

Separation axioms via μ -Pre*-closed sets In GTS

M. Padmavathi^{1*}, P. Sivagami² and G. Hari Siva Annam³
 ¹Research scholar, Reg.No:19212102092013,
PG and Research Department of Mathematics, Kamaraj college,
 Thoothukudi-628003, India. Orchid iD: 0000-0002-9150-9157
²PG and Research Department of Mathematics, Kamaraj college,
 Thoothukudi-628003, India. ORCID iD: 0000-0002-2035-5306
³PG and Research Department of Mathematics, Kamaraj college,
 Thoothukudi-628003, India. Orchid iD: 0000-0002-0561-1287

Received: 05 May 2021 • Accepted: 06 Jul 2021 • Published Online: 25 Aug 2021

Abstract: In this expedition, we explored the idea of "separation axioms" via μ -pre*-closed set in GTS, investigate their vital traits, relationship and characterizations.

Key words: μ-pre*-kernel; $\wedge_{p^*\mu}$ -set; $\vee_{p^*\mu}$ -set; $\wedge_{p^*\mu}$ -closed; $\vee_{p^*\mu}$ -open; μ-pre* - T_0 space; μ-pre* - T_1 space; μ-pre* - T_2 space; $p^*kr_\mu(A)$; $\wedge_{p^*\mu}(X)$; $\vee_{p^*\mu}(X)$; $\vee_{p^*\mu$

1. Introduction

The concept of generalized closed and open sets was first originated 1970 by N. Levin [8] in topological space (on briefly TS). The try – out generalized topological space (on briefly GTS) was initiated in 2002 by A. Csaszar [3]. By making use of their perception, the opinion of μ – pre*-closed sets is introduce and their attributes are discussed in GTS by us [18]. The idea of separation axioms in TS is introduced and considered by Felix Hausdroff (1869). The intention of this research, is to bring up the μ – pre*-kernel, $\wedge_{p^*\mu}$ -set, $\wedge_{p^*\mu}$ -closed and μ –pre* separation axioms (μP^*SA) in GTS and probe fundamental traits. Also their correlations have been studied with several related counter examples.

2. Primary Needs

Here, we recall some notions and results on GTS. Henceforth, we mentioned GTS (X, μ) as X. We know that $\tau \subseteq 2^x$ (power set) is called a topology on a set X if τ contains arbitrary union and finite intersection of members of τ and also void and whole space belong to τ (obviously arbitrary union of void set is void therefore, $\varphi \in \tau$) but in GTS, some of the above features do not valid. In a GTS, $\mu \subseteq 2^x$ that includes null space and $U_{i \in I}$ $U_i \in \mu$ when $U_i \in \mu$, $i \in I$. In X, M_{μ} is delineated as $M_{\mu} = U_{i \in I}U_i$. A subset $A \subseteq X$ is known as a μ - pre*-open set (μP^*Os) if $A \subseteq i_{\mu}^*(c_{\mu}(A))$ and $X \setminus A$ is named as a μ - pre*-closed set (μP^*Cs). The collection of all μ - pre*-open sets and μ - pre*-closed sets are indicated as a symbol $P^*O_{\mu}(X)$ and $P^*C_{\mu}(X)$ respectively. $p^*i_{\mu}(A)$ is defined as union of all μP^*Os contained in A. $p^*c_{\mu}(A)$ is defined as the intersection of all μP^*Cs which contains A. On the whole paper, we call $p^*c_{\mu}(A)$

[©]Asia Mathematika, DOI: 10.5281/zenodo.5253535

^{*}Correspondence: padmavathimariappan@gmail.com

as C(A) and $p^*i_{\mu}(A)$ as $\mathcal{J}(A)$.

Let for each $x \neq y \in M_{\mu}$. A space X is said to be a T_0 space [16] if \exists a μ - open set $x \in U$, $y \notin U$ or $x \notin U$, $y \in U$. X is called as a T_1 space [10] if \exists μ - open sets U_1 and U_2 such that $x \in U_1$, $y \notin U_1$ and $x \notin U_2$, $y \in U_2$. X is a T_2 space [16] if \exists disjoint μ - open sets U_1 and U_2 such that $x \in U_1$ and $y \in U_2$. The forthcoming lemmas will be useful in the sequel.

Lemma 2.1. If $x \in X$, then $x \in C(A)$ iff $V \cap A \neq \varphi$ for every $V \in p^*O_{\mu}(X)$ and $x \in V$.

Lemma 2.2. If $A \subseteq X$, then the following statements hold.

- (i) Every μP^*Cs containing a μP^*Cs ($X \setminus M_{\mu}$).
- (ii) $C(A \cap M_{\mu}) \cap M_{\mu} = C(A) \cap M_{\mu}$.
- (iii) If $A \in P^*C_{\mu}(X)$ then $C(A \cap M_{\mu}) \cap M_{\mu} = A \cap M_{\mu}$.
- (iv) $\mathcal{C}(A) = [\mathcal{C}(A) \cap M_{\mu}] \cup [X \setminus M_{\mu}].$
- (v) If $A \in P^*C_{\mu}(X)$ then $A = [A \cap M_{\mu}] \cup [X \setminus M_{\mu}]$.
- *Proof.* (i) For every $U \in P^*O_{\mu}(X)$, $U \subseteq M_{\mu}$ so that $(X \setminus M_{\mu}) \subseteq X \setminus U$. Thus every μP^*Cs includes $(X \setminus M_{\mu})$.
 - (ii) Since $A \cap M_{\mu} \subseteq A$, $\mathcal{C}(A \cap M_{\mu}) \cap M_{\mu} \subseteq \mathcal{C}(A) \cap M_{\mu}$. Let $x \in \mathcal{C}(A) \cap M_{\mu}$. Then $x \in \mathcal{C}(A)$ and $x \in M_{\mu}$, by lemma 2.1, $U \cap A \neq \varphi \forall U \text{ in } P^*O_{\mu}(X)$ and $x \in U$. Since $U \subseteq M_{\mu}$, $U \cap (A \cap M_{\mu}) \neq \varphi$. Therefore, $x \in \mathcal{C}(A \cap M_{\mu})$ and so $x \in \mathcal{C}(A \cap M_{\mu}) \cap M_{\mu}$. Hence $\mathcal{C}(A) \cap M_{\mu} \subseteq \mathcal{C}(A \cap M_{\mu}) \cap M_{\mu}$.
- (iii) If $A \in P^*C_{\mu}(X)$ and by (ii), $\mathcal{C}(A \cap M_{\mu}) \cap M_{\mu} = A \cap M_{\mu}$.
- (iv) $\mathcal{C}(A) = \mathcal{C}(A) \cap X = \mathcal{C}(A) \cap [M_{\mu} \cup (X \setminus M_{\mu})] = [\mathcal{C}(A) \cap M_{\mu}] \cup [\mathcal{C}(A) \cap [X \setminus M_{\mu}]] = [\mathcal{C}(A) \cap M_{\mu}] \cup [X \setminus M_{\mu}]$ (by (i))
- (v) If $A \in P^*C_{\mu}(X)$ and by (iv), $A = [A \cap M_{\mu}] \cup [X \setminus M_{\mu}]$.

3. μ -pre*-kernel in GTS

In this section, we present the concepts in GTS such as μ -pre*-kernel, $\wedge_{p^*\mu}$ -set and $\wedge_{p^*\mu}$ -closed and discuss their attributes. Also we investigate the relations among them.

Definition 3.1. Let $A \subseteq X$. Then μ -pre*-kernel of A is the intersection of all μP^*Os contains A and it's indicated by $p^*kr_{\mu}(A)$.

(ie)
$$p^*kr_{\mu}(A) = \bigcap \{ U \in P^*_{\mu}O(X) : A \subseteq U \}.$$

State that if there is no μP^*Os contains A then $p_{\mu}^*kr(A) = X$.

Proposition 3.1. For A, B \subseteq X and a subset A_{α} , $\alpha \in N$ of X, the following statements hold.

- (i) $A \subseteq p^*kr_{\mu}(A)$.
- (ii) $A \subseteq B \Rightarrow p^*kr_u(A) \subseteq p^*kr_u(B)$.

- (iii) $p^*kr_{\mu}(p^*kr_{\mu}(A)) = p^*kr_{\mu}(A)$.
- (iv) If $A \in P_{\mu}^*O(X)$ then $A = p^*kr_{\mu}(A)$.
- $(v) p^*kr_{\mu}(\cup A_{\alpha}) = \cup p^*kr_{\mu}(A_{\alpha}).$
- (vi) $p^*kr_{\mu}(\cap A_{\alpha}) \subseteq \cap p^*kr_{\mu}(A_{\alpha}).$

Remark 3.1. In the above proposition, the inversion statement of (iv) and the reverse inclusion of (vi) may be valid. These conditions can be explored by the succeeding counter example.

Example 3.1. Consider $X = \{0.1_X, 0.2_X, 0.3_X, 0.4_X, 0.5_X, 0.6_X\}$ with $\mu = \{\varphi, \{0.2_X\}, \{0.4_X\}, \{0.5_X\}, \{0.1_X, 0.2_X\}, \{0.1_X, 0.3_X\}, \{0.2_X, 0.4_X\}, \{0.2_X, 0.5_X\}, \{0.2_X, 0.6_X\}, \{0.4_X, 0.5_X\}, \{0.1_X, 0.2_X, 0.3_X\}, \{0.1_X, 0.2_X, 0.4_X\}, \{0.1_X, 0.2_X, 0.5_X\}, \{0.1_X, 0.2_X, 0.6_X\}, \{0.1_X, 0.3_X, 0.4_X\}, \{0.1_X, 0.3_X, 0.5_X\}, \{0.2_X, 0.4_X, 0.5_X\}, \{0.2_X, 0.4_X, 0.6_X\}, \{0.2_X, 0.5_X, 0.6_X\}, \{0.1_X, 0.2_X, 0.3_X, 0.4_X\}, \{0.1_X, 0.2_X, 0.3_X, 0.5_X\}, \{0.1_X, 0.2_X, 0.3_X, 0.6_X\}, \{0.1_X, 0.2_X, 0.3_X, 0.6_X\}, \{0.1_X, 0.2_X, 0.4_X, 0.5_X\}, \{0.1_X, 0.2_X, 0.4_X, 0.5_X\}, \{0.1_X, 0.2_X, 0.3_X, 0.4_X\}, \{0.1_X, 0.2_X, 0.3_X, 0.4_X\}, \{0.1_X, 0.2_X, 0.3_X,$

For (iv), Take $A = \{0.3_X\}$. Here $p_{\mu}^*ker(A) = \{0.3_X\}$ but $\{0.3_X\}$ is not μP^*O . For (vi), Let $A = \{0.2_X\}$ and $B = \{0.1_X, 0.6_X\}$. Then $A \cap B = \varphi$. Here $p^*kr_{\mu}(A) = \{0.2_X\}$, $p^*kr_{\mu}(B) = \{0.1_X, 0.2_X, 0.6_X\}$ and $p^*kr_{\mu}(A \cap B) = \varphi$. Hence $p^*kr_{\mu}(A \cap B) \subset p^*kr_{\mu}(A) \cap p^*kr_{\mu}(B)$. Take $A = \{0.3_X, 0.4_X\}$ and $B = \{0.1_X, 0.3_X, 0.5_X\}$. Then $A \cap B = \{0.3_X\}$. Here $p^*kr_{\mu}(A) = \{0.3_X, 0.4_X\}$, $p^*kr_{\mu}(B) = \{0.1_X, 0.3_X, 0.5_X\}$ and $p^*kr_{\mu}(A \cap B) = \{0.3_X\}$. Hence $p^*kr_{\mu}(A \cap B) = p^*kr_{\mu}(A) \cap p^*kr_{\mu}(B)$. From this, $p^*kr_{\mu}(A \cap B) \subseteq p^*kr_{\mu}(A_{\alpha})$.

Proposition 3.2. Let $A \subseteq X$ and $\forall x \in X$. Then $p^*kr_{\mu}(A) = \{x : \mathcal{C}(\{x\}) \cap A \neq \varphi\}$.

Proof. Suppose $\mathcal{C}(\{x\}) \cap A = \varphi$, $x \notin X \setminus \mathcal{C}(\{x\}) \in p^*O_{\mu}(X)$ and $A \subseteq X \setminus \mathcal{C}(\{x\})$. Therefore, $x \notin p^*kr_{\mu}(A)$ and hence $p^*kr_{\mu}(A) \subseteq \{x \in X : \mathcal{C}(\{x\}) \cap A \neq \varphi\}$. On the other hand, let $x \notin p^*kr_{\mu}(A)$. Then $\exists U \in p^*O_{\mu}(X)$, $A \subseteq U$ and $x \notin U$ and hence $\mathcal{C}(\{x\}) \cap U = \varphi$ so that $\mathcal{C}(\{x\}) \cap A = \varphi$. This is a contradiction. Thus, $\{x \in X : \mathcal{C}(\{x\}) \cap A \neq \varphi\} \subseteq p^*kr_{\mu}(A)$. \square

Proposition 3.3. For any $x, y \in X$, $y \in p^*kr_{\mu}(\{x\})$ iff $x \in \mathcal{C}(\{y\})$.

Proof. Essential Condition: Let $y \notin p^*kr_{\mu}(\{x\})$. Then, $\exists U \in P^*O_{\mu}(X)$ such that U contains x but not y so that $\exists \mu P^*Cs$ containing y but not x and hence $x \notin C(\{y\})$.

Sufficient Condition: Suppose $x \notin \mathcal{C}(\{y\})$, $\exists V \in P^*O_{\mu}(X)$ such that V contains x but not y. Thus, $y \notin p^*kr_{\mu}(\{x\})$.

Proposition 3.4. If $A \subseteq X$ then $A \in P^*C_{\mu}(X)$ iff $C(A) \subseteq p^*kr_{\mu}(A)$.

Proposition 3.5. $p^*kr_{\mu}(\{x\}) \neq p^*kr_{\mu}(\{y\})$ iff $\mathcal{C}(\{x\}) \neq \mathcal{C}(\{y\})$, $\forall x, y \in X$.

Proof. Essential Condition: Assume $p^*kr_{\mu}(\{x\}) \neq p^*kr_{\mu}(\{y\}), \exists z \in X \text{ such that } z \in p^*kr_{\mu}(\{x\})$ and $z \notin p^*kr_{\mu}(\{y\})$. By proposition 3.3, $x \in \mathcal{C}(\{z\})$ and $y \notin \mathcal{C}(\{z\})$ and so $\{y\} \cap \mathcal{C}(\{z\}) = \varphi$.

Since $\mathcal{C}(\{x\}) \subseteq \mathcal{C}(\{z\}), \{y\} \cap \mathcal{C}(\{x\}) = \varphi$. Thus, $\mathcal{C}(\{x\}) \neq \mathcal{C}(\{y\})$.

Sufficient Condition: Let $\mathcal{C}(\{x\}) \neq \mathcal{C}(\{y\})$. Then $\exists z \in X$ such that $z \in \mathcal{C}(\{x\})$ and $z \notin \mathcal{C}(\{y\})$ so that $\exists U \in P^*O_{\mu}(X)$ containing z but not y. Since $z \in \mathcal{C}(\{x\})$, $x \in U$. Therefore $y \notin p^*kr_{\mu}(\{x\})$ and hence $p^*kr_{\mu}(\{x\}) \neq p^*kr_{\mu}(\{y\})$.

Proposition 3.6. $\cap_{x \in M_{\mu}} \mathcal{C}(\{x\}) = X \setminus M_{\mu} \text{ iff } p^*kr_{\mu}(\{x\}) \neq M_{\mu}, \forall x \in M_{\mu}.$

Proof. Essential condition: Assume $\cap_{x \in M_{\mu}} \mathcal{C}(\{x\}) \cap M_{\mu} = \varphi$. Suppose $y \in M_{\mu}$ such that $p^*kr_{\mu}(\{y\}) = M_{\mu}$. Let $x \in M_{\mu}$ be an arbitrary point. Then for any μP^*Os containing y which also contains x so that $y \in \mathcal{C}(\{x\})$. Therefore, $y \in \mathcal{C}(\{x\}) \forall x \in M_{\mu}$. This follows that $y \in \cap_{x \in M_{\mu}} \mathcal{C}(\{x\}) \cap M_{\mu}$, which is a contradiction. Thus, $p^*kr_{\mu}(\{x\}) \neq M_{\mu}$.

Sufficient condition: Assume $p^*kr_{\mu}(\{x\}) \neq M_{\mu}$. Let $y \in M_{\mu}$ such that $y \in \cap_{x \in M_{\mu}} \mathcal{C}(\{x\}) \cap M_{\mu}$. Then $\forall x \in M_{\mu}$, every μP^*Cs containing x also contains y. Therefore, every μP^*Os containing y must contains all point of M_{μ} so that M_{μ} is the only μP^*Os containing y. Therefore, $p^*kr_{\mu}(\{x\}) = M_{\mu}$ which is a contradiction. Therefore, $\cap_{x \in M_{\mu}} \mathcal{C}(\{x\}) \cap M_{\mu} = \varphi$.

Definition 3.2. A subset A of X is said to be a $\wedge_{p^*\mu}$ -set if $A = p^*kr_{\mu}(A)$. The complement of $\wedge_{p^*\mu}$ -set is called a $\vee_{p^*\mu}$ -set. Here after $\wedge_{p^*\mu}(X)$ and $\vee_{p^*\mu}(X)$ denotes the collection of all $\wedge_{p^*\mu}$ -set and $\vee_{p^*\mu}$ -set respectively.

Proposition 3.7. If $A \subseteq X$, then the following statements hold.

- (i) φ and X are $\wedge_{p^*\mu}$ sets.
- (ii) If $A \in P^*O_{\mu}(X)$ then $A \in \wedge_{p^*\mu}(X)$.
- (iii) $p^*kr_{\mu}(A) \in \wedge_{p^*\mu}(X)$.

It can be easily seen that the converse of proposition 3.7 (ii) may be hold as well. Let us consider $X = \{e_{1X}, e_{2X}, e_{3X}, e_{4X}\}$ with $\mu = \{\phi, \{e_{1X}\}, \{e_{4X}\}, \{e_{1X}, e_{2X}\}, \{e_{1X}, e_{3X}\}, \{e_{1X}, e_{3X}\}, \{e_{1X}, e_{2X}, e_{3X}\}, \{e_{1X}, e_{2X}, e_{3X}\}, \{e_{1X}, e_{2X}, e_{3X}\}, \{e_{1X}, e_{2X}, e_{4X}\}, \{e_{1X}, e_{2X}, e_{4X}\}, \{e_{2X}, e_{3X}, e_{4X}\}, \{e_{2X}, e_{3X}, e_{4X}\}, X\}.$ Here $A = \{e_{3X}, e_{4X}\}$ is a $\wedge_{p*\mu}$ -set but not μP^*O .

Proposition 3.8. If $A_{\alpha} \subseteq X$, $\alpha \in N$ and $A_{\alpha} \in \wedge_{p*\mu}(X)$, then

- $(i) \cap A_{\alpha} \in \wedge_{n*\mu}(X).$
- (ii) $\cup A_{\alpha} \in \wedge_{p*\mu}(X)$.
- Proof. (i) By proposition 3.1 (vi), $p^*kr_{\mu}(\cap A_{\alpha}) \subset \cap p^*kr_{\mu}(A_{\alpha})$, $\alpha \in N$. Since $A_{\alpha} \in \wedge_{p*\mu}(X)$, $p^*kr_{\mu}(\cap A_{\alpha}) \subset \cap A_{\alpha}$. By proposition 3.1(i) $\cap A_{\alpha} \subseteq p^*kr_{\mu}(\cap A_{\alpha})$. Thus we have $p^*kr_{\mu}(\cap A_{\alpha}) = \cap A_{\alpha}$ so that $\cap A_{\alpha} \in \wedge_{p*\mu}(X)$, $\alpha \in N$.
 - (ii) By proposition 3.1 (v) for all $\alpha \in N$, $p^*kr_{\mu}(\cup A_{\alpha}) \supseteq \cup p^*kr_{\mu}(A_{\alpha})$. Since $A_{\alpha} \in \wedge_{p*\mu}(X)$, $p^*kr_{\mu}(\cup A_{\alpha}) \supseteq \cup A_{\alpha}$. We know that $A_{\alpha} \subseteq \cup A_{\alpha}$ and by proposition 3.1 (ii) $p^*kr_{\mu}(A_{\alpha}) \subseteq p^*kr_{\mu}(\cup A_{\alpha})$, $\alpha \in N \Rightarrow \cup p^*kr_{\mu}(A_{\alpha}) \subseteq p^*kr_{\mu}(\cup A_{\alpha}) \Rightarrow \cup A_{\alpha} \subseteq p^*kr_{\mu}(\cup A_{\alpha})$. Thus, $p^*kr_{\mu}(\cup A_{\alpha}) = \cup A_{\alpha}$.

Proposition 3.9. Let $A \in \wedge_{p*\mu}(X)$ Then $A \in P^*C_{\mu}(X)$ iff $p^*c_{\mu}(A) = p^*kr_{\mu}(A)$.

Proposition 3.10. If $A \in \wedge_{p*\mu}(X)$ and $p^*kr_{\mu}(A) \in P^*C_{\mu}(X)$ then $A \in P^*C_{\mu}(X)$.

Definition 3.3. A subset A of X is said to be $\wedge_{p^*\mu}$ -closed if $A = \mathcal{K} \cap F$ where $\mathcal{K} \in \wedge_{p^*\mu}(X)$ and $F \in P^*C_{\mu}(X)$. The collection of $\wedge_{p^*\mu}$ -closed is stand as a symbol for $\wedge_{p^*\mu}C(X)$.

A subset A of X is called a $\vee_{p*\mu}$ -open set if $X \setminus A$ is $\wedge_{p*\mu}$ -closed and $\vee_{p*\mu}O(X)$ denotes the collection of all $\vee_{p*\mu}$ -open.

Proposition 3.11. For any X, the following properties hold.

- $(i) \wedge_{p*\mu} (X) \subseteq \wedge_{p*\mu} C(X).$
- (ii) $P^*C_{\mu}(X) \subseteq \wedge_{p*\mu}C(X)$.

But the reverse statement of proposition 3.11 (i) and (ii) are not true. It can be described below with the aid of an example.

Example 3.2. Let us consider $X = \{0.2_X, 0.4_X, 0.6_X, 0.8_X\}$ endowed with $\mu = \{\varphi, \{0.2_X\}, \{0.8_X\}, \{0.2_X, 0.4_X\}, \{0.2_X, 0.6_X\}, \{0.2_X, 0.8_X\}, \{0.4_X, 0.8_X\}, \{0.2_X, 0.4_X, 0.6_X\}, \{0.2_X, 0.4_X, 0.8_X\}, \{0.2_X, 0.6_X\}, X\}$. Here, $A = \{0.4_X, 0.6_X\} \in \land_{p*\mu}C(X)$ but not in $\land_{p*\mu}(X)$. Also $A = \{0.2_X, 0.4_X\} \in \land_{p*\mu}C(X)$ but not in $P*C_\mu(X)$.

Remark 3.2. Every μP^*Os is $\wedge_{p*\mu}$ -closed.

Proposition 3.12. If $S \subseteq X$, then the following assertions are equivalent.

- (i) $S \in \wedge_{n*\mu} C(X)$.
- (ii) $S = \mathcal{K} \cap \mathcal{C}(S)$ where $\mathcal{K} \in \wedge_{n*u}(X)$.
- (iii) $S = p*kr_u(S) \cap C(S)$.

Proof. (i) \Rightarrow (ii) Let $S \in \wedge_{p*\mu}C(X)$, then $S = \mathcal{K} \cap F$ where $\mathcal{K} \in \wedge_{p*\mu}(X)$ and $F \in p^*C_{\mu}(X)$. Since $S \subseteq F$, $\mathcal{C}(S) \subseteq \mathcal{C}(F) = F$ and also $S \subseteq \mathcal{K}$. So we get $S \subseteq \mathcal{K} \cap \mathcal{C}(S) \subseteq \mathcal{K} \cap F = S$. Thus $S = \mathcal{K} \cap \mathcal{C}(S)$.

(ii) \Rightarrow (iii) Since $S \subseteq p*kr_{\mu}(S)$ and also $S \subseteq \mathcal{K}$. By proposition 3.1 (ii) $p*kr_{\mu}(S) \subseteq p*kr_{\mu}(\mathcal{K}) = \mathcal{K}$. Now, $S \subseteq p*kr_{\mu}(S) \cap \mathcal{C}(S) \subseteq \mathcal{K} \cap \mathcal{C}(S) = S$. Therefore, $S = p*kr_{\mu}(A) \cap \mathcal{C}(S)$.

(iii) \Rightarrow (i) Follows from proposition 3.7.

From (iii) we can say that a subset A is said to be $\wedge_{p*\mu}$ — closed if A can be represented as the intersection of all μP^*Os and all μP^*Cs containing it.

Proposition 3.13. If $A \subseteq X$ then $A \in \vee_{p*\mu}O(X)$ iff $A = N \cup \mathcal{J}(G)$, where $N \in \vee_{p*\mu}(X)$ and $G \in P^*O_{\mu}(X)$.

4. Separation Axioms on μ - Pre*closed sets in GTS

In this part, we present a lower separation axioms such as μ -pre* – T_0 , μ -pre* – T_1 and μ -pre* – T_2 using $P^*O_{\mu}(X)$. Also we speak about some results using such spaces.

Definition 4.1. A space X is called μ -pre* – T_0 (briefly $p*_{\mu}$ – T_0) if $\forall x \neq y \in M_{\mu}$, $\exists U \in P*O_{\mu}(X)$ containing one but not the other.

Proposition 4.1. Every μ -pre- T_0 space is p_{μ}^* - T_0 space.

Proposition 4.2. X is $p*_{\mu}-T_0$ iff $\mathcal{C}(\{x\})\cap M_{\mu}\neq \mathcal{C}(\{y\})\cap M_{\mu}$, $\forall x\neq y\in M_{\mu}$.

Proof. Necessary Condition: Assume X is $p_{\mu}^* - T_0$, $\exists U \in P^* O_{\mu}(X)$ such that $x \in U \subseteq M_{\mu}$ and $y \notin U$. Therefore, $X \setminus U \in P^* C_{\mu}(X)$ and $y \in X \setminus U$ but $x \notin X \setminus U$. Since $\mathcal{C}(\{y\})$ is the smallest $\mu P^* Cs$ containing $y, x \notin \mathcal{C}(\{y\})$. Thus, $\mathcal{C}(\{x\}) \cap M_{\mu} \neq \mathcal{C}(\{y\}) \cap M_{\mu}$.

Sufficient Condition: Assume distinct points of M_{μ} have distinct μ -pre*-closures, $\exists z \in \mathcal{C}(\{x\}) \cap M_{\mu}$ and $z \notin \mathcal{C}(\{y\}) \cap M_{\mu}$ so that $\exists U \in P^*O_{\mu}(X)$ and $z \in U$, $y \notin U$. Suppose $x \notin U$, $\exists \mu P^*Cs$ containing x but not z and hence $z \notin \mathcal{C}(\{x\})$. So that $x \in U$ but $y \notin U$. Hence X is $p_{\mu}^*-T_0$.

Proposition 4.3. A space X is $p_{\mu}^{*}-T_{0}$ iff $\{x\} \in \wedge_{p^{*}\mu}C(X), \forall x \in M_{\mu}$.

Proof. Necessary Condition: Assume X is $p_{\mu}^* - T_0$. Since $\{x\} \subseteq p^*kr_{\mu}(\{x\}) \cap \mathcal{C}(\{x\})$. If $y \neq x$, by hypothesis (i) $\exists U \in P^*O_{\mu}(X)$ such that $x \in U$ and $y \notin U$ (or) (ii) $\exists V \in P^*O_{\mu}(X)$ such that $y \in V$ and $x \notin V$. In case of (i), $y \notin p^*kr_{\mu}(\{x\})$. In case of (ii) we have $\exists F \in P^*C_{\mu}(X)$ such that $x \in F$ and $y \notin F$. Consequently, $y \notin \mathcal{C}(\{x\})$ and hence $y \notin p^*kr_{\mu}(\{x\}) \cap \mathcal{C}(\{x\})$. In either cases, $p^*kr_{\mu}(\{x\}) \cap \mathcal{C}(\{x\})$ and by proposition 3.12 (iii), $\{x\} \in \wedge_{p^*\mu}\mathcal{C}(X)$.

Sufficient Condition: Let $\{x\} \in \wedge_{p^*\mu}C(X)$. Then by proposition 3.12 (iii), $\{x\} = p^*kr_{\mu}(\{x\}) \cap C(\{x\})$. If X is not $p_{\mu}^*-T_0$, $\forall x \neq y \in M_{\mu}$ (i) $y \in U$, $\forall U \in P^*O_{\mu}(X)$ containing x and (ii) $x \in V$, $\forall V \in P^*O_{\mu}(X)$ containing y. From (i) and (ii), $y \in p^*kr_{\mu}(\{x\})$ and $y \in C(\{x\})$ and hence $y \in p^*kr_{\mu}(\{x\}) \cap C(\{x\})$ which is a inconsistency. Thus, X is $p_{\mu}^*-T_0$.

 $\textbf{Proposition 4.4.} \ \, \textit{X} \ \, \textit{is} \, \, p_{\mu}^* - T_0 \ \, \textit{iff either} \, \, \textit{y} \, \not \in \, \, p^*kr_{\mu}(\, \left\{ \, \, x \, \, \right\} \,) \, \, \textit{or} \, \, \textit{x} \, \not \in \, \, p^*kr_{\mu}(\, \left\{ \, \, y \, \, \right\} \,), \, \, \forall \, \, \textit{x} \, \neq \, \, \textit{y} \, \in \, \, M_{\mu} \, .$

Proof. Necessary Condition: Assume X is $p_{\mu}^*-T_0$, $\forall U \in P^*O_{\mu}(X)$ such that $x \in U$, $y \notin U$ or $x \notin U$, $y \in U$. If $x \in U$, $y \notin U \Rightarrow y \notin p^*kr_{\mu}(\{x\})$. Similarly, we have $x \notin p^*kr_{\mu}(\{y\})$. Sufficient Condition: Assume $y \notin p_{\mu}^* ker(\{x\})$ or $x \notin p_{\mu}^*ker(\{y\})$, $\exists U \in P^*O_{\mu}(X)$ such that $x \in U$, $y \notin U$ or $x \notin U$, $y \in U$. Thus, X is $p_{\mu}^*-T_0$.

Definition 4.2. A space X is called μ -pre* $-T_1$ (briefly $p_{\mu}^*-T_1$) if $\forall x \neq y \in M_{\mu}$, $\exists U, V \in P^*O_{\mu}(X)$, such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$.

Clearly, every $p_{\mu}^*-T_1$ space is $p_{\mu}^*-T_0$. But the reverse statement is not valid in general. It will be exuded in the forthcoming example.

Example 4.1. Let $X = \{u_X, v_X, w_X, z_X\}$ with $\mu = \{\varphi, \{u_X\}, \{z_X\}, \{u_X, v_X\}, \{u_X, w_X\}, \{u_X, w_X\}, \{u_X, v_X\}, \{u_X, v_X, v_X\}, \{u_X, v_X, z_X\}, \{u_X, w_X, z_X\}, X\}$. Here there is no $U, V \in P^*O_{\mu}(X)$ such that $u_X \in U, w_X \notin U$ and $w_X \in V, u_X \notin V$. Thus, X is $p_{\mu}^*-T_0$ but not $p_{\mu}^*-T_1$.

Proposition 4.5. A space X is $p_{\mu}^* - T_1$ iff $\{ x \} \cup (X \setminus M_{\mu}) \in P^*C_{\mu}(X), \forall x \in M_{\mu}$.

Proof. Necessary Part: Let X be $p_{\mu}^*-T_1$. Then $\exists U, V \in P^*O_{\mu}(X)$ such that $y \in V \subseteq M_{\mu}$ and $x \notin V$ so that $M_{\mu} \setminus \{x\} \in P^*O_{\mu}(X)$. Hence, $X \setminus [M_{\mu} \setminus \{x\}] = \{x\} \cup (X \setminus M_{\mu}) \in P^*C_{\mu}(X)$. Sufficient Part: Let $x \neq y \in M_{\mu}$. By hypothesis, $\{x\} \cup (X \setminus M_{\mu}), \{y\} \cup (X \setminus M_{\mu}) \in P^*C_{\mu}(X)$. Take $V = X \setminus [\{x\} \cup (X \setminus M_{\mu})] = M_{\mu} \setminus \{x\}$ and $U = X \setminus [\{x\} \cup (X \setminus M_{\mu})] = M_{\mu} \setminus \{y\}$. So that U and $V \in P^*O_{\mu}(X)$ such that $X \in U$, $Y \notin U$ and $X \notin V$, $Y \in V$. Hence X is $Y \in V$.

Proposition 4.6. The following assertions are equivalent, $\forall x \neq y \in M_{\mu}$.

- (i) X is $p*_{\mu}-T_1$.
- (ii) $\{x\} = \mathcal{C}(\{x\}) \cap M_{\mu}$.
- (iii) $\mathcal{C}(\lbrace x \rbrace) \cap \mathcal{C}(\lbrace y \rbrace) = X \setminus M_{\mu}$.

Proof. (i) \Rightarrow (ii) By (i) and proposition 4.5 { x } \cup ($X \setminus M_{\mu}$) \in $P^*C_{\mu}(X)$ and by lemma 2.2(iii), [{ x } \cup { $X \setminus M_{\mu}$ }] $\cap M_{\mu} = \mathcal{C}$ [[{ x } \cup { $X \setminus M_{\mu}$ }] $\cap M_{\mu}$] $\cap M_{\mu} \Rightarrow$ { x } $\cap M_{\mu} = \mathcal{C}$ [{ x } $\cap M_{\mu}$] $\cap M_{\mu} = \mathcal{C}$ [{ x }] $\cap M_{\mu}$. Thus, \mathcal{C} ({ x }) $\cap M_{\mu} = \{ x \}$.

- (ii) \Rightarrow (i) By (ii), $\{x\} \cup (X \setminus M_{\mu}) = C(\{x\}) \in P^*C_{\mu}(X)$ and by proposition 4.5, X is $p_{\mu}^* T_1$.
- (ii) \Rightarrow (iii) By (ii), $\{x\} = \mathcal{C}(\{x\}) \cap M_{\mu}$ and $\{y\} = \mathcal{C}(\{y\}) \cap M_{\mu} \Rightarrow \mathcal{C}(\{x\}) \cap \mathcal{C}(\{y\}) \cap M_{\mu} = \{x\} \cap \{y\} = \varphi$. Therefore, $\mathcal{C}(\{x\}) \cap \mathcal{C}(\{y\}) = X \setminus M_{\mu}$.
- (iii) \Rightarrow (ii) Since $y \in \mathcal{C}(\{y\}) \cap M_{\mu}$, by (iii) $y \notin \mathcal{C}(\{x\}) \cap M_{\mu}$. Therefore, $\mathcal{C}(\{x\}) \cap M_{\mu} \subseteq \{x\}$ and also $\{x\} \subseteq \mathcal{C}(\{x\}) \cap M_{\mu}$. Thus, $\{x\} = \mathcal{C}(\{x\}) \cap M_{\mu}$.

Proposition 4.7. If X is $p_{\mu}^*-T_1$ then $\cap_{x \in M_{\mu}} C$ ({ x }) = X \ M_{μ} .

Proof. Given that X is $p_{\mu}^* - T_1$. By proposition 4.6, $\mathcal{C}(\{x\}) \cap M_{\mu} = \{x\}, \forall x \in M_{\mu}$ and so as $\mathcal{C}(\{x\}) = \{x\} \cup (X \setminus M_{\mu})$. Now, $\bigcap_{x \in M_{\mu}} \mathcal{C}(\{x\}) = \bigcap_{x \in M_{\mu}} [\{x\} \cup (X \setminus M_{\mu})] = X \setminus M_{\mu}$. \square

Corollary 4.1. If X is $p_{\mu}^*-T_1$ then $p*kr_{\mu}(\{x\})\neq M_{\mu}, \forall x\in M_{\mu}$.

Remark 4.1. The succeeding example can be explained the reverse of proposition 4.7 and corollary 4.1 are invalid in general. In example 4.1, $\bigcap_{x \in M_{\mu}} C(\{x\}) = X \setminus M_{\mu}$ and $p_{\mu}^* ker(\{x\}) \neq M_{\mu}$, $\forall x \in M_{\mu}$ but X is not $p_{\mu}^* - T_1$.

Proposition 4.8. A space X is $p_{\mu}^*-T_1$ iff $A \in \wedge_{p^*\mu}(X)$, $\forall A \subseteq M_{\mu}$.

Proof. Necessary Part: Suppose X is $p_{\mu}^*-T_1$. Let $A \subseteq M_{\mu}$ and $y \notin A \ \forall y \in M_{\mu}$. Therefore, $A \subseteq X \setminus \{y\}$ and by proposition 4.5, $\{y\} \cup (X \setminus M_{\mu}) \in P^*C_{\mu}(X)$, $X \setminus [\{y\} \cup (X \setminus M_{\mu})] = (X \setminus \{y\}) \cap M_{\mu} \in P^*O_{\mu}(X)$. Therefore, $A = \cap \{(X \setminus \{y\}) \cap M_{\mu} : y \in X \setminus A\}$ and hence $A = p^*kr_{\mu}(A)$. Sufficient Part: Let $A \in \wedge_{p^*\mu}(X) \ \forall A \subseteq M_{\mu}$. By hypothesis, $\{x\} \in \wedge_{p^*\mu}(X)$ and $\{y\} \in \wedge_{p^*\mu}(X)$ so that $\exists U, V \in P^*O_{\mu}(X)$ such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$. Thus, X is $p_{\mu}^*-T_1$.

Remark 4.2. From proposition 4.8, In particular, each singleton set of M_{μ} is a $\wedge_{p^*\mu}$ – set.

Proposition 4.9. X is $p_{\mu}^* - T_1$ iff $y \notin p^* k r_{\mu}(\{x\})$ and $x \notin p^* k r_{\mu}(\{y\})$, $\forall x \neq y \in M_{\mu}$.

Proof. Necessary Part: Assume X is $p_{\mu}^*-T_1$, $\exists U, V \in P^*O_{\mu}(X)$ such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$. Since $p^*kr_{\mu}(\{x\}) \subseteq U$ and $p^*kr_{\mu}(\{y\}) \subseteq V$, $y \notin p^*kr_{\mu}(\{x\})$ and $x \notin p^*kr_{\mu}(\{y\})$.

Sufficient Part: Assume $y \notin p^*kr_{\mu}(\{x\})$ and $x \notin p^*kr_{\mu}(\{y\})$, $\forall x \neq y \in M_{\mu}$. So that $\exists U, V \in P^*O_{\mu}(X)$ such that $x \in U, y \notin U$ and $x \notin V, y \in V$. Thus, X is $p_{\mu}^*-T_1$.

Proposition 4.10. X is $p_{\mu}^* - T_1$ iff $p^* k r_{\mu} (\{x\}) \cap p^* k r_{\mu} (\{y\}) = \varphi, \ \forall x \neq y \in M_{\mu}$.

Proof. Necessary Part: Assume X is $p_{\mu}^*-T_1$, by proposition 4.8 $p^*kr_{\mu}(\{x\}) \cap p^*kr_{\mu}(\{y\}) = \varphi$. Sufficient Part: Let $p^*kr_{\mu}(\{x\}) \cap p^*kr_{\mu}(\{y\}) = \varphi$, $\forall x \neq y \in M_{\mu}$. Suppose X is not $p_{\mu}^*-T_1$. By proposition 4.9, $x \in p^*kr_{\mu}(\{y\})$ and $y \in p^*kr_{\mu}(\{x\})$ so that $p^*kr_{\mu}(\{x\}) \cap p^*kr_{\mu}(\{y\}) \neq \varphi$ which is a inconsistency. Thus, X is $p_{\mu}^*-T_1$.

Definition 4.3. A space X is called μ -pre*- T_2 (briefly p_{μ}^* - T_2) if $\forall x \neq y \in M_{\mu}$, $\exists U$ and $V \in P^*O_{\mu}(X)$ such that $x \in U$, $y \in V$ and $U \cap V = \varphi$.

Remark 4.3. In general, we get the relationship between the above spaces is given in the following diagram: $p_{\mu}^* - T_2 \Rightarrow p_{\mu}^* - T_1 \Rightarrow p_{\mu}^* - T_0$.

(i.e) Every $p_{\mu}^*-T_k$ space is $p_{\mu}^*-T_{k-1}$, k=1,2. But the reverse statement is invalid in general. Now, we expressed through the help of a counter example.

Example 4.2. Consider $X = \{i_X, j_X, k_X, l_X, m_X\}$ with $\mu = \{\varphi, \{i_X, j_X\}, \{k_X, l_X\}, \{l_X, m_X\}, \{k_X, l_X, m_X\}, \{i_X, j_X, k_X, l_X\}, \{i_X, j_X, k_X, l_X\}, \{i_X, j_X, k_X, m_X\}, X\}$. Then X is $p_{\mu}^* - T_0$ and $p_{\mu}^* - T_1$ but there are no disjoint $U, V \in P^*O_{\mu}(X)$ containing k_X and m_X respectively. Therefore, X is not $p_{\mu}^* - T_2$.

Proposition 4.11. If X is $p_{\mu}^*-T_2$ then $\{x\}$ and $\{y\}$ are $\mu-pre^*-separated$, $\forall x \neq y \in M_{\mu}$.

Proposition 4.12. X is $p_{\mu}^* - T_2$ iff $\{ x \} = \cap \{ N : N \in P^*C_{\mu}(X) \text{ and } N \in p_{\mu}^* Nbd(x) \}, \forall x \in M_{\mu}.$

Proof. Necessary Part: Assume X is μ -pre*- T_2 , \exists disjoint $U, V \in P^*O_{\mu}(X)$ such that $x \in U, y \in V$. Since $x \in U \subseteq X \setminus V, X \setminus V \in P^*C_{\mu}(X)$ so that $X \setminus V \in p_{\mu}^*Nbd(x)$. Therefore, $y \notin X \setminus V$ and hence $\{x\} = \cap \{X \setminus V : X \setminus V \in P^*C_{\mu}(X) \text{ and } X \setminus V \in p_{\mu}^*Nbd(x)\}$.

Sufficient Part: Suppose $\{x\} = \bigcap \{N : N \in P^*C_{\mu}(X) \text{ and } N \in p_{\mu}^*Nbd(x) \}$. Then $\exists N \text{ such that } N \in P^*C_{\mu}(X) \text{ and } N \in p_{\mu}^*Nbd(x) \text{ so that } y \notin N \text{ and hence } \exists U \in P^*O_{\mu}(X), x \in U \subseteq N.$ Hence U and $X \setminus N$ are required disjoint μP^*Os containing x and y respectively. Thus, X is $p_{\mu}^* - T_2$.

Proposition 4.13. The following properties are equivalent, $\forall x \neq y \in M_{\mu}$.

- (i) X is $p_{\mu}^* T_2$.
- (ii) $\exists U \in P^*O_{\mu}(X)$ and $x \in U$ such that $y \notin C(U)$.
- (iii) $\cap \{ C(U) \mid x \in U \text{ and } U \in P^*O_{\mu}(X) \} = \{ x \} \cup (X \setminus M_u).$

Proof. (i) \Rightarrow (ii) By (i), $\exists U, V \in P^*O_{\mu}(X)$ such that $x \in U, y \in V$ and $U \cap V = \varphi$. Since $V \in P^*O_{\mu}(X)$ and $y \in V$ and by lemma 2.1, we have $y \notin C(U)$.

(ii) \Rightarrow (iii) By (ii) and lemma 2.2 (i), $\cap \{ \mathcal{C}(U) : x \in U \text{ and } U \in P^*O_{\mu}(X) \} \supseteq (X \setminus M_{\mu}) \text{ not containing } y$. Thus, $\cap \{ \mathcal{C}(U) : x \in U \text{ and } U \in P^*O_{\mu}(X) \} = \{ x \} \cup (X \setminus M_{\mu})$.

(iii) \Rightarrow (i) By (iii), $y \notin \{x\} \cup (X \setminus M_{\mu}) = \cap \{C(U): x \in U \text{ and } U \in P^*O_{\mu}(X)\}$. Therefore $y \notin C(U)$ for some μP^*Cs containing x so that $\exists V \in P^*O_{\mu}(X)$ such that $y \in V$ and $x \notin V$. Therefore, U and V are the required disjoint μP^*Os containing x and y respectively.

Corollary 4.2. X is $p_{\mu}^*-T_2$ iff $\forall x \neq y \in M_{\mu}$, either $x \notin \mathcal{C}(\{y\}) \cap M_{\mu}$ or $y \notin \mathcal{C}(\{x\}) \cap M_{\mu}$.

Corollary 4.3. If X is $p_{\mu}^* - T_2$ then $\{x\} \cup (X \setminus M_{\mu}) \in P^*C_{\mu}(X), \forall x \in M_{\mu}.$

Corollary 4.4. Let X is $p_{\mu}^*-T_2$. Then $\forall x \neq y \in M_{\mu}$ have disjoint $\mu-pre^*-closure$.

5. Conclusion

In this journey, we have scrutinized some sets such as $\wedge_{p^*\mu}$ —set and $\wedge_{p^*\mu}$ —closed set through μ —pre*—kernel and their features were examined. The separation axioms of μ —pre*—closed set in GTS were discovered and their natures were contemplated and also discussed their correlations between them.

References

- [1] Amar Kumar Benerjee and Jagannath pal, Semi λ^* -closed sets and new separation axioms in Alexandroff space, arXiv: 1709.09048v1 [Math. GN] 25 sep 2017.
- [2] Alias B. Khalaf and Suzan N. Dawod, g^*b -Separation Axioms, Gen. Math. Notes, 2013; 16(2), 14–31.
- [3] Csaszar A, Generalized open sets in Generalized Topologies, Acta Math, Hungar, 2002; 96, 351–357.
- [4] Devi R, Selvakumar A and Jafari S, (\widetilde{G}_{α}) closed sets in topological spaces, Asia Mathematika, 2019; 3(3), 16–22.
- [5] Govindappa Navalagi, Further properties of $Pre-T_0$, $Pre-T_1$ and $Pre-T_2$ Spaces, International Journal of Mathematics and Computing Applications, 2011; 3(1–2), 67–75.
- [6] Gowrisankar N, Keskin A and Rajesh N, Some New Separation Axioms Via β -I-open sets, Analele Stiintifice Ale Universitatii "Al.I. Cuza" Din Iasi (S. N) Mathematica, March 2015.
- [7] Helen Rajapushpam G, Sivagami P and Hari Siva Annam G, μ_{Ig} Dense sets and μ_{Ig} Baire spaces in GITS, Asia Mathematika, 2021; 5(1), 158–167.
- [8] Levine N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo(2)., 1970; 19, 89–96.
- [9] Luay A. Al Swidi and Basim Mohammed M, Separation Axioms Via Kernel set in Topological spaces, Archives Des Science, 2012; 65(7), 41–48.
- [10] Min W K, Remarks on separation axioms on generalized topological space, Chungcheong Mathematical Society, 2010; 23(2), 293–298.
- [11] Miguel Caldas, Saeid Jafari and Govindappa Navalagi, More on λ closed sets in topological spaces, Revista Colombiana de Mathematicas, 2007; 41(2), 335–369.
- [12] Nethaji O, Asokan R and Rajasekaran I, Novel concept of ideal nano toplogical spaces, Asia Mathematika, 2019; 9(3), 5–15.
- [13] Pankajam V and Sivaraj D, Some separation axioms in generalized topological spaces, Bol. Soc. Paran. Mat., 2013; 31(1), 29–42.

M. Padmavathi, P. Sivagami and G. Hari Siva Annam

- [14] Pattharaphon Torton, Chokchai Viriyapong and Chawalit Boonpok, Some Separation Axioms in Bigeneralized Topological Space, Int. Journal of Math. Analysis, 2012; 6(56), 2789–2796.
- [15] Philip Lester Pillo Benjamin and Helen Moso Rara, Separation Axioms via Generalized μS_p open sets*, Applied Mathematical Science, 2016; 10(8), 389–401.
- [16] Renukadevi V and Sivaraj D, Weak separation axioms in generalized topological spaces, kyungpook Maths. J., 2014; 54, 387–399.
- [17] Sarsak M S, Weak Separation Axioms in Generalized Topological Spaces, Acta Math. Hungar., 2011; 131(1–2), 110–121.
- [18] Sivagami. P, Padmavathi. M, Hari Siva Annam. G, μ -Pre*-closed sets in Generalized topological spaces, Malaya Journal of Matematik, 2020; 8(3), 619–624.
- [19] Tyagi B K and Harsh V S Chauhan, Questions and Answers in general topology, 2018; 36, 9-29.
- [20] Tyagi B K and Harsh V S Chauhan, On Semi open sets and Feebly open sets in generalized topological space, Proyecciones (Antofagasta. On line), 2019; 38(5), 875–896.
- [21] Vaishnavy V, Sivakamasundari K and jafari S, On (\wedge , δ_g) closed sets in topological spaces, FJMS, 2017; 101(11), 2499–2517.