gamma_{\alpha} o$ (respectively, $n\gamma_{\rho} o$) set in $(K, \tau_R(P))$, for every no set D of $(L, \sigma_R(Q))$.

5. $n\gamma lc^*$-continuous (in short, $n\gamma lc^*$-cts) [20] if $f^{-1}(D) \in n\gamma lc^*(K, \tau_R(P))$, for every no set D of $(L, \sigma_R(Q))$.

6. $n\eta^\sharp$-continuous (in short, $n\eta^\sharp$-cts) [18] if $f^{-1}(D) \in n\eta^\sharp(K, \tau_R(P))$, for every no set D of $(L, \sigma_R(Q))$.

7. $n\eta^\sharp$-continuous (in short, $n\eta^\sharp$-cts) [18] if $f^{-1}(D) \in n\eta^\sharp(K, \tau_R(P))$, for every no set D of $(L, \sigma_R(Q))$.

Theorem 2.1. [20] A map $f : (K, \tau_R(P)) \to (L, \sigma_R(Q))$ is n-cts iff it is both $n\gamma$-cts and $n\gamma lc^*$-cts.

Theorem 2.2. [19]

1. A map $f : (K, \tau_R(P)) \to (L, \sigma_R(Q))$ is $n\alpha$-cts iff it is both $n\gamma_{\alpha}$-cts and $n\eta^\sharp$-cts.

2. A map $f : (K, \tau_R(P)) \to (L, \sigma_R(Q))$ is $n\gamma_{\alpha}$-cts iff it is both $n\gamma_{\rho}$-cts and $n\eta^\sharp$-cts.

3. $n\gamma_{\iota}$s & $n\gamma_{\alpha}$s

Definition 3.1. A subset H of a ntss $(K, \tau_R(P))$ is said to be

1. an $n\gamma_{\iota}$-sets (in short, $n\gamma_{\iota}$s) if $H = I \cap J$, where I is $n\gamma o$ in K & J is a nts in K.

2. an $n\gamma_{\alpha}$s-sets (in short, $n\gamma_{\alpha}$s) if $H = I \cap J$, where I is $n\gamma o$ in K & J is a $n\alpha$-s in K.

Collection of all $n\gamma_{\iota}$s (respectively, $n\gamma_{\alpha}$s) in a ntss $(K, \tau_R(P))$ is denoted by $n\gamma_{\iota}(K, \tau_R(P))$ (respectively, $n\gamma_{\alpha}*(K, \tau_R(P))$).

Proposition 3.1. Let H be a subset of K. Then

1. If H is a nts, then $H \in n\gamma_{\iota}(K, \tau_R(P))$.

2. If H is an $n\alpha$-s, then $H \in n\gamma_{\alpha}*(K, \tau_R(P))$.

3. If H is an $n\gamma o$ set in K, then $H \in n\gamma_{\iota}(K, \tau_R(P))$ & $H \in n\gamma_{\alpha}*(K, \tau_R(P))$.

Proof. The proof is straightforward from the definitions.

Proposition 3.2. In a ntss K, every $n\gamma_{\iota}$s is an $n\gamma_{\alpha}$s but not conversely.

Proof. The proof is straightforward from the definitions.

Example 3.1. Let K and $\tau_R(P)$ in the Example 2.1(1). Here, the set $\{11, 13\}$ is $n\gamma_{\alpha}$s but not $n\gamma_{\iota}$s.

Remark 3.1. The following examples show that

1. the converse of Proposition 3.1 need not be true.

2. $n\gamma_{\iota}$s & $n\gamma_{\rho} o$ sets are independent.

3. $n\gamma_{\alpha}$s & $n\gamma_{\rho} o$ sets are independent.
Example 3.2. Let $K \& \tau_R(P)$ in the Example 2.1(1). Here, the set $\{11\}$ is $\text{n} \text{g} \text{t}$ but not an $\text{n} \text{g}$ a *s but not $\text{n} \text{g}$ o s.

Example 3.3. Let $K \& \tau_R(P)$ in the Example 2.1(1). Here, the set $\{13\}$ is both $\text{n} \text{g} \text{t}$ and $\text{n} \text{g}$ a *s but not $\text{n} \text{g}$ o set.

Example 3.4. Let $K \& \tau_R(P)$ in the Example 2.1(1). Here, (a) the set $\{13\}$ is $\text{n} \text{g} \text{t}$ but not a $\text{n} \text{g}$ p o, (b) the set $\{12, 13\}$ is a $\text{n} \text{g}$ p o set but not $\text{n} \text{g}$ t s.

Example 3.5. Let $K = \{11, 12, 13, 14\}$ with $K / R = \{\{11\}, \{12, 13\}, \{12, 14\}\}$ and $P = \{11\}$, $\tau_R(P) = \{\phi, \{11\}, K\}$. Here, (a) the set $\{12\}$ is $\text{n} \text{g}$ a *s but not $\text{n} \text{g}$ a o, (b) the set $\{11, 13\}$ is $\text{n} \text{g}$ a o but not $\text{n} \text{g}$ a *s.

Example 3.6. Let $K \& \tau_R(P)$ in the Example 2.1(1). Here, the set $\{11\}$ is $\text{n} \text{g}$ a *s and $\text{n} \text{g}$ t s but it is not $\text{n} \text{g}$ c.

Remark 3.2. From the above discussions and known results in [14, 18, 20], we obtained the following diagram where $A \rightarrow B$ represents A implies B, but not conversely.

```
\begin{array}{ccc}
nano closed & \rightarrow & \text{n} \text{g}-closed \\
\downarrow & & \downarrow \\
n\text{a}-closed & \rightarrow & \text{n} \text{g} \text{a}*-closed
\end{array}
```

Remark 3.3.
1. Union of 2 $\text{n} \text{g}$ t s need not be an $\text{n} \text{g}$ t s.
2. Union of 2 $\text{n} \text{g}$ a *s need not be an $\text{n} \text{g}$ a *s.

Example 3.7.
1. Let K and $\tau_R(P)$ in the Example 2.1(1). Here, the sets are $\{12\}$ and $\{13\}$ are $\text{n} \text{g}$ t -sets but $\{12\} \cup \{13\} = \{12, 13\}$ is not an $\text{n} \text{g}$ t -set.
2. Let K and $\tau_R(P)$ in the Example 3.5. Here, the sets are $\{11\}$ and $\{12\}$ are $\text{n} \text{g}$ a *-sets but $\{11\} \cup \{12\} = \{11, 12\}$ is not an $\text{n} \text{g}$ a *s.

Remark 3.4.
1. Intersection of any 2 $\text{n} \text{g}$ t s belongs to $\text{n} \text{g}$ t ($K, \tau_R(P)$).
2. Intersection of any 2 of $\text{n} \text{g}$ a *s belongs to $\text{n} \text{g}$ a * ($K, \tau_R(P)$).

Lemma 3.1.
1. A subset H of $(K, \tau_{R}(P))$ is $n\tilde{g}o$ [18] iff $F \subseteq \text{ninte}(H)$ whenever $F \subseteq H$ and F is nsgc in K.

2. A subset H of $(K, \tau_{R}(P))$ is $n\tilde{g}\alpha o$ [20] iff $F \subseteq \text{nalpha}(H)$ whenever $F \subseteq H$ and F is nsgc in K.

3. A subset H of $(K, \tau_{R}(P))$ is $n\tilde{g}\beta o$ [20] iff $F \subseteq \text{npinte}(H)$ whenever $F \subseteq H$ and F is nsgc in K.

Theorem 3.1. A subset H is $n\tilde{g}o$ in $(K, \tau_{R}(P))$ iff it is both $n\tilde{g}\alpha o$ and $n\tilde{g}\alpha s$ in $(K, \tau_{R}(P))$.

Proof. Necessity. Obvious.

Sufficiency. Suppose H be both $n\tilde{g}\alpha o$ set and $n\tilde{g}\alpha s$. Since H is an $n\tilde{g}\alpha s$, $H = I \cap J$, where I is $n\tilde{g}o$ and J is an $nalpha$s. Assume that $F \subseteq H$, where F is nsgc in K. Since I is $n\tilde{g}o$, by Lemma 3.1 (1), $F \subseteq \text{ninte}(H)$. Since H is $n\tilde{g}o$ in K, by Lemma 3.1 (2), $F \subseteq \text{nalpha}(H) = H \cap \text{ninte}(\text{nclo}(\text{ninte}(H))) = (I \cap J) \cap \text{ninte}(\text{nclo}(\text{ninte}(I \cap J))) \subseteq I \cap J \cap \text{ninte}(\text{nclo}(\text{ninte}(I))) \subseteq \text{ninte}(J)$. Therefore, we obtained $F \subseteq \text{ninte}(J)$ and hence $F \subseteq \text{ninte}(I) \cap \text{ninte}(J) = \text{ninte}(H)$. Hence H is nsgo, by Lemma 3.1 (1).

Theorem 3.2. A subset H is $n\tilde{g}o$ in $(K, \tau_{R}(P))$ iff it is both $n\tilde{g}\beta o$ and $n\tilde{g}\beta s$ in $(K, \tau_{R}(P))$.

Proof. The proof is similar to theorem 3.1.

Definition 3.2. A map $f : (K, \tau_{R}(P)) \to (L, \sigma_{R}(Q))$ is said to be

1. $n\tilde{g}\iota$-cts if $f^{-1}(D) \in n\tilde{g}\iota(K, \tau_{R}(P))$, for every no set D of $(L, \sigma_{R}(Q))$.

2. $n\tilde{g}\alpha*$-cts if $f^{-1}(D) \in n\tilde{g}\alpha*(K, \tau_{R}(P))$, for every no set D of $(L, \sigma_{R}(Q))$.

Theorem 3.3. For a map $f : (K, \tau_{R}(P)) \to (L, \sigma_{R}(Q))$, the following implications hold:

1. $n\tilde{g}$-cts \Rightarrow $n\tilde{g}\iota$-cts.
2. $n\tilde{g}$-cts \Rightarrow $n\tilde{g}\alpha*$-cts.
3. $n\tilde{g}\iota$-cts is an $n\tilde{g}\alpha*$-cts.
4. $n\tilde{g}$-cts \Rightarrow $n\tilde{g}\alpha$-cts \Rightarrow $n\tilde{g}\beta$-cts. [20]

Proof. (1) and (2). The proof is straightforward from the proposition 3.1.

(3). The proof is straightforward from the proposition 3.2.

Remark 3.5.

1. $n\tilde{g}\iota$-cts and $n\tilde{g}\beta$-cts are independent.

2. $n\tilde{g}\alpha*$-cts and $n\tilde{g}\alpha$-cts are independent.

Remark 3.6.
Selvaraj Ganesan

We obtained some decomposition of $n\check{g}$-cts

Theorem 3.4. A map $f : (K, \tau_R(P)) \to (L, \sigma_R(Q))$ is $n\check{g}$-cts iff it is both $n\check{g}_\alpha$-cts and $n\check{g}_\alpha^*$-cts.

Proof. The proof is straightforward from theorem 3.1.

Theorem 3.5. A map $f : (K, \tau_R(P)) \to (L, \sigma_R(Q))$ is $n\check{g}$-cts iff it is both $n\check{g}_\mu$-cts, $n\check{g}_\#^*$-cts and $n\check{g}_\alpha^*$-cts.

Proof. The proof is straightforward from theorem 2.2 (2) and theorem 3.4.

Theorem 3.6. A map $f : (K, \tau_R(P)) \to (L, \sigma_R(Q))$ is $n\check{g}$-cts iff it is both $n\check{g}_\mu$-cts and $n\check{g}_\check{t}$-cts.

Proof. The proof is straightforward from theorem 3.2.

Conclusion

We obtained decomposition of $n\check{g}$-cts in ntss using $n\check{g}_\mu$-cts, $n\check{g}_\alpha$-cts, $n\check{g}_\check{t}$-cts and $n\check{g}_\alpha^*$-cts. The results of this study may be help to many researches.

References

