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Abstract: In this manuscript, we discuss the existence, uniqueness, estimate and stability of solutions for nonlinear

hybrid fractional q− differential pantograph equations. The existence and uniqueness of solutions are derived from

Banach contraction principle, while the estimate of solutions is proved via generalization of Gronwall’s inequality.

Stability of solutions is also established. An illustrative example is presented.
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1. Introduction

Fractional differential equations involving fractional calculus operators and fractional q− integral calculus opera-

tors have attracted the attentions of many scholars working in a variety of disciplines, due to the development and

applications of these equations in many fields such as engineering, physics, mathematics, etc, see [2, 5, 13, 15, 20]

and references therein, one of the motivating topics in this area is the study of the existence and uniqueness

of solutions, see for example [2, 9, 12, 18, 22]. Pantograph type equations have attracted the attention of

many authors working in a variety of disciplines due to the development and applications of these equations

in many fields such engineering, electro-dynamic, biology, control, see [11, 23, 24]. Moreover, fractional-order

pantograph differential equations have been considered by many researchers, for instance, see [1, 3, 8, 16] and

the references cited therein. The Ulam stability of differential equations with fractional derivative has been in-

vestigated by different authors, we refer the reader to the papers [6, 12, 13]. Recently, the stability of fractional

pantograph differential equations has been investigated by many researchers, we refer the reader to [1, 3, 4, 17].

More recently, fractional hybrid pantograph differential equations have also been studied by several authors,

for instance, see [10, 19]. In [10], the authors studied the existence solutions of the following hybrid fractional

pantograph equation


Dα

0+

[
u(t)

ϕ(t,u(t),u(λt))

]
= ψ (t, u (t) , u (ηt)) , 0 < t < 1,

u (0) = 0,

c©Asia Mathematika, DOI: 10.5281/zenodo.5253207
∗Correspondence: m.houas.st@univ-dbkm.dz

20

https://orcid.org/0000-0001-6256-0511 
http://www.asiamath.org/article/vol5iss2/AM-2108-5206.pdf


M. Houas

where α, λ, η ∈ (0, 1) and Dα
0+ denotes the Riemann-Liouville fractional derivative. In [19], the authors studied

the following hybrid generalized fractional pantograph equation
Dα

0+

[
u(t)

ϕ(t,u(t),u(θ(t)))

]
= ψ (t, u (t) , u (ρ (t))) , 0 < t < 1,

u (0) = 0,

where α ∈ (0, 1) , Dα
0+ denotes the Riemann-Liouville fractional derivative and θ, ρ : [0, 1] → [0, 1] are given

functions. In this work, we study the existence, uniqueness, Ulam-Hyers-stability and Ulam-Hyers-Rassias

stability of solutions for the following hybrid Caputo fractional q−differential pantograph equations

Dα
q

[
x (t)∑k

i=1 φi (t, x (t) , x (λt))

]

=
∑k
i=1 ϕi

(
t, x (t) , x (ηt) , Dα

q

[
x (t)∑k

i=1 φi (t, x (t) , x (λt))

])
, 0 < λ, η < 1,

x (0) + ψ (x) = x0, x0 ∈ R,

(1)

where 0 < q, α < 1, Dα
q is the Caputo fractional q−derivative , t ∈ J = [0, T ] , φi ∈ C

(
J × R2,R− {0}

)
and

ϕi ∈ C
(
J × R3,R

)
, i = 1, ..., k, k ∈ N∗ . The operator Dα

q is the fractional q−derivative in the sense of Caputo

[7, 25], defined by 
Dα
q f (t) = In−αq Dn

q f (t) , α > 0,

D0
qf (t) = f (t) ,

where n is the smallest integer greater than or equal to α. The fractional q− integral of the Riemann-Liouville

type [7, 25] is given by 
Iαq f (t) = 1

Γq(α)

∫ t
0

(t− qs)(α−1)
f (s) dqs, α > 0,

I0
q f (t) = f (t) ,

where the q−gamma function is defined by Γq (α) = (1−q)(α−1)

(1−q)α−1 , α ∈ R\ {0,−1,−2, ...} and satisfies

Γq (α+ 1) = [α]qΓq (α) , [a]q =
1− qa

1− q
, a ∈ R.

We need the the following lemmas [25].

Lemma 1.1. Let α, β ≥ 0 and f be a function defined in [0, 1] . Then the following formulas hold

Iαq I
β
q f (t) = Iα+β

q f (t) and Dα
q I

α
q f (t) = f (t) .

Lemma 1.2. Let α > 0 and σ be a positive integer. Then the following equality holds

Iαq D
σ
q f (t) = Dσ

q I
α
q f (t)−

σ−1∑
j=0

tα−σ+j

Γq (α+ j − σ + 1)
Dj
qf (0) .
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Lemma 1.3. For α ∈ R+ and β > −1, we have

Iαq

[
(t− x)

(β)
]

=
Γq (β + 1)

Γq (α+ β + 1)
(t− x)

(α+β)
.

In particular, for x = 0 and β = 0, we have

Iαq [1] =
1

Γq (α+ 1)
t(α).

We give the following generalization of Gronwall’s lemma for singular kernels [21] which will be used in

the following sections.

Lemma 1.4. Let x : J → [0,+∞) be a real function and z(.) is a nonnegative, locally integrable function on

J and there are constants a > 0 and 0 < α, q < 1 such that

x (t) ≤ z (t) + a

t∫
0

(t− qs)(α−1)
x (s) dqs,

then, there exists a constant θ = θ(α) such that

x (t) ≤ z (t) + θa

t∫
0

(t− qs)(α−1) z (t) dqs, t ∈ J.

Also, we present the equivalence of the problem (1). The proof of the following Lemma can be as similar

to the proof of Lemma 6.2 given in [14].

Lemma 1.5. Let i = 1, ..., k and 0 < α, q < 1. If ψi ∈ C
(
J × R2,R− {0}

)
and ϕi ∈ C

(
J × R3,R

)
. Then

the fractional problem (1) is equivalent to nonlinear fractional Volterra integro-differential equation

x (t) = x0 − ψ (x) +

k∑
i=1

φi (t, x (t) , x (λt)) (2)

×
t∫

0

(t− qs)(α−1)

Γq (α)

k∑
i=1

ϕi

(
s, x (s) , x (ηs) , Dα

q

[
x (s)∑k

i=1 φi (s, x (s) , x (λs))

])
dqs,

where t ∈ J and k ∈ N∗.

Let C(J,R) denote the Banach space of continuous functions from J into R with the norm ‖x‖ =

supt∈[0,T ] |x (t)| . For δ > 0 and g : J → R+, we consider the following inequalities

Dα
q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

]
(3)

−
k∑
i=1

ϕi

(
t, y (t) , y (ηt) , Dα

q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

])
≤ δ,
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and

Dα
q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

]
(4)

−
k∑
i=1

ϕi

(
t, y (t) , y (ηt) , Dα

q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

])
≤ δg (t) .

Definition 1.1. The problem (1) is Ulam-Hyers stable if there exists a real number βφ,ϕ > 0 such that for all

δ > 0 and for each solution y of the inequality (3), there exists a solution x of the problem (1) with

|y (t)− x (t)| ≤ βφ,ϕδ, t ∈ J.

Definition 1.2. The problem (1) is generalized Ulam-Hyers stable if there exists Ψφ,ϕ ∈ C(R+,R+),Ψφ,ϕ (0) =

0, such that for all solution y of the inequality (3), there exists a solution x of the the problem (1) with

|y (t)− x (t)| ≤ Ψφ,ϕ (δ) , t ∈ J.

Definition 1.3. The problem (1) is Ulam-Hyers-Rassias stable with respect to g ∈ C (J,R+) if there exists

a real number βφ,ϕ,g > 0 such that for all δ > 0 and for each solution y of the inequality (4), there exists a

solution x of the problem (1) with

|y (t)− x (t)| ≤ βφ,ϕ,gδg (t) , t ∈ J.

Remark 1.1. A function y ∈ C (J,R) is a solution of the inequality (3) if and only if there exists a function

µ : J → R such that

|µ (t)| ≤ δ, t ∈ J.

and

Dα
q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

]

=

k∑
i=1

ϕi

(
t, y (t) , y (ηt) , Dα

q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

])
+ µ (t) , t ∈ J.

2. Existence and uniqueness results

In this section, we establish the existence and uniqueness of solutions to the fractional problem (1) and prove

the estimate of solution of (1). For the sake of convenience, we impose the following conditions.

(C1) : There exist constants $i such that for all t ∈ J and uj , vj ∈ R (j = 1, 2) , we have

|φi (t, u1, u2)− φi (t, v1, v2)| ≤ $i (|u1 − v1|+ |u2 − v2|) , i = 1, ..., k.

(C2) : There exist constants ωi such that for all t ∈ J and ul, ul ∈ R (l = 1, 2, 3) , we have

|ϕi (t, u1, u2, u3)− ϕi (t, v1, v2, v3)|

≤ ωi (|u1 − v1|+ |u2 − v2|+ |u3 − v3|) , i = 1, ..., k,
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with
∑k
i=1 ωi < 1.

(C3) : There exist Ai, Bi ∈ R+ such that

|φi (t, u, v)| ≤ Ai and |ϕi (t, u, v, w)| ≤ Bi, i = 1, ..., k,

for each t ∈ J and u, v, w ∈ R.
(C4) : ψ : C ([0, T ] ,R)→ R is a continuous function satisfying the condition

|ψ (u)− ψ (v)| ≤ ϑ ‖u− v‖ , fo rall u, v ∈ C (J,R) , ϑ < 1.

Now, we discuss the existence and uniqueness of solutions for the problem (1) by means of Banach’s contraction

mapping principle.

Theorem 2.1. Assume that the continuous functions φi : J × R2 → R − {0} , ϕi : J × R3 → R, i = 1, ..., k,

satisfy (C1)− (C3) and suppose that (C4) holds. If the inequality

k∑
i=1

|Bi|T (α)

Γq (α+ 1)

k∑
i=1

$i + 2

k∑
i=1

|Ai|T (α)

Γq (α+ 1)

k∑
i=1

ωi

1−
∑k
i=1 ωi

<
1− ϑ

2
, (5)

is valid, then the problem (1) has a unique solution.

Proof. We have

Dα
q

[
x (t)∑k

i=1 φi (t, x (t) , x (λt))

]
= zx (t) , u (0) + ψ (x) = x0, k ∈ N∗,

by Lemma 1.5, we can write

x (t) = x0 − ψ (u) +

k∑
i=1

φi (t, x (t) , x (λt)) Iαq [zx (t)] , t ∈ J, k ∈ N∗, (6)

where

zx (t) =

k∑
i=1

ϕi

(
t, x0 − ψ (x) +

k∑
i=1

φi (t, x (t) , x (λt)) Iαq [zx (t)] , x (ηt) , zx (t)

)
. (7)

Now, we define a fractional integral operator O : C (J,R)→ C (J,R) by

Ox (t) = x0 − ψ (x) +

k∑
i=1

φi (t, x (t) , x (λt))

t∫
0

(t− qs)(α−1)

Γq (α)
zx (s) dqs. (8)

For x, y ∈ C (J,R) , we have

|Ox (t)−Oy (t)|

≤ |ψ (x)− ψ (y)|

+

k∑
i=1

|φi (t, x (t) , x (λt))− φi (t, y (t) , y (λt))|
t∫

0

(t− qs)(α−1)

Γq (α)
|zx (s)| dqs

+

k∑
i=1

|φi (t, x (t) , x (λt))|
t∫

0

(t− qs)(α−1)

Γq (α)
|zx (s)− zy (s)| dqs.
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Using (Cj)j=1,2,3,4 , we get

|Ox (t)−Oy (t)| ≤ ϑ ‖x− y‖+ 2

k∑
i=1

t∫
0

Bi (t− qs)(α−1)

Γq (α)

k∑
i=1

$i ‖x− y‖

+2

k∑
i=1

Ai

t∫
0

(t− qs)(α−1)

Γq (α)
|zx (s)− zy (s)| dqs. (9)

Also, we have

|zx (t)− zy (t)|

=

∣∣∣∣∣
k∑
i=1

ϕi (t, x (t) , x (ηt) , zx (t))−
k∑
i=1

ϕi (t, y (t) , y (ηt) , zy (t))

∣∣∣∣∣
≤ 2

m∑
i=1

ωi ‖x− y‖+

m∑
i=1

ωi ‖zx − zy‖ ,

which implies that

|zx (t)− zy (t)| ≤
2
∑k
i=1 ωi

1−
∑k
i=1 ωi

‖x− y‖ . (10)

By (9) and (10), we have

|Ox (t)−Oy (t)|

≤ ϑ ‖x− y‖+ 2

k∑
i=1

t∫
0

Bi (t− qs)(α−1)

Γq (α)

k∑
i=1

$i ‖x− y‖

+2

k∑
i=1

Ai

t∫
0

(t− qs)(α−1)

Γq (α)

2
∑k
i=1 ωi

1−
∑k
i=1 ωi

‖x− y‖ dqs

≤ ϑ ‖x− y‖+ 2

k∑
i=1

Bi
T (α)

Γq (α+ 1)

k∑
i=1

$i ‖x− y‖

+2

k∑
i=1

Ai
(T )

(α)

Γq (α+ 1)

2
∑k
i=1 ωi

1−
∑k
i=1 ωi

‖x− y‖ .

Hence

‖Ox−Oy‖ ≤

[
ϑ+ 2

k∑
i=1

BiT
(α)

Γq (α+ 1)

k∑
i=1

$i

+ 4

k∑
i=1

AiT
(α)

Γq (α+ 1)

k∑
i=1

ωi

1−
∑k
i=1 ωi

]
‖x− y‖ .
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By (5), we conclude that O is contractive. Consequently, by Banach fixed point theorem, O has a unique fixed

point which is a solution of (1).

Next, we prove the estimate of solution of the fractional problem (1).

Theorem 2.2. Suppose that φi : J × R2 → R − {0} , ϕi : J × R3 → R, i = 1, ..., k, are continuous functions

satisfying the conditions (C1) − (C3) and assume that (C4) and (5) hold. If x is a solution of problem (1),

then

‖x‖ ≤ |x0|+M

(1− ϑ)
+

k∑
i=1

Ai

∑k
i=1NiT

(α)(
1−

∑k
i=1 ωi

)
Γq (α+ 1) (1− ϑ)

+θ

k∑
i=1

Ai
2
∑k
i=1 ωiT

(α)(
1−

∑k
i=1 ωi

)
(1− ϑ)

2
Γq (α+ 1)

(11)

×

(|x0|+M) +

k∑
i=1

Ai

∑k
i=1NiT

(α)(
1−

∑k
i=1 ωi

)
Γq (α+ 1)

 ,

where M = |ψ (0)| and Ni = supt∈J |ϕi (t, 0, 0, 0)| , i = 1, ..., k, k ∈ N∗.

Proof. By Lemma 1.5, we can write

x (t) = x0 − ψ (x) +

k∑
i=1

φi (t, x (t) , x (λt)) Iαq [zx (t)] , t ∈ J, k ∈ N∗.

Then, for all t ∈ J, we have

|x (t)| ≤ |x0|+ |ψ (x)|+
k∑
i=1

|φi (t, x (t) , x (λt))|
∣∣Iαq [zx (t)]

∣∣
≤ |x0|+ |ψ (x)− ψ (0)|+ |ψ (0)|+

k∑
i=1

Ai
∣∣Iαq [zx (t)]

∣∣
≤ |x0|+ ϑ ‖x‖+M +

k∑
i=1

Ai
∣∣Iαq [zx (t)]

∣∣ .
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On the other hand, for all t ∈ J, we get

|zx (t)| =

k∑
i=1

|ϕi (t, x (t) , x (ηt) , zx (t))|

≤
k∑
i=1

|ϕi (t, x (t) , x (ηt) , zx (t))− ϕi (t, 0, 0, 0)|+
k∑
i=1

|ϕi (t, 0, 0, 0)|

≤ 2

k∑
i=1

ωi ‖x‖+

k∑
i=1

ωi ‖zx‖+

k∑
i=1

Ni

≤
2
∑k
i=1 ωi

1−
∑k
i=1 ωi

‖x‖+

∑k
i=1Ni

1−
∑k
i=1 ωi

.

Consequently

|x (t)| ≤ |x0|+ ϑ ‖x‖+M

+

k∑
i=1

AiI
α
q

[
2
∑k
i=1 ωi

1−
∑k
i=1 ωi

‖x‖+

∑k
i=1Ni

1−
∑k
i=1 ωi

]
.

Therefore

(1− ϑ) |x (t)| ≤ |x0|+M +

k∑
i=1

Ai

∑k
i=1NiT

(α)(
1−

∑k
i=1 ωi

)
Γq (α+ 1)

+

k∑
i=1

Ai
2
∑k
i=1 ωi(

1−
∑k
i=1 ωi

)
(1− ϑ)

Iαq [(1− ϑ) |x (t)|] .

Then Lemma 1.4 implies that for each t ∈ J

(1− ϑ) |x (t)|

≤ |x0|+M +

k∑
i=1

Ai

∑k
i=1NiT

(α)(
1−

∑k
i=1 ωi

)
Γq (α+ 1)

+θ

k∑
i=1

Ai
2
∑k
i=1 ωiT

(α)(
1−

∑k
i=1 ωi

)
(1− ϑ) Γq (α+ 1)

×

(|x0|+M) +

m∑
i=1

Ai

∑k
i=1NiT

(α)(
1−

∑k
i=1 ωi

)
Γq (α+ 1)

 ,

where θ = θ (α) is a constant.
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So,

‖x‖ ≤ |x0|+M

(1− ϑ)
+

k∑
i=1

Ai

∑k
i=1NiT (α)(

1−
∑k
i=1 ωi

)
Γq (α+ 1) (1− ϑ)

+θ

k∑
i=1

Ai
2
∑k
i=1 ωiT

(α)(
1−

∑k
i=1 ωi

)
(1− ϑ)

2
Γq (α+ 1)

×

(|x0|+M) +

k∑
i=1

Ai

∑k
i=1NiT

(α)(
1−

∑k
i=1 ωi

)
Γq (α+ 1)

 .

This completes the proof.

3. Ulam-Hyers-Rassias-stability

This section is devoted to the investigation of the Hyers-Ulam-Rassias stability of our proposed problem.

Lemma 3.1. Let φi : J ×R2 → R− {0} and ϕi : J ×R3 → R, i = 1, ..., k, are continuous functions satisfying

(C3) . If y ∈ C (J,R) is a solution of the inequality (3), then y is a solution of the following inequality

|y (t)−Oy (t)| ≤
k∑
i=1

Ai
T (α)

Γq (α+ 1)
δ, (12)

where δ > 0.

Proof. Let y ∈ C (J,R) be a solution of the inequality (3). Then using Remark 1.1, we obtain

Dα
q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

]

−
k∑
i=1

ϕi

(
t, y (t) , y (ηt) , Dα

q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

])
= µ (t) ,

where |µ (t)| ≤ δ, t ∈ J.
Thanks to Lemma 1.5, we can write

x (t)− x0 + ψ (x)−
k∑
i=1

φi (t, x (t) , x (λt))

t∫
0

(t− qs)(α−1)

Γq (α)
zx (s) dqs

=

k∑
i=1

φi (t, x (t) , x (λt))

t∫
0

(t− qs)(α−1)

Γq (α)
µ (s) dqs,

where zx is given by (7).
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By (C3), we obtain

|y (t)−Oy (t)| =

∣∣∣∣∣∣
k∑
i=1

φi (t, x (t) , x (λt))

t∫
0

(t− qs)(α−1)

Γq (α)
|µ (s)| dqs

∣∣∣∣∣∣ .
≤

k∑
i=1

Ai
T (α)

Γq (α+ 1)
δ,

which is satisfied inequality (12).

Theorem 3.1. Let φi : J × R2 → R − {0} , ϕi : J × R3 → R, i = 1, ..., k, are continuous functions satisfying

the conditions (C1)− (C3) and assume that (C4) and (5) hold. Then the problem (1) is Ulam-Hyers stable and

consequently, generalized Ulam-Hyers stable.

Proof. Let y ∈ C (J,R) be a solution of the inequality (3). Then for all t ∈ J, we have

|y (t)− x (t)|

= |y (t)− x (t)− x0 + ψ (x)

−
k∑
i=1

φi (t, x (t) , x (λt))

t∫
0

(t− qs)(α−1)

Γq (α)
zx (s) dqs

∣∣∣∣∣∣
= |y (t)−Oy (t) +Oy (t)−Ox (t)|

≤ |y (t)−Oy (t)|+ |Oy (t)−Ox (t)| .

Thus by (C1) , (C2) and Lemma 3.1, we get

|y (t)− x (t)| ≤
k∑
i=1

Ai
T (α)

Γq (α+ 1)
δ +

[
ϑ+ 2

k∑
i=1

BiT
(α)

Γq (α+ 1)

k∑
i=1

$i

+4

k∑
i=1

Ai
T (α)

Γq (α+ 1)

k∑
i=1

ωi
1−

∑m
i=1 ωi

]
‖x− y‖ ,

We obtain by (5)

‖x− y‖ ≤
∑k
i=1Ai

T (α)

Γq(α+1)

1− Λ
δ,

where

Λ = ϑ+ 2

k∑
i=1

BiT
(α)

Γq (α+ 1)

k∑
i=1

$i + 4

k∑
i=1

Ai
T (α)

Γq (α+ 1)

k∑
i=1

ωi

1−
∑k
i=1 ωi

. (13)

Then, for each t ∈ J, we have

|x (t)− y (t)| ≤
∑k
i=1Ai

T (α)

Γq(α+1)

1− Λ
δ = βφ,ϕϑ.

Hence, the problem (1) is Ulam-Hyers stable. By putting Ψφ,ϕ (δ) = βφ,ϕδ, Ψφ,ϕ (0) = 0 yields that the problem

(1) generalized Ulam-Hyers stable.
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For the next stability results, we introduce the following condition.

(C5) : There exists an function g ∈ C(J,R+) and there exists γg > 0 such that for any t ∈ J

∫ t

0

(t− qs)(α−1)

Γq (α)
g(s)ds ≤ γgg(t). (14)

Lemma 3.2. Let φi : J × R2 → R− {0} , ϕi : J × R3 → R, i = 1, ..., k, are continuous functions satisfying the

conditions (C3) and suppose that (C5) holds. If y ∈ C(J,R) is a solution of the inequality (4), then, y is a

solution of the following inequality

|y (t)−Oy (t)| ≤
k∑
i=1

Aiδγgg(t). (15)

Proof. Using Remark 1.1, we can write

Dα
q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

]

−
k∑
i=1

ϕi

(
t, y (t) , y (ηt) , Dα

q

[
y (t)∑k

i=1 φi (t, y (t) , y (λt))

])
= µ (t) ,

where y ∈ C(J,R) be a solution of the inequality (4) and |µ (t)| ≤ δg(t), t ∈ J. Applying Lemma 1.5, we obtain

y (t)−Oy (t) =

k∑
i=1

φi (t, x (t) , x (λt))

t∫
0

(t− qs)(α−1)

Γq (α)
µ (s) dqs.

Since |µ (t)| ≤ δg(t), t ∈ J, then we have

|y (t)−Oy (t)| ≤
k∑
i=1

|φi (t, x (t) , x (λt))|
t∫

0

(t− qs)(α−1)

Γq (α)
|µ (s)| dqs

≤
k∑
i=1

|φi (t, x (t) , x (λt))|
t∫

0

(t− qs)(α−1)

Γq (α)
δg(s)dqs.

Thanks to (C3) , we obtain

|y (t)−Oy (t)| ≤ δ
k∑
i=1

Ai

t∫
0

(t− qs)(α−1)

Γq (α)
g(s)dqs.

So, by (C5), we have

|y (t)−Oy (t)| ≤ δ
k∑
i=1

Ai

t∫
0

(t− qs)(α−1)

Γq (α)
g(s)dqs ≤

k∑
i=1

Aiδγgg(t),

which is satisfied inequality (15).
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Theorem 3.2. Suppose that φi : J × R2 → R − {0} and ϕi : J × R3 → R, i = 1, ..., k, are continuous

functions satisfy (C1) − (C3) . Furthermore, assume that (C4) , (C5) and (5) hold. Then the problem (1) is

Ulam-Hyers-Rassias stable.

Proof. For y ∈ C(J,R) and t ∈ J, we have

|y (t)− x (t)|

= |y (t)− x (t)− x0 + ψ (x)

−
k∑
i=1

φi (t, x (t) , x (λt))

t∫
0

(t− qs)(α−1)

Γq (α)
wu (s) dqs

∣∣∣∣∣∣
= |y (t)−Oy (t) +Oy (t)−Ox (t)|

≤ |y (t)−Oy (t)|+ |Oy (t)−Ox (t)| .

Thanks to (15) and (5), we obtain

|y (t)− x (t)| ≤
k∑
i=1

Aiδγgg(t) +

[
ϑ+ 2

k∑
i=1

BiT
(α)

Γq (α+ 1)

k∑
i=1

$i

+4

k∑
i=1

Ai
T (α)

Γq (α+ 1)

k∑
i=1

ωi
1−

∑m
i=1 ωi

]
‖x− y‖ ,

which implies that

‖x− y‖ (1− Λ) ≤
k∑
i=1

Aiδγgg(t).

Thus

|y (t)− x (t)| ≤
∑k
i=1Aiγg
1− Λ

δg(t) = βφ,ϕ,gδg (t) , t ∈ J.

Hence, the problem (1) is Ulam-Hyers-Rassias stable.
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4. Example

Consider the following hybrid problem given by



Dα
q

[
x (t)

t
37 cos (x (t)) + t

37 cos
(
x
(

2
5 t
))

+ e−t

11 + 3
25x (t) + 3

25x
(

3
4 t
)]

= t
36

(
sinx (t) + sinx

(
5
6 t
)

+ 1
2

)
+

cos (t)

6 +Dα
q

[
x (t)

1
37 cos (t)x (t) + 1

37 cos (t)x
(

2
5 t
)

+ et

11 + 3
25x (t) + 3

25x
(

3
4 t
)]

+ e−t

25+t2 + 1
(25+t)x (t) + e−5t

25 sinx
(

2
3 t
)

+
1

5 +

∣∣∣∣∣Dα
q

[
x (t)

1
37 cos (t)x (t) + 1

37 cos (t)x
(

2
5 t
)

+ et

11 + 3
25x (t) + 3

25x
(

3
4 t
)

+ 1
11

]∣∣∣∣∣
x (0) +

∑n
l=1 dlx (tl) =

√
5

2 ,

(16)

where 1 < t1 < t2 < ... < tn < 1 and dl, l = 1, 2, ..., n are given positive constants with
∑n
l=1 dl <

1
6 .

Consider the hybrid fractional problem with α = 1
8 , q = 1

2 , and for x1, x2, x3 ∈ R, t ∈ [0, 1] , we have

φ1 (t, x1, x2) =
cos (t)

37
x1 +

cos (t)

37
x2.

φ2 (t, x1, x2) =
e−t

11
+

3

25
x1 +

3

25
x2,

ϕ1 (t, x1, x2, x3) =
t

36

(
sinx1 + sinx2 +

1

2

)
+

cos (t)

6 + |x3|
,

ϕ2 (t, x1, x2, x3) =
e−t

2

25
+

1

(25 + t)
x1 +

e−5t

25
sinx2 +

1

5 + |x3|
,

and

ψ (x1) =

n∑
l=1

dlx1 (tl) .

So, for t ∈ [0, 1] and (x1, x2) , (y1, y2) ∈ R2, we have

|φ1 (t, x1, x2)− φ1 (t, y1, y2)| ≤ 1

37
(|x1 − y1|+ |x2 − y2|) ,

|φ1 (t, x1, x2)− φ1 (t, y1, y2)| ≤ 3

25
(|x1 − y1|+ |x2 − y2|) ,
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and for t ∈ [0, 1] and (x1, x2, x3) , (y1, y2, y3) ∈ R3, we have

|ϕ1 (t, x1, x2, x3)− ϕ1 (t, y1, y2, y3)| ≤ 1

36
(|x1 − y1|+ |x2 − y2|+ |x3 − y3|) ,

|ϕ1 (t, x1, x2, x3)− ϕ1 (t, y1, y2, y3)| ≤ 1

25
(|x1 − y1|+ |x2 − y2|+ |x3 − y3|) ,

Hence, the conditions (C1) and (C2) hold with ω1 = 1
37 , ω2 = 3

25 , $1 = 1
36 and $2 = 1

25 respectively. Also, for

all x1, x2 ∈ C ([0, 1]) , we have

ψ (x1)− ψ (x2) =

∣∣∣∣∣
n∑
i=1

dix1 (ti)−
n∑
i=1

dix2 (ti)

∣∣∣∣∣ ≤
n∑
i=1

di |x1 − x2| .

Thus, the condition (C4) is satisfied with ϑ =
∑n
i=1 di <

1
6 . For t ∈ [0, 1] and x1, x2, x3 ∈ R, we have

|φ1 (t, x1, x2)| ≤ 2

37
, |φ2 (t, x1, x2)| ≤ 91

275
,

and

|ϕ1 (t, x1, x2, x3)| ≤ 51

216
, |ϕ2 (t, x1, x2, x3)| ≤ 8

25
.

Now, using the given data, we find that

2∑
i=1

|Bi|T (α)

Γq (α+ 1)

2∑
i=1

$i + 2

2∑
i=1

|Ai|T (α)

Γq (α+ 1)

2∑
i=1

ωi

1−
∑2
i=1 ωi

' 0.177 89 <
1− ϑ

2
=

1− 1
6

2
' 0.416 67.

By Theorem 2.1, we conclude that the problem (16) has a unique solution on [0, 1] and by Theorem 3.1, we

deduce that (16) is Ulam-Hyers stable.

Now, if we take g(t) = ρ, ρ > 0, we have

1

Γq (α)

∫ t

0

(t− qs)(α−1)
g(s)ds =

ρt(α)

Γ 1
2

(
9
8

) ≤ 1

Γ 1
2

(
9
8

)ρ = γgg(t).

Thus condition (C5) is satisfied with g(t) = ρ and γg = 1

Γ 1
2
( 9

8 )
, it follows from Theorem 3.2 that the problem

(16) is Ulam-Hyers-Rassias stable.

5. Conclusion

In this work, we have discussed the existence, estimate and Ulam-type stability of solutions for nonlinear hybrid

fractional q−differential pantograph equations with fractional Caputo q−derivative. We have establish the

existence and uniqueness results applying the Banach fixed point theorem. Also the estimate of solutions have

been proved via generalization of Gronwall’s inequality. Moreover, the Ulam-Hyers stability and the Ulam-

Hyers-Rassias stability have been discussed. To illustrate our theoretical results we have given an example.
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