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Abstract: In this expedition, we explored the idea of “separation axioms” via p—pre*-closed set in GTS, investigate

their vital traits, relationship and characterizations.
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1. Introduction

The concept of generalized closed and open sets was first originated 1970 by N. Levin [8] in topological space
(on briefly TS). The try — out generalized topological space (on briefly GTS) was initiated in 2002 by A. Csaszar
[3]. By making use of their perception, the opinion of p— pre*-closed sets is introduce and their attributes
are discussed in GTS by us [18]. The idea of separation axioms in TS is introduced and considered by Felix
Hausdroff (1869). The intention of this research, is to bring up the p— pre*-kernel, Ay, -set, Ap+,-closed and
pu—pre* separation axioms ( uP*SA ) in GTS and probe fundamental traits. Also their correlations have been

studied with several related counter examples.

2. Primary Needs

Here, we recall some notions and results on GTS. Henceforth, we mentioned GTS ( X, p ) as X. We know
that 7 C 2% ( power set ) is called a topology on a set X if 7 contains arbitrary union and finite intersection
of members of 7 and also void and whole space belong to 7 ( obviously arbitrary union of void set is void
therefore, ¢ € 7 ) but in GTS, some of the above features do not valid. In a GTS, ¢ C 2% that includes
null space and U; ¢ 1 U; € ppwhen U; € p, i € I.In X, M, is delineated as M,, = U; ¢ ;U;. A subset
A C X is known as a u— pre*-open set (uP*Os ) if A C (¢, (A))and X \ A is named as a j—
pre*-closed set ( uP*Cs ). The collection of all u— pre*-open sets and pu— pre*-closed sets are indicated as
a symbol P*O,( X ) and P*C,( X ) respectively. p*i,( A ) is defined as union of all uP*Os contained in A.
p*c,( A) is defined as the intersection of all uP*C's which contains A. On the whole paper, we call p*c,( A )
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as C(A) and p*i,( A) as J(A).
Let for each # # y € M, . A space X is said to be a Ty space [16]if 3 a 1~ openset v € U,y ¢ U
orx & U,y € U. X is called as a Ty space [10] if 3 u— open sets Uy and U, such that © € Uy, y & Uy

and x & Uz, y € Us. X is a Ty space [16] if 3 disjoint p— open sets U; and Us such that ¢ € U; and
y € Us. The forthcoming lemmas will be useful in the sequel.

Lemma 2.1. Ifx € X, thenx € C(A) if VN A # ¢ forevery V € p*Ou( X ) and z € V.
Lemma 2.2. If A C X, then the following statements hold.

(i) Every uP*Cs containing a uP*Cs ( X \ M, ).

(i) CCAn M,)n M, =C(A)N M,.

(iii) If A € P*Co( X ) then C(A N M,) N M, = An M,.

i) C(A) = [C(A) N My U[X\ M,].

(v) IfA € PPC,(X)then A =[ANM,]U[X\ M,].
Proof. (i) For every U € P*O,( X ), U C M, sothat (X \ M, ) € X \ U. Thus every uP*Cs

includes ( X \ M, ).

(ii) Since A N M, € A, C(A N M,) N M, € C(A) N M, Let xeC(A) N M, Then
z € C(A)and 2 € M,,bylemma21, U N A # ¢V U:in PO,( X ) and 2 € U. Since
UC M, Un(AnNM,) # ¢. Therefore, z € C(A N M, )andsox € C(A N M,) N M,.
Hence C(A) N M, C C(AnNn M,) N M pu.

(iii) If A € P*C,( X ) and by (ii), C(A N M,) N M, = AN M,.

(iv) C(A) = C(A)NX = C(A)N[M, U(X\M,)] = [C(A)NM,JU[C(A)N[X\ M,]] =
[C(A) N M,] U X\ M,](by (i)

(V) If A € PPCy(X)andby (iv), A = [An M, U[X \ M,].

3. p—pre*—kernel in GTS

In this section, we present the concepts in GTS such as p—pre*—kernel, Ap«,—set and Ap«,—closed and discuss

their attributes. Also we investigate the relations among them.

Definition 3.1. Let A C X. Then pu—pre*—kernel of A is the intersection of all uP*Os contains A and
it’s indicated by p*kr,( A ).

(ie) pkr,(A) = {U € P,O(X) : A C U}.
State that if there is no uP*Os contains A then pjkr( A) = X.

Proposition 3.1. For A, B C X and a subset A,, o € N of X, the following statements hold.
(i) A C pkr,(A).

(1) A C B = p*kr,(A) C p*kr,(B).

61



M. Padmavathi, P. Sivagami and G. Hari Siva Annam

(i11) p*kr,( p*kr,(

(iv) If A € P;O(

(v) p*kr,(U Ay ) = Up*kr,( Aa ).
Aa )

(vi) p*kr,( N

A)) = pkru(A).
X ) then A = p*kr,(A).

C Npkry( As ).

(o3

Remark 3.1. In the above proposition, the inversion statement of (i) and the reverse inclusion of (vi) may

be valid. These conditions can be explored by the succeeding counter example.

Example 3.1. Consider X = { 0.1x, 0.2x, 0.3x, 04x, 05x, 06x } with u = { ¢, { 0.2x },
{04x ), {05x ), {01y, 0.2x }, { 0.1y, 0.3x }, {0.2x, 0.4x }, {02y, 0.5x }, { 0.2x, 0.6x }, { 0.4x,
0.5x }, {0.1x, 0.2x, 0.3x }, { 0.1x, 0.2x, 0.4x }, { 0.1x, 0.2x, 0.5x }, { 0.1x, 0.2x, 0.6x }, {0.1x, 0.3x,
04x }, {0.1x, 0.3x, 0.5x }, {0.2x, 0.4x, 0.5x }, { 0.2, 0.4y, 0.6x }, {0.2x, 0.5x, 0.6x }, { 0.1x, 0.2,
0.3y, 04x }, { 0.1y, 0.2x, 0.3x, 0.5x }, { 0.1x, 0.2x, 0.3y, 0.6x }, { 0.1, 0.2x, 0.4x, 0.5x }, { 0.1y,
0.2x, 0.4x, 0.6x }, { 0.1x, 0.2x, 0.5x, 0.6x }, { 0.1x, 0.3x, 0.4x, 0.5x }, { 0.2x, 0.4x, 0.5x, 0.6x },
{ 0.1x, 0.2x, 0.3x, 0.4y, 0.5x }, { 0.1x, 0.2x, 0.3x, 0.4y, 0.6x }, { 0.1x, 0.2x, 0.3y, 0.5x, 0.6x },
{0.1x, 0.2x, 0.4x, 0.5y, 0.6x }, X }.

For (iv), Take A = {0.3x }. Here pyker( A) = {0.3x } but { 0.3x } is not pP*O. For (vi),
Let A = {02x } and B = {0.1x, 0.6x }. Then AN B = ¢. Here p*kr,(A) = {02x }, p*kr,(B) =
{01x, 0.2x, 0.6x } and p*kr,( A N B ) = ¢. Hence p*kr,( A N B) C p*kr,(A) N p*kru( B).
Take A = {03x, 04x } and B = { 0.1x, 03x, 05x }. Then A N B = {03x }. Here
p*kr,(A) = {03x, 04x }, pkry( B) = {0.1x, 03x, 0.5x } and p*kr,( A N B) = {03x }.
Hence p*kr,( A N B) = p*kr,( A)N p*kry( B ). From this, p*kr,( N Ay ) € Np*kru( Aa ).

Proposition 3.2. Let A C X andVz € X. Then p*kry,(A) = {z : C({z}) N A # ¢}

Proof. Suppose C({z}) N A = ¢, 2 &€ X \C({z}) € pO,(X)and A C X \ C({=x}).
Therefore, + ¢ p*kr,( A ) and hence p*kr,( A) {z e X:C({z}) N A # ¢}. On the other hand,
let # €p*kry(A). Then 3U € p*Ou (X ), A Uand z ¢ U andhence C({z}) N U = ¢ so that
C({xz}) N A = . Thisis a contradiction. Thus, {z € X: C({z}) N A # ¢} C p*kr,(A). O

c
-

Proposition 3.3. Forany z, y € X, y € pkry({z}) iff e € C({y}).

Proof. Essential Condition: Let y & p*kr,({z } ). Then, 3U € P*O,( X ) such that U contains z but
not y so that 3 pP*C's containing y but not x and hence x ¢ C({y }).

Sufficient Condition: Suppose z ¢ C({y} ), 3V € P*O,( X ) such that V contains = but not y.
Thus, y & p*kr,({z }). O

Proposition 3.4. If A C X then A € P*C,( X ) iff CCA) C p*kr,(A).
Proposition 3.5. p*kr,({z}) # p*kr,({y}) fC({z}) # C({y}), Ve, vy € X.

Proof. Essential Condition: Assume p*kr,({z}) # p*kr,({y}), 3z € X suchthat z € p*kr,({z})
and z & p*kr,({y} ). By proposition3.3, 2 € C({z})andy ¢ C({z})andso{y}NC({z}) = ¢.
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Since C({z}) € C({z}), fwrncC({z}) = ¢ Thus, C({z}) # C({y}).
Sufficient Condition: Let C( {x } ) # C({y } ). Then 3z € X suchthat z € C({z } ) and
z ¢ C({y})sothat 3U € P*O,( X ) containing z but not y. Since z € C({xz } ), € U. Therefore

y & pkry({x}) and hence p*kr,({z }) # p*kru({y}). O

Proposition 3.6. N, c v, C({ 2} ) = X \ M, iff pkry({2}) # My, Vo € M,.

Proof. Essential condition: Assume N, ¢ a7, C( {2} ) N M, = ¢. Suppose y € M, such that
pkry({y}) = M, Let z € M, bean arbitrary point. Then for any pP*Os containing y which
also contains = so that y € C( { « } ). Therefore, y € C({x} )V a € M,. This follows that
Yy € Nwen, C({x}) N M,, which is a contradiction. Thus, p*kr,({z } ) # M,.

Sufficient condition: Assume p*kr,({z}) # M,. Let y € M, suchthat y € Ny c p, C({ 2 }) N M,.
Then Vx € M,, every uP*Cs containing z also contains y. Therefore, every uP*Os containing y must
contains all point of M,, so that M, is the only pP*Os containing y. Therefore, p*kr,( { « } ) = M, which
is a contradiction. Therefore, N, ¢ a7, C({x } ) N M, = ¢. O

Definition 3.2. A subset A of X is said to be a Ap+,—setif A = p*kr,( A ). The complement of Ap-,—set
is called a Vp-,—set. Here after Ap-,( X ) and Vp-,( X ) denotes the collection of all Ap-,—set and V,-,—set

respectively.
Proposition 3.7. If A C X, then the following statements hold.
(i) ¢ and X are Ap«,— sets.
(i) If A € P*Ou( X ) then A € Npep( X ).
(i11) p*kr,(A) € Npp( X ).
It can be easily seen that the converse of proposition 3.7 (ii) may be hold as well. Let us consider
X = {eix, e2x, e3x, eax } with u = { &, {eix }, {eax }, { e1x, eax }, { e1x, esx }, { e1x, eax },

{eax, esx }, {eax, eax }, { e1x, eax, eax }, { e1x, eax, eax }, { e1x, esx, eax }, { eax, esx, eax }, X }.
Here A = { esx, eax } is a Apsu—set but not pP*0.

Proposition 3.8. If A, C X, a € N and Aa € Appu( X ), then
(1) NAa € Npup( X).
(1)) U Aa € Npip( X ).
Proof. (i) By proposition 3.1 (vi), p*kr,(N Aa ) C Np*kr,( Aa ), @« € N. Since Ay € App( X ),

p*kry( N Ay ) C N As. By proposition 3.1(i) N A, C p*kry,( N Ay ). Thus we have
pkry(N Ay ) = NAysothat N Ay € App( X ), @« € N.

(ii) By proposition 3.1 (v) for all &« € N, p*kr,(U Ay ) 2 U p*kr,( Ao ). Since Ay € Apep( X ),
p*kr,(U Ay ) 2 U A,. We know that A, C U A, and by proposition 3.1 (ii) p*kr,( Aa ) C
phkry(U Ay ), « € N = Up'kr,(Aa) C p*kry(U Ay ) = UAy C p*kru(U Ay ). Thus,
pkru(UAy ) = UA,.

O
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Proposition 3.9. Let A € Apu( X ) Then A € P*C,( X ) iff p*cu( A) = p*kr,(A).
Proposition 3.10. If A € Apu( X ) and p*kry,(A) € P*Cu( X ) then A € P*Cyu( X ).

Definition 3.3. A subset A of X is said to be Ap-,—closed if A = KN F where K € Ap,( X ) and
F € P*C,( X ). The collection of Ap«,—closed is stand as a symbol for Ap., C( X ).
A subset A of X is called a Vp.,—open set if X \ A is Ap.u—closed and V,,,O( X ) denotes the collection

of all Vp.,—open.
Proposition 3.11. For any X, the following properties hold.

(1) Npsp( X ) € ApupC( X ).
(i) PCu(X) C ApeuC( X ).
But the reverse statement of proposition 3.11 (i) and (ii) are not true. It can be described below with
the aid of an example.

Example 3.2. Let us consider X = {0.2x, 0.4x, 0.6x, 0.8x } endowed with p = { ¢, { 0.2x }, { 0.8x },

{02y, 0.4x }, {02y, 0.6x }, {02y, 0.8x }, { 0.4y, 0.8y }, {0.2x, 0.4y, 0.6x }, {0.2x, 0.4y, 0.8x },
{02x, 06x, 08x }, X }. Here, A = { 0.4x, 0.6x } € ApuC( X ) but not in Npip( X ). Also A =
{02x, 04x } € ApuC( X ) but not in PxCp( X ).

Remark 3.2. Every uP*Os is Ap.,— closed.
Proposition 3.12. If S C X, then the following assertions are equivalent.

(i) S € NpupC(X ).

(1) S = KN C(S) where K € Npup( X ).

(iii) S = pxkr,(S) N C(S).
Proof. (i) = (ii) Let S € AppC(X ), then § = K N F where K € App( X ) and F € p*C,( X))
Since S € F,C(S) C C(F) = Fandalso S C K. Soweget S C K NnC(S) T KnF=25.
Thus S = K N C(S).
(ii) = (iii) Since S C pxkr,(S ) and also S C K. By proposition 3.1 (ii) pxkr,(S) C pxkr,(K) = K.
Now, S C pxkr,(S) N C(S) € KnNnC(S) = S. Therefore, S = pxkr,(A) N C(S).
(iii) = (i) Follows from proposition 3.7.

From (iii) we can say that a subset A is said to be Ay, — closed if A can be represented as the intersection
of all uP*Os and all pP*C's containing it. O

Proposition 3.13. If A C X then A € V., 0O( X ) iff A = N U J(G), where N € Vp,,( X ) and
G € PO, (X).

4. Separation Axioms on py— Pre*closed sets in GTS

In this part, we present a lower separation axioms such as p—pre* — Ty, p—pre* —T; and pu—pre* —T5 using

P*0,( X ). Also we speak about some results using such spaces.
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Definition 4.1. A space X is called p—pre* — Ty ( briefly px,—Ty )if Vo # y € M,, 3U € P«xO,( X )

containing one but not the other.
Proposition 4.1. FEvery pu—pre—T1, space is p,—To space.
Proposition 4.2. X is px,~To iff C({z} )N M, # C({y}) N M, Ve #y € M,.

Proof. Necessary Condition: Assume X is p;-Tp, 3U € P*O,( X ) such that = € U C M, and
y ¢ U. Therefore, X \ U € P*C,(X)andy € X \ Ubutax ¢ X \ U. Since C({y } ) is the
smallest uP*C's containing y, + ¢ C({y }). Thus, C({z}) N M, # C({y}) N M,.

Sufficient Condition: Assume distinct points of M), have distinct p—pre*—closures, 32z € C({z}) N M,
and z ¢ C({y}) N M, sothat 3U € P*O,(X )and z € U,y ¢ U. Suppose x ¢ U, 3 uP*Cs
containing = but not z and hence z ¢ C({z } ). Sothat z € U but y ¢ U. Hence X is p;—Tp. O

Proposition 4.3. A space X is p;,-To iff { x } € NpyC( X ), V2 € M,.

Proof. Necessary Condition: Assume X is p;—Tp. Since { x } C p*kr,({z}) N C({z}). Ify # =,
by hypothesis (i) 3U € P*O,( X ) suchthat x € U andy ¢ U (or) (ii) 3V € P*O,( X ) such that
y € Vand z ¢ V. Incaseof (i), y & p*kry( {2 } ). In case of (ii) we have 3 F € P*C,( X ) such
that ¢ € F and y ¢ F. Consequently, y ¢ C({x } ) andhencey & p*kry({z}) N C({z}). In
either cases, p*kr,({z }) N C({z}) € {«}. Therefore, {z} = p*kr,({z}) N C({z}) and by
proposition 3.12 (iii), { z } € Ap-,C( X ).

Sufficient Condition: Let { # } € A,-,C( X ). Then by proposition 3.12 (iii), { z } = p*kr,({z }) N
C({z}) If Xisnotp;~To, Vo # y € M, (i)y € U YU € P*O,( X ) containing = and (ii)
r € V,VV € P*O,( X ) containing y. From (i) and (ii), y € p*kr,({ 2z} )and y € C({z } ) and
hence y € p*kry,({x}) N C({ 2} ) which is a inconsistency. Thus, X is pj,~Tp. O

Proposition 4.4. X is p;—To iff either y & p*kry({x}) orx & phru({y}), Vo #y € M,.

Proof. Necessary Condition: Assume X is p;-Tp, VU € P*O,( X ) such that z € U, y ¢ U or
e ¢ U yeUlfte el yd&U=1y¢pkr,({z}). Similarly, we have & p*kr,({y }).

Sufficient Condition: Assume y ¢ p; ker({x})orz ¢ piker({y}), 3U € P*O,( X ) such that
r €Uy gUorax ¢ U y € U. Thus, X is p;—Tp. O

Definition 4.2. A space X is called p—pre* T} ( briefly p;,-T1 )if Vo # y € M,, 3U, V € P*O,(X),
suchthat x € Uy ¢ Uandzx ¢ V, y € V.
Clearly, every p;,~T1 space is p;,~To. But the reverse statement is not valid in general. It will be exuded

in the forthcoming example.

Example 4.1. Let X = {ux, vx, wx, zx } withp = {¢, {ux }, {2x }, {ux, vx }, {ux, wx }, {ux,
zx b { vx, zx } { ux, vx, wx }, { ux, vx, zx }, { ux, wx, zx }, X }. Here there is no
U V. € PO, X) such that ux € U, wx ¢ U and wx € V, up ¢ V. Thus, X is p;~—To

but not p;,~T .
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Proposition 4.5. A space X is p;-Ty iff {z} U (X \ M, ) € P'C,(X ), Va € M,.

Proof. Necessary Part: Let X be pi-T;. Then 3U, V. € P*O,( X ) such that y € V C M, and
z & Vsothat M, \ {2z} € PO,(X ). Hence, X \ [M, \{z}] ={2z} U (X \M,) € PPC,(X).
Sufficient Part: Let « # y € M,. By hypothesis, {z } U (X \ M, ), {y} U (X \ M,) € P*Cu(X).
Take V = X\ [{} U (X \ M,)] = M\ {aband U = X\ [{2}U(X\M,)] = M\ {y}.
Sothat U and V. € P*O,( X )suchthat x € U,y € Uandx ¢ V, y € V. Hence X is p*p-Ty. O

Proposition 4.6. The following assertions are equivalent, Vo # y € M,.

(i) X is px,~T.

(i) {z} = C({z}) N M,.

(iii) C({z}) NC({y}) =X\ M,.
Proof. (i) = (ii) By (i) and proposition 4.5 { z } U (X \ M, ) € P*C,( X ) and by lemma 2.2(iii),
[{ztu{X\M,}nM, =C[[{z}u{X\ M, }nMp]nM, = {z}nM, =C[{z}nM,]NM, =
Cl{= }]ﬂMwThumC({ p)n M, = {=z}.
(ii) = (i) By (i), {z} U (X\ M, ) = C({x}) € P*C,( X ) and by proposition 4.5, X is p;—Ti.
(ii) = (iii) By (i), {2 } = C({z}) N Myand{y} = C({y})NM, = C({z})nC({y})NM, =
{z} n{y} = ¢ Therefore, C({x}) N C({y}) = X \ M,.

(iii) = (ii) Since y € C({y}) N My, by (iii) y & C({x}) N M,. Therefore, C({z}) N M, C {z}
andalso {2z} € C({z}) N M,. Thus, {2z} =C({z}) N M,. O

Proposition 4.7. If X is p;,-T1 then Ny ¢ M, C ({2 }) = X \ M,.

Proof. Given that X is p;~T1. By proposition 4.6, C({ =z } ) N M, = {z}, Vo € M, and so as
C({z}) ={a}U(X\ M) Now, Ng e ,C({2}) = Mz em, [{z}U(X\M,)] = X\ M, O

Corollary 4.1. If X is p;~Ty then pxkr,({x } ) # M,, Vo € M,.

Remark 4.1. The succeeding example can be explained the reverse of proposition 4.7 and corollary 4.1 are
invalid in general. In example 4.1, Ny e M, C({x} ) = X \ My, and pjker({z }) # M,, Vx € M,
but X is not py~Ti .

Proposition 4.8. A space X is pi,-Ty iff A € Npp( X ), VA C M,.

Proof. Necessary Part: Suppose X is pi,-T1. Let A C M, andy ¢ AVy € M,. Therefore, A C X \{y}
and by proposition 4.5, {y U (X \ M, ) € PC,(X), X\ [{y}U(X\M,)] = (X\{y})nM, €
P*0O,( X ). Therefore, A = n{ (X \ {y}) N M,: y € X\ A} and hence A = p*kr,(A4).

Sufficient Part: Let A € Ap«,( X ) VA C M,. By hypothesis, { z } € Ap-p( X )and {y} € Apep( X)
sothat 3U, V € P*O,( X )suchthat x € U,y ¢ Uandz ¢ V, y € V. Thus, X is p;-Ti. O

Remark 4.2. From proposition 4.8, In particular, each singleton set of M, is a Ap+,— set.
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Proposition 4.9. X is p;,-T1 iff y ¢ pkru({x}) and 2z & p*kry({y}), Vo # y€ M,.

Proof. Necessary Part: Assume X is p;-Ty, 3U, V € P*O,( X ) such that z € U, y ¢ U and
z ¢ V,y € V. Since p’kr,( {z}) € U and pkr,({y}) € V,y & pkry({ 2z} ) and

v & prkru({y})-
Sufficient Part: Assume y ¢ p*kr,({z } ) and o & pkry({y}) Vo # y € M,. So that

U,V € PO, (X )suchthat v € U,y ¢ Uandz ¢ V,y € V. Thus, X is p;-T1. O
Proposition 4.10. X is p;,-T1 iff pkry({ = }) 0 pkru({y}) = ¢, Vo # y € M,.

Proof. Necessary Part: Assume X is pj—Ti, by proposition 4.8 p*kr,({ = } ) N pkru({y}) = ¢.
Sufficient Part: Let p*kr,({x } ) N p*kru({y}) = ¢, Vo # y € M,. Suppose X is not p;-T1. By

proposition 4.9, x € p*kr,({y}) and y € p*kr,({ x } ) sothat p*kr,({x}) N p*kr,({y}) # ¢
which is a inconsistency. Thus, X is p;,—T;. O

Definition 4.3. A space X is called y—pre*—T; (briefly p:-Ty )if Vo # y € M, 3U and V € P*O,( X )
suchthat x €¢ U,y € Vand U NV = o.

Remark 4.3. In general, we get the relationship between the above spaces is given in the following diagram:
p,~1T2 = p,=Tv = p,~To.
(i.e) Every P, Ty space is p,~T,—1, k = 1, 2. But the reverse statement is invalid in general. Now, we

expressed through the help of a counter example.

Example 4.2. Consider X = {ix, jx, kx, Ix, mx } with p = { ¢, {ix, jx }, {kx, Ix }, {I{x, mx },
{ kx, Ix, mx }, {ix, jx, kx, Ix }, {ix, jx, Ix, mx }, X }.Then X is p;,~Ty and p,~Ti but there are
no disjoint U, V. € P*O,( X ) containing kx and mx respectively. Therefore, X is not p},~Ts.

Proposition 4.11. If X is p;~Ty then { x } and { y } are u—pre*—separated, ¥V x # y € M,.
Proposition 4.12. X is pi-Ty iff {z } = ({N: N € P*C,(X ) and N € p;Nbd(z ) }, Vo € M,.
Proof. Necessary Part: Assume X is p—pre*—T5, 3 disjoint U, V' € P*O,( X ) suchthat z € U,y € V.
Sincez € U C X \ V, X \ V. € P*Cy( X )sothat X \ V € p;Nbd( x ). Therefore, y ¢ X \ V
andhence {z } = N{X \ V: X\ V € PC,(X)and X \ V € p,;Nbd(z) }.

Sufficient Part: Suppose { x } = N{ N: N € P*C,( X )and N € p;Nbd(z) }. Then 3 N such that

N € P*C,( X )and N € p;Nbd(z ) sothat y ¢ N and hence 3U € P*O,( X ),z € U C N. Hence
U and X \ N are required disjoint pP*Os containing = and y respectively. Thus, X is P, —T>. O

Proposition 4.13. The following properties are equivalent, Vo # y € M,.
(i) X is p;~—T>.
(tt) 3U € PO, (X ) andx € U suchthaty ¢ C(U ).

(ii) N {C(U) |z € UandU € PO(X)} = {a} U (X\ M,).
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Proof. (i) = (ii)) By (i), 3U, V. € P*Ou,( X )suchthat z € U,y € Vand U N V = ¢. Since
V e PPO,(X ) and y € V and by lemma 2.1, we have y ¢ C( U ).

(i) = (iii) By (ii) and lemma 2.2 (i), N {C(U ): « € Uand U € PO, (X )} 2 (X \ M, ) not
containing y. Thus, N {C(U ): « € Uand U € PO, (X )} = {z} U (X \ M,).

(ili) = () By (i), y € {z} U (X \ M,) =nN{C(U): 2 € Uand U € P*O,( X ) }. Therefore
y ¢ C(U ) for some uP*Cs containing = so that 3V € P*O,( X ) such that y € V and z ¢ V.
Therefore, U and V are the required disjoint pP*Os containing = and y respectively. O

Corollary 4.2. X is p;,~Ts iff Vo # y € M, eitherx ¢C({y}) N M, ory & C({x}) N M,.
Corollary 4.3. If X is p;-Ty then {x } U (X \ M, ) € P*Cu(X ), Vo € M,.

Corollary 4.4. Let X is p;~T>. Then Vx # y € M, have disjoint u— pre*— closure.

5. Conclusion
In this journey, we have scrutinized some sets such as A,~,—set and A,«,—closed set through p— pre*—kernel
and their features were examined. The separation axioms of p— pre*—closed set in GTS were discovered and

their natures were contemplated and also discussed their correlations between them.
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