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Abstract: Main purpose of this paper is to study the nonexistence of global weak solution for the following Cauchy

problem

Utt — Aut — Au—i—g(t)(—A)%utt = |ut|p, S IR",
u(0,2) = uo(z), u(0,2) =wui(z) ze€lR",

where o € (0,2), p > 1,n > 1,9(t) = t*,A > 1 and (—A)% is the fractional Laplacian operator of order §.

Then, this result is extended to the case of 2 x 2-system of the same type. The results obtained in this paper extend
several contributions in this field.
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1. Introduction
In this paper, we are first concerned with the nonexistence of global weak solutions for the following Cauchy
problem

Ut — Aut — AU‘Fg(t)(*A)%Utt = "Z,Lt|p, x € :[Rn,
(1)
w(0,z) = uo(z), w(0,2) =ui(z) zeIR",
where p>1,n>1, a €(0,2),g9(t) =t*, A >1 and (—A)? is the fractional Laplacian operator of order
S . Then we extend our analysis to the 2 x 2 system of the same type, namely

gt — Aug — Au+ g(t)(—A) Zuy = [P, = € R,

B
2

Vet — A"Ut — Av + f(t)(*A) Vit = |Ut|q, x € ]Rn,

u(0,2) = uo(x), ut (0, 2) = up (z),

v(0,2) = vo(x),v(0,2) = v1(x) =€ IR",

ey

where p,g > 1,n > 1, a,8 € (0,2),9(t) = t*, f(t) = t",\,v > 1 and (—A)?(—A)g are the fractional

g
Laplacian operators of order § and g We mention below some motivations for studying the considered
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problems.
Recently, Tuan Anh Dao in [11] investigated the nonexistence of global(in time) solutions to the following system
Ut — Au + (7A)617.Lt = |’U|p, x € ]Rn,t > 0,
Vet — Av + (*A)(b’l)t = |U|q, x € ]Rn,t >0

w(0,2) = up(x), ut (0, 2) = up (z),

v(0,2) = vo(z),v:(0,2) = vy (x) =€ IR"

It was shown that if 61,62 € [0, 3] ,up = u1 =0 and uy,v; € IL'(IR™) such that

/ up(z)dr > e, / up(x)de > &g,

and
1+ q1=2 + (pg — 1)6
R L L S
27 (¢—-DF52+(pg—1)
14 pi= —1)6
g< pi=s + (pg —1)d2 -

T -1+ (pg-1)
Then, there is no global (in time) Sobolev solution (u,v) € C ([0,00) x IL*(IR™)) x C ([0, 00) x IL*(IR™)) to
(3). Very recently, the critical exponent to the following structurally damped wave equation with the power
nonlinearity |ug|P:

e — Au+ p(=A)suy = |ugP, = € R”,

(4)
w(0,2) = up(x), u(0,2) =ui(z) x€IR",

has been studied by Tuan Anh Dao and Ahmad Z. Fino [12]. It was shown in [12] that if
o - )
1<p<1l4— where &=min{l, a},
n

then, there is no global (in time) weak solution to (4). As far as we know that one of the most typical important
methods to verify critical exponent is well-known test function method. Concretely, this method is used to prove
the nonexistence of global solutions by a contradiction argument. However, standard test function method
seems difficult to directly apply to (1) containing pseudo-differential operators (—A)% for any o € (0,2),
well-known non-local operators. Nonlocal operators have been receiving increased attention in recent years due
to their usefulness in physics. To overcome the difficulty caused by the nonlocal property of the fractional
Laplacian operator, D’ Abbicco and Reissig [6] investigated the structurally damped wave equation with the
power nonlinearity |u[P. The critical exponent has been studied and they proposed to distinguish between
(parabolic like models) in the case o € (0, 1], the so-called effective damping, and (hyperbolic like models) in
the remaining case o € (1,2], the so-called noneffective damping according to expected decay estimates (see

more [2]). In the former case, they proved the existence of global (in time) solutions when

p>p.=14+-—— where (n—o0); =max(n—o,0),

(n—o)+
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for the small initial data and low space dimensions 2 < n < 4 by using the energy estimates.

For other contributions related to the structurally damped wave equation with the power nonlinearity of
derivative type, see ([7],[8], [5]), for example and the references therein. Motivated by the above contributions,
in particular by [12], our goal in this paper is to investigate problems (1) and (2) for nonexistence of global
weak solutions by using the method of the test function which has been introduced by Mitidieri and Pohozaev
[1]. The paper is organized as follows. In the next section, we give some auxiliary results and formulate our

main results. In Section 3, we prove our main results.

2. Mathematical statements and theorems
Definition 2.1. ([9],[3]). Let s € (0,1) and X be a suitable set of functions defined on IR". Then, the

fractional Laplacian (—A)® in IR"™is a non-local operator given by

» , flz) = f(y)
—A)*: X —A)* =C,s PV ——— dy,
( ) f € — ( ) f(l‘) 5 R» T — y|n+2s
. . . o 4°T (% + s)
as long as the right-hand side exists, where P.V stands for the Cauchy’s principal value and C,, s = ﬁ
m2(—s

is the normalization constant and I' denotes the Gamma function.

Definition 2.2. (Weak solution for (1)). Let 7' > 0,p > 1, and (up,u1) € IL'(IR™) x IL?(IR"). We say that
u € ILj,, ((0,00), IL*(IR™)) satisfying u; € ILE  ((0,00), L*(IR™)) N ILj,, ((0,00),IL*(IR™)) is a local weak

solution to (1) if

/OT/n \ut(m,tﬂpcp(t,x)dxdt—i—/” ul(x)ap(o,x)dx:—/oT/n wi(, )y (t, ) dzdt

T T
- /0 / i u(z, t) Ap(t, x)dzdt — /0 / i ug(z,t) (9(t)(=A) 2 p(x,1)), dedt (5)

T
=[] e 0ge s,
O n

for any test function ¢ € C ([0, 00); H2(IR")) net ([0, 00); ILQ(]R")) such that its support in time is compact.

If T = 0o, we say that u is a global weak solution to (1).

Definition 2.3. (Weak solution for (2)). Let p,¢ > 1 and T > 0. We say that (u,v) is a local weak solution
to the problem (2) if (u,v) € IL} ([0,7) x R™) x ILY ([0,T) x IR"™) and satisfies the equations

loc

/ / |ve(x, t)|Pop(t x)dxdt—l—/ u(x)o( / / ue(x, t) i (¢, z)dxdt
n Rn n

_/0 / u(m,t)Ago(t,x)dmdt—/O / uy(,t) (9(£)(—A) % p(x,t)), dadt 6)

T
— / / ue(z, t) Ap(z, t)dzdt,
0 n
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and

/OT/n ‘ut(x,t)|q90(t,:r)dxdt+/mn Ul(x)w(ovx)dx/OT/nUt(x,t)th(t,x)dxdt
_/OT/’nv(z,t)AgD(t,x)da:dt_/OT/’n wlat) (F0)-2) T 1)) dodt -

T
- / / ve(x, t) Ap(z, t)dxdt,
O n

for any test function ¢ € C§°([0,T) x R"™). If T' = oo, we say that (u,v) is a global weak solution to (2).
Now, we are ready to state the main results of this paper.

Theorem 2.1. Let a € (0,2] and & = min{l,a}.We assume that (ug,u;) € IL'(IR™) x IL2(IR™) satisfying

the following condition:

/ uy(z)dx > 0. (8)
If
n+a
1 <
<p*n—|—)\—oz—|—647 )

then, there is no global (in time) weak solution to problem (1).

Theorem 2.2. We assume that (ug,u;) € IL'(IR™) x IL*(IR™) and (vo,v1) € ILY(IR™) x IL?(IR™) satisfying

the following conditions:
/ uip(x)de >0 and / vi(x)dz > 0. (10)
If

n <
pg—1

maX{p(Oé—v) —/\pq+6,q(ﬁ—>\)—7pr+a}, (11)

then, there is no global (in time) weak solution to (2).

3. Proofs
In this section, we give the proofs of Theorems 2.1 and 2.2. We shall use the nonlinear capacity method combined

with the following pointwise estimate (see Fujiwara [2] and Dao and Reissig [13]).
Lemma 3.1. ([15]) Let (z) = (1 + (Jz| — 1)4)% . Let s € (0,1) and ¢ : IR™ — IR be the function defined by
(m)="7% if x> 1,
¢(z) = (12)
1 if |z <1
Then ¢ € C2(IR"), and the following estimate holds
[(=A)°¢(x)] < Co(x),x € R™, (13)

where C' is a constant independent of x .
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Lemma 3.2. ([13]) Let s € (0,1). Let ¢ be a smooth function satisfying 0% € IL>°(IR™). For any R > 0,
let 1r be a function defined by

X

Yr(x) =1 (E) , forall xeIR™
Then, (—A)%yr satisfies the following scaling properties:
s —2s s L n
(—8)"(r)(@) = B2 (=A)w (E) forall zeR"
Remark 3.1. Throughout, C' denotes a positive constant, whose value may change from line to line.
3.1. Proof of Theorem 2.1

Let u be a global weak solution to (1), then for all ¢ € C ([0,00); H*(IR™)) N C* ([0, 00); ILz(IR”)), one has
+o0 too
/ / \ut(m,t)|p<p(t,x)dxdt+/ u1(x)e(0, z)dx = —/ / ug(x, t)pe(t, z)dxdt
0 IR™ R™ 0 n

/0+°°/n u(zyt)Ago(t,x)d:Edt/OJroo/’n (o, ) (9()(~A) B p(x, 1)), dadt

(14)
_ /0 " / i, 1) Mp(a, 1),

First, we introduce the function ¢ = ¢(z) as defined in (12) with s = § and the function 7 = 5(t) having the
following properties:

1 if 0<t<g,
1. n €C§°([0,00)) and

decreasing if <t

IA

1
2 L,

0 if t>1.

_1
2. 0 (@) ()] + In(t)] < C for any t € [5,1].
Let R be a large parameter in [0,00). We define the following test function:

¢r(z,t) = nr(t)dr(z),

where ng(t) = n(R™%)) and ¢r(z) = ¢(R1K~1z) for some K > 1 which will be fixed later. Moreover, we
check easily that supp(n) C [0, RY]. Let

R&
wa(t)= [ na() = R* 1.

We define the functionals

+oo &
L :/ / |Ut(x,t)\psoﬁ(t,x)dxdt:/ / lug (2, ) Por(t, 2)dzdt,
0 n o .
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and

RS RS
12:/_ / lut(z, t)[PoRr(t, x)dzdt, Igz/ / |ut (2, t)|Por(t, x)dzdt.
B2 " 0 {lz|>RK}

From (14), one obtains

nt [ @@= [ [ e tntest / /{IMK} (e, () Agr(w)dd

/ ~/{|:E>RK} (@, )nr(t) Adr(x dwdt—/ /nut 2.t) (9(tmr(t)(—A) 3 dr(x)), drdt.

Using integrating by parts, one has

he [ uen(aie [ a0 8onts == [+ [ (e dupOontelasi

_/0 /{x>RK} u (2, 1)V R(t) Adr(x)drdt — /0 /{|x>RK} us(x, t)nr(t) Adr(x)dxdt (1s)

/ /n“t z,t)g (nr(t)(—A) % ¢r(x dmdt—/ /nut 2, ) g1 (t)(—A) dp(x)dzdt

=—-h—-—Jo—Jg—Js—Js.

Applying Holder’s inequality with % + i =1, we can proceed the estimate for J; as follows:

e /R | e Dlira(Olon(dzar < ( / e (|“t($7t)|<p£(t,x)))p>;
% </R2: /IRH <|U§%(t)|¢R(x)<p;’l’(t,x)>pl>pl,
(/ / 77R O ) dr(z )dxdt)

Using change of variables £ = R™%t and # = R™'K 'z, we get

1
7/

1
| < PR K </ n@)”“)” < IR (16)

Now let us turn to estimate Jo, J3, Jy, and J5. Applying Holder’s inequality again as we estimated J; leads to

1
'Y

1ol = 1 / / W (0T (0657 @) Adr(@) dedt | < IFRFFSE R ()
0 {|z|>RK}

1
7

1 a _z; , P 1 nta n
|J3| =I5 / / et g " ()| Adr(z)|P dedt | < 17 R™>F ” K™%, (18)
0 J{lz|>RK}
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and

1
7/

Tl < 1 (/ / (D677 (@)(-A)Eo <>dedt> <R R (19)

1
P

5| < 1} (/ | o oo R 00n T @I(-2)0 <>|pdwdt> <R R ()

Combining the estimates from (16) to (20) we may arrive at

n+a

1 P n i G T
11+/ ul(x)¢R(a;)dx§/ |u0(x)||\yR(0)||A¢R(x)dx+c(1;R HER gy IF RO
n IRTL

K™%

L+o¢

i nta _ n 1 _ n+aé _ n
+13PR 2+ 7 K 2+p +I R)\ 1—a+ K a+p/ +IlpR)\ a+ 7 K a+p/>.

Moreover, it is clear that
ROC
Un(t) = / np(t) = R* —t then Wx(0) = R,
t

We can easily check that |A¢r(x)| < R~2¢r(x). Therefore, this implies that

K 2+F

I —|—/ ul(x)qSR(J:)szRd*Q/ luo(x) PR (z )dx—|—C’(I ROV K —|—I R

' (21)
nté

1 n a1
+I3PR 24252 / K 2+F+IlpRA 1—a+ o7

n 1 n
Erfoc+—, [? R)\ a+ 25 , Fr a+,> )
Since Up € IL (IR”), i 1mphes 1mmed1a(ely tha

Jim {R&Q / |u0(a:)|¢R(x)da:] ~0.

R—o0

Invoking the assumption (8), one obtains

Ra&/ ) lup(z)|pr(x)dx < %/ i ui(z)gr(z)de

From (21), we easily see that

n+(x

";&K 2+7r + 17 R—2+ K2t

1 i n L
L+ 5/ up(z)ppr(x)dr < C’(I{R "+ITR

n+a

1
+ 17 RM 1oty

n 1 A n+a n
K—a-l-? + IlpR —at+=5 K_O‘—i_p’).
By choosing K =1 and noticing the relations Iy < I; and I3 < I; we may arrive, particularly, at

n+& n+&
7

1 R 1 g gynia 1
11+§/ ul(x)(bR(a:)da:SC(If’R SR L [PRTMOTS L PRV

n+a

1
+ 115 RM 1oty

n+&

1 n+a 1
I RN )g CIP RO
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Thanks to the following e-Young’s inequality:

ab < ea®? + C(e)bpl, forall a,b>0 and forany e >0,

we conclude
1 n+é& ’ ~
CIFRNT7" < eIy + O(e) RA-P +n+a.
Consequently, from (23) we derive
1 , -
(1=ah+5 [ w@on()ds < CERA W,
which follows that
I < CR(A—a)p/+n+d7 (24)

/ uy(2)pp(z)de < CRA-W tnta, (25)

It is clear that the assumption (9) is equivalent to (A — a)p’ +n + & < 0. For this reason, we will split our
consideration into two cases.
Case 1:In the subcritical case (A — a)p’ + n+ & < 0, letting R — oo in (25) we easily deduce

/ uy(x)dz <0,

Case 2: For the critical case (A — a)p’ + n+ & = 0, from (24) we can see that I; < C. Using Beppo Levi’s

which contradicts the assumption (8).
theorem on monotone convergence, one obtains

/ / |ug (2, t)|Pdadt = hm / / lug(z, ) |Por(x, t)dedt = hm I, <C.
0 n n

We conclude that u; € ILP((0,00) x IR™). By the absolute continuity of the Lebesgue integral, it follows that

Io — 0 and I3 — 0 as R — oo. Using again the fact that o — X\ = ”;r,é‘, we obtain from (22) the following

estimate:

1 1 ~ n 1 ~ — n 1 _ n
Li+35 / uy (7)pr(z)dz < O<12"’ RTOHaTAKY | [p RT2HATem AR TH  [r grtasA gy

(26)
+IPRK TV 4 If’KC”;’),
forall K > 1.
1. If a € (0,1], then a = &. Consequently, from (26) we have
I + 5/ uy (v)pr(r)dr < C(I; RAKY 4 [} R20-0-AR ™27 o [p g=2Ha-A =2ty
| (27)

1 n 1 n
+ PRV 4 IlpK_“+r»’> :
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Letting R — oo in (27) we get
/ uy(z))dz < K™t forall K >1. (28)

It is obvious that —a + ﬁ < 0. We can fix a sufficiently large constant K > 1 in (28) to gain a contra-
diction to (8).

2. If @« €(1,2], then & =1. As a result, choosing K =1 we may conclude from (26) that
1 T p—l4a—X | 75 p—lda—XA | 77 p—24a—A | 7F p—1 | 7P
L+ B / i w(z)pr(x)de < C(IJR T "+ [JR T+ IFR=T 4+ IFR+17 ). (29)

Since a > 1, letting R — oo in (29) we obtain a contradiction to (8) again.

Summarizing, the proof of the Theorem 2.1 is completed.

3.2. Proof of Theorem 2.2

Let «, 8 € (0,2] and & = min{l, a},@ = min{l,5}. First, we introduce the same test function as in Theorem

1.1. Let us assume that (u,v) is the global solution to (2). We define the functionals

+oo RS
Ji :/ / lut(z,t)|"pr(t, x)dzdt :/ / lug (2, 6)| R (¢, ) dadt,
0 n 0 -

R& &
ng/~ / |ue (2, t)|9oR(t, x)dxdt, J3:/ / lug(x, t)|9oR (¢, z)dzdt,
Er JRe 0 {|z|>RK}

+oo RS
I :/ / Ivt(a:,t)\PgOR(t,x)dxdt:/ / lvi(z, ) Por(t, z)dadt,
0 " 0 n

= / / lon(@, ) Pon(t, z)dadt, Ty = / / o, ) Pon(t, ) davdt.
RT n {|lz|>RK}
From (6) and (7), on has

and

and

R R*
nt [ m@onte=— [ [ woh@on@aa [T ] u @ aonei

/ /{|w>m<} (z, )nr (1) Adr (2 dwdtf/ /nutxt tnr(t)(—A)2 pr(x)), dudt,

and

J1—|—/" vi(x)pr(x)de = — /L /nvt (z,t)nR(t)dr(x dwdt—/ / . v(x, t)nr(t) Apr(z)dxdt

—/ / vt(m,t)nR(t)Aqu(x)dmdt—/ / ve(x, t) (f(t)nR(t)(—A)%qSR(x))tdwdt.
0 J{jz|>RK} 0 "
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Repeating the steps of the proof from (16) to (23) we may conclude the following estimates

I, < (30)
In the analogous way, one obtains
1 ndtB
Jy < I ROPH5 (31)
From (30) and (31) we obtain
157 < RO-IHEA -0 g (32)
T < RO-O+EE G012 _ by (33)

It is clear that the assumption (11) is equivalent to max{d;,d2} < 0. For this reason, we will split our

consideration into two cases.
Case 1:In the subcritical case max{d;,d2} < 0, letting R — oo in (32)and (33) we easily deduce

/ i v1(z)pr(x)de <0 and / . ur(x)or(x)dr <0,

which contradicts the assumption (10).
Case 2: For the critical case d = 0, from (24) we can see that J; < C. Using Beppo Levi’s theorem on

monotone convergence, one obtains

/ / lut(x, t)|9dxdt = hm / / |ug(x, t)|90R(x, t)dedt = lim J1 < C.
n n R—o0

We conclude that u; € IL? ((0,00) x IR™). By the absolute continuity of the Lebesgue integral, it follows that
Jo = 0 and J3 — 0 as R — oo. Using again the fact that do = 0, we obtain from (22) the following estimate:

1 ER " 1 _ i m 1 o m
Ji + 5/ ul(x)qﬁR(x)dx < C([Qp RGTa=A [y + 17 R2tata=Aps 2+ + 17 R2ta=A g 247

(34)
l n l n
+IJRK Y 07 K‘”w> ,
forall K > 1.
1. If a € (0,1], then a = &. Consequently, from (34) we have
1 1 n 1 _o4 m 1 _o4mn
Ji+ 5/ (@) p(z)dr < O(I; RAKY 4 [} RT20-0AR™>Fr 4 [r gm2a- A2ty
(35)
+IFRTIKTY 4 IfKaﬂl">.
Letting R — oo in (35) we get
/ uy(z))de < K™% forall K > 1. (36)
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It is obvious that —a + ﬁ < 0. We can fix a sufficiently large constant K > 1lin (36) to gain a contradic-
tion to (10).

2. If @« €(1,2], then & =1. As a result, choosing K =1 we may conclude from (34) that

1 1 1 1 1 1
hots [ w@ends <0 (fz” RO 4 RO A RO A PR If)‘ 0

Since a > 1, letting R — oo in (37) we obtain a contradiction to (10) again.

In the case §; = 0 we repeat the same arguments as in do = 0. Summarizing, the proof of the Theorem 2.2 is

completed.
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