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Abstract: Main purpose of this paper is to study the nonexistence of global weak solution for the following Cauchy

problem  utt −∆ut −∆u+ g(t)(−∆)
α
2 utt = |ut|p, x ∈ IRn,

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ IRn,

where α ∈ (0, 2), p > 1, n ≥ 1, g(t) = tλ, λ ≥ 1 and (−∆)
α
2 is the fractional Laplacian operator of order α

2
.

Then, this result is extended to the case of 2 × 2-system of the same type. The results obtained in this paper extend

several contributions in this field.

Key words: Weak solution, test functions, nonexistence.

1. Introduction

In this paper, we are first concerned with the nonexistence of global weak solutions for the following Cauchy

problem  utt −∆ut −∆u+ g(t)(−∆)
α
2 utt = |ut|p, x ∈ IRn,

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ IRn,
(1)

where p > 1, n ≥ 1, α ∈ (0, 2), g(t) = tλ, λ ≥ 1 and (−∆)
α
2 is the fractional Laplacian operator of order

α
2 . Then we extend our analysis to the 2× 2 system of the same type, namely



utt −∆ut −∆u+ g(t)(−∆)
α
2 utt = |vt|p, x ∈ IRn,

vtt −∆vt −∆v + f(t)(−∆)
β
2 vtt = |ut|q, x ∈ IRn,

u(0, x) = u0(x), ut(0, x) = u1(x),

v(0, x) = v0(x), vt(0, x) = v1(x) x ∈ IRn,

(2)

where p, q > 1, n ≥ 1, α, β ∈ (0, 2), g(t) = tλ, f(t) = tγ , λ, γ ≥ 1 and (−∆)
α
2 , (−∆)

β
2 are the fractional

Laplacian operators of order α
2 and β

2 . We mention below some motivations for studying the considered
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problems.

Recently, Tuan Anh Dao in [11] investigated the nonexistence of global(in time) solutions to the following system

utt −∆u+ (−∆)δ1ut = |v|p, x ∈ IRn, t > 0,

vtt −∆v + (−∆)δ2vt = |u|q, x ∈ IRn, t > 0

u(0, x) = u0(x), ut(0, x) = u1(x),

v(0, x) = v0(x), vt(0, x) = v1(x) x ∈ IRn.

(3)

It was shown that if δ1, δ2 ∈
[
0, 12
]
, u0 = u1 = 0 and u1, v1 ∈ IL1(IRn) such that∫

IRn
u1(x)dx > ε1,

∫
IRn

u1(x)dx > ε2,

and

n

2
≤

1 + q 1−δ2
1−δ1 + (pq − 1)δ2

(q − 1) δ1−δ21−δ2 + (pq − 1)
if δ1 ≥ δ2,

n

2
≤

1 + p 1−δ1
1−δ2 + (pq − 1)δ2

(p− 1) δ2−δ11−δ1 + (pq − 1)
if δ2 ≥ δ1.

Then, there is no global (in time) Sobolev solution (u, v) ∈ C
(
[0,∞)× IL2(IRn)

)
× C

(
[0,∞)× IL2(IRn)

)
to

(3). Very recently, the critical exponent to the following structurally damped wave equation with the power

nonlinearity |ut|p :  utt −∆u+ µ(−∆)
α
2 ut = |ut|p, x ∈ IRn,

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ IRn,
(4)

has been studied by Tuan Anh Dao and Ahmad Z. Fino [12]. It was shown in [12] that if

1 < p ≤ 1 +
α̃

n
where α̃ = min{1, α},

then, there is no global (in time) weak solution to (4). As far as we know that one of the most typical important

methods to verify critical exponent is well-known test function method. Concretely, this method is used to prove

the nonexistence of global solutions by a contradiction argument. However, standard test function method

seems difficult to directly apply to (1) containing pseudo-differential operators (−∆)
α
2 for any α ∈ (0, 2),

well-known non-local operators. Nonlocal operators have been receiving increased attention in recent years due

to their usefulness in physics. To overcome the difficulty caused by the nonlocal property of the fractional

Laplacian operator, D’ Abbicco and Reissig [6] investigated the structurally damped wave equation with the

power nonlinearity |u|p . The critical exponent has been studied and they proposed to distinguish between

(parabolic like models) in the case σ ∈ (0, 1], the so-called effective damping, and (hyperbolic like models) in

the remaining case σ ∈ (1, 2], the so-called noneffective damping according to expected decay estimates (see

more [2]). In the former case, they proved the existence of global (in time) solutions when

p > pc = 1 +
2

(n− σ)+
where (n− σ)+ = max (n− σ, 0) ,
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for the small initial data and low space dimensions 2 ≤ n ≤ 4 by using the energy estimates.

For other contributions related to the structurally damped wave equation with the power nonlinearity of

derivative type, see ([7],[8], [5]), for example and the references therein. Motivated by the above contributions,

in particular by [12], our goal in this paper is to investigate problems (1) and (2) for nonexistence of global

weak solutions by using the method of the test function which has been introduced by Mitidieri and Pohozaev

[1]. The paper is organized as follows. In the next section, we give some auxiliary results and formulate our

main results. In Section 3, we prove our main results.

2. Mathematical statements and theorems

Definition 2.1. ([9],[3]). Let s ∈ (0, 1) and X be a suitable set of functions defined on IRn . Then, the

fractional Laplacian (−∆)s in IRn is a non-local operator given by

(−∆)s : f ∈ X → (−∆)sf(x) = Cn,s P.V

∫
IRn

f(x)− f(y)

|x− y|n+2s
dy,

as long as the right-hand side exists, where P.V stands for the Cauchy’s principal value and Cn,s =
4sΓ

(
n
2 + s

)
π
n
2 Γ(−s)

is the normalization constant and Γ denotes the Gamma function.

Definition 2.2. (Weak solution for (1)). Let T > 0, p > 1, and (u0, u1) ∈ IL1(IRn) × IL2(IRn). We say that

u ∈ IL1
loc

(
(0,∞), IL2(IRn)

)
satisfying ut ∈ ILploc

(
(0,∞), IL2p(IRn)

)
∩ IL1

loc

(
(0,∞), IL2(IRn)

)
is a local weak

solution to (1) if

∫ T

0

∫
IRn
|ut(x, t)|pϕ(t, x)dxdt+

∫
IRn

u1(x)ϕ(0, x)dx = −
∫ T

0

∫
IRn

ut(x, t)ϕt(t, x)dxdt

−
∫ T

0

∫
IRn

u(x, t)∆ϕ(t, x)dxdt−
∫ T

0

∫
IRn

ut(x, t)
(
g(t)(−∆)

α
2 ϕ(x, t)

)
t
dxdt

−
∫ T

0

∫
IRn

ut(x, t)∆ϕ(x, t)dxdt,

(5)

for any test function ϕ ∈ C
(
[0,∞);H2(IRn)

)
∩ C1

(
[0,∞); IL2(IRn)

)
such that its support in time is compact.

If T =∞ , we say that u is a global weak solution to (1).

Definition 2.3. (Weak solution for (2)). Let p, q > 1 and T > 0. We say that (u, v) is a local weak solution

to the problem (2) if (u, v) ∈ ILqloc([0, T )× IRn)× ILploc([0, T )× IRn) and satisfies the equations

∫ T

0

∫
IRn
|vt(x, t)|pϕ(t, x)dxdt+

∫
IRn

u1(x)ϕ(0, x)dx = −
∫ T

0

∫
IRn

ut(x, t)ϕt(t, x)dxdt

−
∫ T

0

∫
IRn

u(x, t)∆ϕ(t, x)dxdt−
∫ T

0

∫
IRn

ut(x, t)
(
g(t)(−∆)

α
2 ϕ(x, t)

)
t
dxdt

−
∫ T

0

∫
IRn

ut(x, t)∆ϕ(x, t)dxdt,

(6)
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and ∫ T

0

∫
IRn
|ut(x, t)|qϕ(t, x)dxdt+

∫
IRn

v1(x)ϕ(0, x)dx = −
∫ T

0

∫
IRn

vt(x, t)ϕt(t, x)dxdt

−
∫ T

0

∫
IRn

v(x, t)∆ϕ(t, x)dxdt−
∫ T

0

∫
IRn

vt(x, t)
(
f(t)(−∆)

β
2 ϕ(x, t)

)
t
dxdt

−
∫ T

0

∫
IRn

vt(x, t)∆ϕ(x, t)dxdt,

(7)

for any test function ϕ ∈ C∞0 ([0, T )× IRn). If T =∞ , we say that (u, v) is a global weak solution to (2).

Now, we are ready to state the main results of this paper.

Theorem 2.1. Let α ∈ (0, 2] and α̃ = min{1, α} .We assume that (u0, u1) ∈ IL1(IRn) × IL2(IRn) satisfying

the following condition: ∫
IRn

u1(x)dx ≥ 0. (8)

If

1 < p ≤ n+ α̃

n+ λ− α+ α̃
, (9)

then, there is no global (in time) weak solution to problem (1).

Theorem 2.2. We assume that (u0, u1) ∈ IL1(IRn) × IL2(IRn) and (v0, v1) ∈ IL1(IRn) × IL2(IRn) satisfying

the following conditions: ∫
IRn

u1(x)dx > 0 and

∫
IRn

v1(x)dx > 0. (10)

If

n ≤ 1

pq − 1
max

{
p(α− γ)− λpq + β, q(β − λ)− γpq + α

}
, (11)

then, there is no global (in time) weak solution to (2).

3. Proofs

In this section, we give the proofs of Theorems 2.1 and 2.2. We shall use the nonlinear capacity method combined

with the following pointwise estimate (see Fujiwara [2] and Dao and Reissig [13]).

Lemma 3.1. ([13]) Let 〈x〉 =
(
1 + (|x| − 1)4

) 1
4 . Let s ∈ (0, 1) and φ : IRn → IR be the function defined by

φ(x) =

 〈x〉
−n−2s if |x| ≥ 1,

1 if |x| ≤ 1.
(12)

Then φ ∈ C2(IRn), and the following estimate holds

|(−∆)sφ(x)| ≤ Cφ(x), x ∈ IRn, (13)

where C is a constant independent of x .
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Lemma 3.2. ([13]) Let s ∈ (0, 1) . Let ψ be a smooth function satisfying ∂2xψ ∈ IL∞(IRn) . For any R > 0 ,

let ψR be a function defined by

ψR(x) = ψ
( x
R

)
, for all x ∈ IRn.

Then, (−∆)sψR satisfies the following scaling properties:

(−∆)s(ψR)(x) = R−2s(−∆)sψ
( x
R

)
for all x ∈ IRn.

Remark 3.1. Throughout, C denotes a positive constant, whose value may change from line to line.

3.1. Proof of Theorem 2.1

Let u be a global weak solution to (1), then for all ϕ ∈ C
(
[0,∞);H2(IRn)

)
∩ C1

(
[0,∞); IL2(IRn)

)
, one has

∫ +∞

0

∫
IRn
|ut(x, t)|pϕ(t, x)dxdt+

∫
IRn

u1(x)ϕ(0, x)dx = −
∫ +∞

0

∫
IRn

ut(x, t)ϕt(t, x)dxdt

−
∫ +∞

0

∫
IRn

u(x, t)∆ϕ(t, x)dxdt−
∫ +∞

0

∫
IRn

ut(x, t)
(
g(t)(−∆)

α
2 ϕ(x, t)

)
t
dxdt

−
∫ +∞

0

∫
IRn

ut(x, t)∆ϕ(x, t)dxdt.

(14)

First, we introduce the function φ = φ(x) as defined in (12) with s = α
2 and the function η = η(t) having the

following properties:

1. η ∈ C∞0 ([0,∞)) and


1 if 0 ≤ t ≤ 1

2 ,

decreasing if 1
2 ≤ t ≤ 1,

0 if t ≥ 1.

2. η−
1
p (t)|η′(t)|+ |η(t)| ≤ C for any t ∈ [ 12 , 1].

Let R be a large parameter in [0,∞). We define the following test function:

ϕR(x, t) = ηR(t)φR(x),

where ηR(t) = η(R−α̃t)) and φR(x) = φ(R−1K−1x) for some K ≥ 1 which will be fixed later. Moreover, we

check easily that supp(η) ⊂ [0, Rα̃] . Let

ΨR(t) =

∫ Rα̃

t

ηR(t) = Rα̃ − t.

We define the functionals

I1 =

∫ +∞

0

∫
IRn
|ut(x, t)|pϕR(t, x)dxdt =

∫ Rα̃

0

∫
IRn
|ut(x, t)|pϕR(t, x)dxdt,
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and

I2 =

∫ Rα̃

Rα̃

2

∫
IRn
|ut(x, t)|pϕR(t, x)dxdt, I3 =

∫ Rα̃

0

∫
{|x|≥RK}

|ut(x, t)|pϕR(t, x)dxdt.

From (14), one obtains

I1 +

∫
IRn

u1(x)φR(x)dx = −
∫ Rα̃

Rα̃

2

∫
IRn

ut(x, t)η
′
R(t)φR(x)dxdt−

∫ Rα̃

0

∫
{|x|≥RK}

u(x, t)ηR(t)∆φR(x)dxdt

−
∫ Rα̃

0

∫
{|x|≥RK}

ut(x, t)ηR(t)∆φR(x)dxdt−
∫ Rα̃

0

∫
IRn

ut(x, t)
(
g(t)ηR(t)(−∆)

α
2 φR(x)

)
t
dxdt.

Using integrating by parts, one has

I1 +

∫
IRn

u1(x)φR(x)dx+

∫
IRn

u0(x)ΨR(0)∆φR(x)dx = −
∫ Rα̃

Rα̃

2

∫
IRn

ut(x, t)η
′
R(t)φR(x)dxdt

−
∫ Rα̃

0

∫
{|x|≥RK}

ut(x, t)ΨR(t)∆φR(x)dxdt−
∫ Rα̃

0

∫
{|x|≥RK}

ut(x, t)ηR(t)∆φR(x)dxdt

−
∫ Rα̃

0

∫
IRn

ut(x, t)g
′(t)ηR(t)(−∆)

α
2 φR(x)dxdt−

∫ Rα̃

0

∫
IRn

ut(x, t)g(t)η′R(t)(−∆)
α
2 φR(x)dxdt

= −J1 − J2 − J3 − J4 − J5.

(15)

Applying Hölder’s inequality with 1
p + 1

p′ = 1, we can proceed the estimate for J1 as follows:

|J1| �
∫ Rα̃

Rα̃

2

∫
IRn
|ut(x, t)||η′R(t)|φR(x)dxdt ≤

(∫ Rα̃

Rα̃

2

∫
IRn

(
|ut(x, t)|ϕ

1
p

R(t, x))

)p) 1
p

×

(∫ Rα̃

Rα̃

2

∫
IRn

(
|η′R(t)|φR(x)ϕ

− 1
p

R (t, x)

)p′) 1
p′

� I
1
p

2

(∫ Rα̃

Rα̃

2

∫
IRn

η
− p
′
p

R (t)|η′R(t)|p
′
φR(x)dxdt

) 1
p′

.

Using change of variables t̃ = R−α̃t and x̃ = R−1K−1x, we get

|J1| � I
1
p

2 R
−α̃+n+α̃

p′ K
n
p′

(∫
IRn
〈x̃〉−n−α

) 1
p′

� I
1
p

2 R
−α̃+n+α̃

p′ K
n
p′ . (16)

Now let us turn to estimate J2, J3, J4, and J5 . Applying Hölder’s inequality again as we estimated J1 leads to

|J2| � I
1
p

3

(∫ Rα̃

0

∫
{|x|≥RK}

Ψp′

R (t)η
− p
′
p

R (t)φ
− p
′
p

R (x)|∆φR(x)|p
′
dxdt

) 1
p′

� I
1
p

3 R
−2+α̃+n+α̃

p′ K
−2+ n

p′ , (17)

|J3| � I
1
p

3

(∫ Rα̃

0

∫
{|x|≥RK}

ηR(t)φ
− p
′
p

R (x)|∆φR(x)|p
′
dxdt

) 1
p′

� I
1
p

3 R
−2+n+α̃

p′ K
−2+ n

p′ , (18)
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and

|J4| � I
1
p

1

(∫ Rα̃

0

∫
IRn

g′p
′
(t)ηR(t)φ

− p
′
p

R (x)|(−∆)
α
2 φR(x)|p

′
dxdt

) 1
p′

� I
1
p

1 R
λ−1−α+n+α̃

p′ K
−α+ n

p′ , (19)

|J5| � I
1
p

1

(∫ Rα̃

0

∫
IRn

gp
′
(t)η′R

p′
(t)η

− p
′
p

R (t)φ
− p
′
p

R (x)|(−∆)
α
2 φR(x)|p

′
dxdt

) 1
p′

� I
1
p

1 R
λ−α+n+α̃

p′ K
−α+ n

p′ . (20)

Combining the estimates from (16) to (20) we may arrive at

I1 +

∫
IRn

u1(x)φR(x)dx ≤
∫
IRn
|u0(x)||ΨR(0)||∆φR(x)|dx+ C

(
I

1
p

2 R
−α̃+n+α̃

p′ K
n
p′ + I

1
p

3 R
−2+α̃+n+α̃

p′ K
−2+ n

p′

+ I
1
p

3 R
−2+n+α̃

p′ K
−2+ n

p′ + I
1
p

1 R
λ−1−α+n+α̃

p′ K
−α+ n

p′ + I
1
p

1 R
λ−α+n+α̃

p′ K
−α+ n

p′

)
.

Moreover, it is clear that

ΨR(t) =

∫ Rα̃

t

ηR(t) = Rα̃ − t then ΨR(0) = Rα̃.

We can easily check that |∆φR(x)| ≤ R−2φR(x). Therefore, this implies that

I1 +

∫
IRn

u1(x)φR(x)dx ≤ Rα̃−2
∫
IRn
|u0(x)|φR(x)dx+ C

(
I

1
p

2 R
−α̃+n+α̃

p′ K
n
p′ + I

1
p

3 R
−2+α̃+n+α̃

p′ K
−2+ n

p′

+ I
1
p

3 R
−2+n+α̃

p′ K
−2+ n

p′ + I
1
p

1 R
λ−1−α+n+α̃

p′ K
−α+ n

p′ + I
1
p

1 R
λ−α+n+α̃

p′ K
−α+ n

p′

)
.

(21)

Since u0 ∈ IL1(IRn), it implies immediately that

lim
R→∞

[
Rα̃−2

∫
IRn
|u0(x)|φR(x)dx

]
= 0.

Invoking the assumption (8), one obtains

Rα̃−2
∫
IRn
|u0(x)|φR(x)dx <

1

2

∫
IRn

u1(x)φR(x)dx.

From (21), we easily see that

I1 +
1

2

∫
IRn

u1(x)φR(x)dx ≤ C
(
I

1
p

2 R
−α̃+n+α̃

p′ K
n
p′ + I

1
p

3 R
−2+α̃+n+α̃

p′ K
−2+ n

p′ + I
1
p

3 R
−2+n+α̃

p′ K
−2+ n

p′

+ I
1
p

1 R
λ−1−α+n+α̃

p′ K
−α+ n

p′ + I
1
p

1 R
λ−α+n+α̃

p′ K
−α+ n

p′

)
.

(22)

By choosing K = 1 and noticing the relations I2 ≤ I1 and I3 ≤ I1 we may arrive, particularly, at

I1 +
1

2

∫
IRn

u1(x)φR(x)dx ≤ C
(
I

1
p

1 R
−α̃+n+α̃

p′ + I
1
p

1 R
−2+α̃+n+α̃

p′ + I
1
p

1 R
−2+n+α̃

p′

+ I
1
p

1 R
λ−1−α+n+α̃

p′ + I
1
p

1 R
λ−α+n+α̃

p′

)
≤ CI

1
p

1 R
λ−α+n+α̃

p′ .

(23)
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Thanks to the following ε -Young’s inequality:

ab ≤ εap + C(ε)bp
′
, for all a, b > 0 and for any ε > 0,

we conclude

CI
1
p

1 R
λ−α+n+α̃

p′ ≤ εI1 + C(ε)R(λ−α)p′+n+α̃.

Consequently, from (23) we derive

(1− ε)I1 +
1

2

∫
IRn

u1(x)φR(x)dx ≤ C(ε)R(λ−α)p′+n+α̃,

which follows that

I1 ≤ CR(λ−α)p′+n+α̃, (24)

∫
IRn

u1(x)φR(x)dx ≤ CR(λ−α)p′+n+α̃. (25)

It is clear that the assumption (9) is equivalent to (λ − α)p′ + n + α̃ ≤ 0. For this reason, we will split our

consideration into two cases.

Case 1:In the subcritical case (λ− α)p′ + n+ α̃ < 0, letting R→∞ in (25) we easily deduce∫
IRn

u1(x)dx ≤ 0,

which contradicts the assumption (8).

Case 2: For the critical case (λ − α)p′ + n + α̃ = 0, from (24) we can see that I1 ≤ C . Using Beppo Levi’s

theorem on monotone convergence, one obtains

∫ ∞
0

∫
IRn
|ut(x, t)|pdxdt = lim

R→∞

∫ Rα̃

0

∫
IRn
|ut(x, t)|pϕR(x, t)dxdt = lim

R→∞
I1 ≤ C.

We conclude that ut ∈ ILp((0,∞) × IRn). By the absolute continuity of the Lebesgue integral, it follows that

I2 → 0 and I3 → 0 as R → ∞ . Using again the fact that α − λ = n+α̃
p′ , we obtain from (22) the following

estimate:

I1 +
1

2

∫
IRn

u1(x)φR(x)dx ≤ C
(
I

1
p

2 R
−α̃+α−λK

n
p′ + I

1
p

3 R
−2+α̃+α−λK

−2+ n
p′ + I

1
p

3 R
−2+α−λK

−2+ n
p′

+ I
1
p

1 R
−1K

−α+ n
p′ + I

1
p

1 K
−α+ n

p′

)
,

(26)

for all K ≥ 1.

1. If α ∈ (0, 1], then α = α̃ . Consequently, from (26) we have

I1 +
1

2

∫
IRn

u1(x)φR(x)dx ≤ C
(
I

1
p

2 R
−λK

n
p′ + I

1
p

3 R
−2(1−α)−λK

−2+ n
p′ + I

1
p

3 R
−2+α−λK

−2+ n
p′

+ I
1
p

1 R
−1K

−α+ n
p′ + I

1
p

1 K
−α+ n

p′

)
.

(27)

77



Ali HAKEM

Letting R→∞ in (27) we get ∫
IRn

u1(x))dx � K−α+
n
p′ for all K ≥ 1. (28)

It is obvious that −α + n
p′ < 0. We can fix a sufficiently large constant K ≥ 1 in (28) to gain a contra-

diction to (8).

2. If α ∈ (1, 2], then α̃ = 1. As a result, choosing K = 1 we may conclude from (26) that

I1 +
1

2

∫
IRn

u1(x)φR(x)dx ≤ C
(
I

1
p

2 R
−1+α−λ + I

1
p

3 R
−1+α−λ + I

1
p

3 R
−2+α−λ + I

1
p

1 R
−1 + I

1
p

1

)
. (29)

Since α > 1, letting R→∞ in (29) we obtain a contradiction to (8) again.

Summarizing, the proof of the Theorem 2.1 is completed.

3.2. Proof of Theorem 2.2

Let α, β ∈ (0, 2] and α̃ = min{1, α}, β̃ = min{1, β} . First, we introduce the same test function as in Theorem

1.1. Let us assume that (u, v) is the global solution to (2). We define the functionals

J1 =

∫ +∞

0

∫
IRn
|ut(x, t)|qϕR(t, x)dxdt =

∫ Rα̃

0

∫
IRn
|ut(x, t)|qϕR(t, x)dxdt,

and

J2 =

∫ Rα̃

Rα̃

2

∫
IRn
|ut(x, t)|qϕR(t, x)dxdt, J3 =

∫ Rα̃

0

∫
{|x|≥RK}

|ut(x, t)|qϕR(t, x)dxdt,

I1 =

∫ +∞

0

∫
IRn
|vt(x, t)|pϕR(t, x)dxdt =

∫ Rα̃

0

∫
IRn
|vt(x, t)|pϕR(t, x)dxdt,

and

I2 =

∫ Rα̃

Rα̃

2

∫
IRn
|vt(x, t)|pϕR(t, x)dxdt, I3 =

∫ Rα̃

0

∫
{|x|≥RK}

|vt(x, t)|pϕR(t, x)dxdt.

From (6) and (7), on has

I1 +

∫
IRn

u1(x)φR(x)dx = −
∫ Rα̃

Rα̃

2

∫
IRn

ut(x, t)η
′
R(t)φR(x)dxdt−

∫ Rα̃

0

∫
{|x|≥RK}

u(x, t)ηR(t)∆φR(x)dxdt

−
∫ Rα̃

0

∫
{|x|≥RK}

ut(x, t)ηR(t)∆φR(x)dxdt−
∫ Rα̃

0

∫
IRn

ut(x, t)
(
g(t)ηR(t)(−∆)

α
2 φR(x)

)
t
dxdt,

and

J1 +

∫
IRn

v1(x)φR(x)dx = −
∫ Rα̃

Rα̃

2

∫
IRn

vt(x, t)η
′
R(t)φR(x)dxdt−

∫ Rα̃

0

∫
{|x|≥RK}

v(x, t)ηR(t)∆φR(x)dxdt

−
∫ Rα̃

0

∫
{|x|≥RK}

vt(x, t)ηR(t)∆φR(x)dxdt−
∫ Rα̃

0

∫
IRn

vt(x, t)
(
f(t)ηR(t)(−∆)

α
2 φR(x)

)
t
dxdt.
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Repeating the steps of the proof from (16) to (23) we may conclude the following estimates

I1 ≤ J
1
q

1 R
(λ−α)+n+α̃

q′ . (30)

In the analogous way, one obtains

J1 ≤ I
1
p

1 R
(γ−β)+n+β̃

p′ . (31)

From (30) and (31) we obtain

I
pq−1
pq

1 ≤ R((γ−β)+n+β̃
p′ ) 1

q+(λ−α)+n+α̃
q′ = Rδ1 , (32)

J
pq−1
pq

1 ≤ R((λ−α)+n+α̃
q′ ) 1

p+(γ−β)+n+β̃
p′ = Rδ2 . (33)

It is clear that the assumption (11) is equivalent to max{δ1, δ2} ≤ 0. For this reason, we will split our

consideration into two cases.
Case 1:In the subcritical case max{δ1, δ2} < 0, letting R→∞ in (32)and (33) we easily deduce∫

IRn
v1(x)φR(x)dx ≤ 0 and

∫
IRn

u1(x)φR(x)dx ≤ 0,

which contradicts the assumption (10).

Case 2: For the critical case δ2 = 0, from (24) we can see that J1 ≤ C . Using Beppo Levi’s theorem on

monotone convergence, one obtains

∫ ∞
0

∫
IRn
|ut(x, t)|qdxdt = lim

R→∞

∫ Rα̃

0

∫
IRn
|ut(x, t)|qϕR(x, t)dxdt = lim

R→∞
J1 ≤ C.

We conclude that ut ∈ ILq ((0,∞)× IRn). By the absolute continuity of the Lebesgue integral, it follows that

J2 → 0 and J3 → 0 as R→∞ . Using again the fact that δ2 = 0, we obtain from (22) the following estimate:

J1 +
1

2

∫
IRn

u1(x)φR(x)dx ≤ C
(
I

1
p

2 R
−α̃+α−λK

n
p′ + I

1
p

3 R
−2+α̃+α−λK

−2+ n
p′ + I

1
p

3 R
−2+α−λK

−2+ n
p′

+ I
1
p

1 R
−1K

−α+ n
p′ + I

1
p

1 K
−α+ n

p′

)
,

(34)

for all K ≥ 1.

1. If α ∈ (0, 1], then α = α̃ . Consequently, from (34) we have

J1 +
1

2

∫
IRn

u1(x)φR(x)dx ≤ C
(
I

1
p

2 R
−λK

n
p′ + I

1
p

3 R
−2(1−α)−λK

−2+ n
p′ + I

1
p

3 R
−2+α−λK

−2+ n
p′

+ I
1
p

1 R
−1K

−α+ n
p′ + I

1
p

1 K
−α+ n

p′

)
.

(35)

Letting R→∞ in (35) we get ∫
IRn

u1(x))dx � K−α+
n
p′ for all K ≥ 1. (36)

79



Ali HAKEM

It is obvious that −α+ n
p′ < 0. We can fix a sufficiently large constant K ≥ 1in (36) to gain a contradic-

tion to (10).

2. If α ∈ (1, 2], then α̃ = 1. As a result, choosing K = 1 we may conclude from (34) that

J1 +
1

2

∫
IRn

u1(x)φR(x)dx ≤ C
(
I

1
p

2 R
−1+α−λ + I

1
p

3 R
−1+α−λ + I

1
p

3 R
−2+α−λ + I

1
p

1 R
−1 + I

1
p

1

)
. (37)

Since α > 1, letting R→∞ in (37) we obtain a contradiction to (10) again.

In the case δ1 = 0 we repeat the same arguments as in δ2 = 0. Summarizing, the proof of the Theorem 2.2 is

completed.
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