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Abstract: For a recently introduced fractional Λ-derivative, corresponding to a differential, according to Differential

Topology, a modified version of the Van der Pol oscillator is studied. In the proposed fractional Λ-space the oscillator

behaves in the conventional way. Nevertheless, the fractional order response of the Van der Pol equation is revealed

when the the Van der Pol response is transferred to the initial space. Finally, this article concludes with the response of

the forced Van der Pol oscillator.
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1. Introduction

Fractional derivatives are mainly used in non-local models which account for long-range (non-local) dependence

of phenomena. Therefore, these derivatives describe the non-local phenomena in a more precise way. In fact

the various fractional derivatives have been introduced just to underline the non-local action of the derivatives.

Models for describing viscoelastic interaction have been presented through fractional time derivatives [2, 3].

Lazopoulos has proposed a model for non-local deformations defining the Λ-strain [4], where Noll’s axiom of

local-action [5] has been lifted. Fractional derivatives, suggested by Leibniz [6], and discussed by Liouville [7],

Riemann [8] and many other famous mathematicians [9], have recently applied to modern advances in almost

all applied science fields, due to their importance. However, all the well known fractional derivatives have

mainly an operative character, instead of a derivative’s one, since they fail to satisfy the conditions demanded

by Differential Topology for having the character of the derivative. In fact, there are three prerequisites for

defining a derivative corresponding to a differential [14]; namely

(i) Linearity : D(a f(x) + b g(x)) = aDf(x) + bDg(x)

(ii) Leibniz rule: D(f(x) · g(x)) = Df(x) · g(x) + f(x) ·Dg(x)

(iii) Chain rule. D(g(f))(x) = Dg(f(x)) ·Df(x)

These conditions are necessary for defining a differential corresponding to the derivative. Since no differential

geometry may be generated using fractional derivative and no mechanics or physics may mathematically be
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established without a mathematically defined derivative, the use of fractional derivatives in mathematics and

physics is questionable.

Hence their use was not mathematically established, but it has an ad-hoc character. Lazopoulos trying

to fill that gap, proposed initially the fractional L-derivative [15]. Recently, Lazopoulos proposed the fractional

Λ-derivative [1], that is a modification of the fractional L-derivative, along with the fractional Λ-space where

the fractional Λ-derivative behaves according to conventional derivative rules.

Dynamical systems have mainly been developed for the study of non-linear oscillators. The second order

Van der Pol (VdP) oscillator [16] may correspond to the description of the behavior of a system composed

by a mass, a spring and a damper. The damping coefficient is not constant, but it depends upon a non-linear

coefficient. That oscillator has been used to describe models in many applied areas such as acoustics, electronics,

biomechanics, biology, control, etc. Since the fractional Λ-space is similar to the conventional one, it is assumed

that the Van der Pol oscillator is described by the equation

d2Y

dT 2
− µ(1 − Y 2)

dY

dT
+ Y = 0,

where the displacement Y and time T in Λ-space will be defined in the next section.

The fractional Λ-derivative along with the fractional Λ-space are described in the following section,

where the Λ-derivative, in the Λ-space, behaves in the conventional way. Developing the conventional solution

of the VdP oscillator in the fractional Λ-space, the results are transferred into the initial space. The solutions

of the VdP oscillator along with the corresponding phase portraits will be derived in the initial space, through

the solution of the fractional Λ-space. Further, the fractional VdP equation will be discussed along the same

lines of thought. The fractional VdP equation has also been discussed by Barbosa and Machado [17]. Further

and recent applications of Fractional Calculus may be found in the provided references [18–23].

The present work does not include more specific topics, such as bifurcations, etc., because its purpose is

to show how to deal with the solution of the fractional VdP equation.

2. The Λ-Fractional Derivative

A very brief outline of fractional calculus will be presented in the present section, while the interested reader is

referred to literature [10–12] for more information.

The left and right fractional integrals for a real fractional dimension 0 < γ ≤ 1 are defined as

aI
γ
xf(x) =

1

Γ(γ)

x∫
a

f(s)

(x− s)1−γ ds, (1)

xI
γ
b f(x) =

1

Γ(γ)

b∫
x

f(s)

(s− x)1−γ ds, (2)

respectively, where γ is the order of fractional integrals and Γ(γ) Euler’s Gamma function. Further, the left

and right Riemann-Liouville (RL) fractional derivatives are defined as

RL
a Dγ

xf(x) =
d

dx
(aI

1−γ
x f(x)) =

1

Γ(1 − γ)

d

dx

x∫
a

f(s)

(x− s)γ
ds, (3)
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RL
x Dγ

b f(x) =
d

dx
(xI

1−γ
b f(x)) = − 1

Γ(1 − γ)

d

dx

b∫
x

f(s)

(s− x)γ
ds, (4)

respectively. For the left fractional integral and derivative holds that

RL
a Dγ

x(aI
γ
xf(x)) = f(x). (5)

A similar relation is true for the right fractional Riemann-Liouville derivative and integral.

The Λ-fractional derivative (Λ-FD) is defined as

Λ
aD

γ
xf(x) =

RL
a Dγ

xf(x)
RL
a Dγ

xx
. (6)

Recalling the definition of the RL fractional derivative, Eq. (3), Λ-FD is expressed by

Λ
aD

γ
xf(x) =

d aI
1−γ
x f(x)
dx

d aI
1−γ
x x
dx

=
d aI

1−γ
x f(x)

d aI
1−γ
x x

. (7)

Considering

X = aI
1−γ
x x,

F (X) = aI
1−γ
x f(x(X)),

(8)

the Λ-FD appears to behave as a conventional derivative in the fractional Λ-space (X,F (X)) with local

properties. In fact, the Fractional Differential Geometry may be formulated as a conventional differential

geometry in the fractional Λ-space (X,F (X)). Then the results may be transferred to the initial space invoking

Eq. (5). Indeed, we may transfer the results from the Λ-fractional space to the initial one, using the relation

f(x) = RL
a D1−γ

x F (X(x)) = RL
a D1−γ

x I1−γf(x). (9)

In case the contribution of the right side fractional derivative should be taken into consideration, the Λ-fractional

space may be defined with

I1−γf(x) =
1

2
(aI

1−γ
x f(x) +xI

1−γ
b f(x)) =

1

2
(aI

1−γ
x f(x) +aI

1−γ
x f(b− x)). (10)

Further, for that case, Eqs. (8) become

X = aI
1−γ
x x,

F (X) = I1−γf(x(X)),
(11)

and Λ-FD, Eq. (6), is defined by

Λ
aD

γ
xf(x) =

d(aI
1−γ
x f(x) + aI

1−γ
x f(b−x))

dx

d aI
1−γ
x x
dx

=
d I1−γf(x)

daI
1−γ
x x

. (12)
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In order to clarify the ideas, let

f(x) = x2. (13)

Then, the Λ-fractional plane (X,F (X)) is defined by

X =
x2−γ

Γ(3 − γ)
, (14)

F (X) = 0I
1−γ
x f(x(X)) =

1

Γ(1 − γ)

x∫
0

s2

(x− s)1−γ ds =
2x3−γ

Γ(4 − γ)
. (15)

Solving Eq. (14) for x yields

x = (Γ(3 − γ) X)1/(2−γ), (16)

and replacing to Eq. (15) results to

F (X) =
2(Γ(3 − γ) X)(3−γ)/(2−γ)

Γ(4 − γ)
. (17)

Therefore, the curve in the original plane (x, f(x)), shown in Figure 1, corresponds to the fractional plane

Figure 1. Original plane (x, f(x) = x2) .

(space) shown in Figure 2, for γ = 0.6. Since the tangent space Y (X) of the curve at a point X0 is defined by

the line

Y (X) = F (X0) +
dF (X0)

dX
(X −X0), (18)

in the fractional plane for γ = 0.6, the derivative

dF (X)

dX
=

24(Γ(3 − γ) X)3/(2−γ)

(2 − γ)Γ(6 − γ)
, (19)

at X0 = 0.6 is equal to D(F (X0)) = 1.34 (Figure 3).

Let us point out that the geometry may not be transferred in the original space, since formulation of

the fractional differential is not possible in (x, f(x)). Functions may only be transferred from the fractional

Λ-space to the original space.
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Figure 2. Curve in fractional Λ-space (X,F (X)) for γ = 0.6.

Figure 3. Curve with its tangent space in Λ-fractional plane.

In addition it is pointed out that for the derivation it is not necessary to express the various functions

with respect to X . Indeed, since

dF (X)

dX
=
dF (X(x))/dx

dX(x)/dx
, (20)

there is no need to perform the substitution of x for the X variable. Calculus through the x variable is simpler

but also effective.

3. The Λ-Fractional Van der Pol Oscillator

For the VdP oscillator differential equation in Λ-space,

d2Y

dT 2
− µ(1 − Y 2)

dY

dT
+ Y = 0, (21)

T (t) is time and Y (T (t)) the corresponding displacement in Λ-space, and µ is a real-valued parameter. It is

pointed out that the solution in the Λ-space is the conventional one according to the theory presented in the

preceding section. The function T(t) is defined by the relation, see Eq. (14),

T (t) =
t2−γ

Γ(3 − γ)
. (22)
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Solving Eq. (21) numerically for various parameters and initial conditions, first in the fractional Λ-space,

the graphs of the solution Y (T ) versus T , and the phase portrait dY/dT versus Y (T ), for various values of

the friction parameter µ in Λ-space are presented in the following.

For the perfect VdP oscillator, without damping (µ = 0), and initial conditions Y (0) = 1, (dY/dT )(0) =

0, the numerical solution is shown in Figure 4, where the trace along with the phase space are also presented.

Figure 4. Solution Y (T ) versus time T (t) and phase portrait in Λ-space for the conservative system (µ = 0).

In order to transfer the solution from Λ-space to the initial space (t, y(t)), Eq. (9) and the procedure

to obtain Eq. (16) are employed, such that

y(t) = RL
0 D1−γ

t Y (t) =
1

Γ(γ)

d

dt

t∫
0

Y (s)

(t− s)1−γ ds. (23)

Figure 5 shows the solution of the trace y(t), with respect to time t , and corresponding phase-space

diagram in the initial space (t, y(t)), for various values of the fractional dimension γ .

Figure 5. Solution and phase space of the conservative VdP equation for various fractional orders γ .

The influence of fractional dimension in the chaotic behaviour of the system becomes more pronounced

in the case of γ = 0.4, for which the displacement diagram and phase portrait are shown in Figure 6. It is

evident that displacements along with velocities are far greater for smaller fractional dimension γ . It is evident

86



Lazopoulos et al.

Figure 6. Solution of VdP equation and phase space of the conservative oscillator in the initial space for γ = 0.4.

that the influence of the fractional order γ is quite strong. Indeed, the increase of γ contributes in smaller

amplitudes and longer periods.

Proceeding now to the study of the VdP oscillator under the influence of friction in the fractional Λ-

space, the case µ = 1 is examined first, with initial conditions Y (0) = 1, (dY/dT )(0) = 0. Since in Λ-space the

solution is the same as in the conventional case, Eq. (21) yields the numerical solution presented in Figure 7.

After transferring the solution from Λ-space to the initial space (t, y(t)), as previously described, the trace

Figure 7. Solution of the VdP equation and its phase portrait in Λ-space for µ = 1.

of y(t) for various values of γ in real time space is shown in Figure 8. With increasing fractional order, it is

evident that the width of oscillation is decreasing while the period is increasing. Furthermore, Figure 9 shows

the corresponding phase portraits in the intitial space.

The effect of fractional dimension is more evident for the case γ = 0.4 where the various responses are

extremely stronger. Figure 10 shows the trace of the function with respect to time in the initial space (y, t),

along with the corresponding phase portrait for an oscillator with friction coefficient µ = 1. These results

accentuate the major influence of the fractional order γ on the motion of the VdP oscillator.

Increasing the friction coefficient to µ = 10, and considering initial conditions Y (0) = 1 and (dY/dT )(0) =

0, the response of the VdP oscillator in Λ-space is shown in Figure 11. To emphasise the effect of the frac-

tional order, solutions are then transferred to the initial (real time) space, recalling Eqs. (9, 16), numerically

computed, and plotted along with the corresponding phase spaces for various values of γ (Figure 12).

Increasing the influence of friction further in Λ-space, such that µ = 100, and setting the initial conditions
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Figure 8. Trace y(t) in the initial space for µ = 1 and for various fractional dimensions.

Figure 9. Phase portraits of the VdP oscillator in the initial space for µ = 1 and for various fractional dimensions.

Figure 10. Trace y(t) and phase portrait in the initial space for γ = 0.4 and µ = 1.

as Y (0) = 1 and (dY/dT )(0) = 0, the numerical solution presented in Figure 13, with the trace and associated

phase space, is obtained in the fractional Λ-space. Recalling Eqs. (9, 16), solutions are subsequently transferred

to the initial (real time) space, numerically computed, and plotted along with the corresponding phase spaces

for various values of γ (Figure 14) in order to demonstrate the effect of the fractional order.
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Figure 11. Solution and phase space of the VdP oscillator in Λ-space for γ = 1 and µ = 10.

Figure 12. Solutions and phase spaces of the VdP oscillator in the initial space for µ = 10 and for various fractional
orders.

Figure 13. Solution and phase space of the VdP oscillator in Λ-space for γ = 1 and µ = 100.
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Figure 14. Solutions and phase spaces of the VdP oscillator in the initial space for µ = 100 and for various fractional
orders.

As it has already been pointed out, our purpose was to demonstrate how the fractional VdP equation

may be solved and discussed considering the fractional order. Therefore, in the present work, we do not expand

to other topics concerning the fractional VdP equation, like, for example, bifurcations etc.

4. The Forced Λ-Fractional Van der Pol Oscillator

Let us consider the differential equation of the forced VdPol oscillator in the fractional Λ-space, that is,

d2Y

dT 2
− µ(1 − Y 2)

dY

dT
+ Y = F cos(ωT ), (24)

which is the VdP Eq. (21) with the presence of a forcing term on the right hand side of Eq. (24). Specifically,

F is the amplitude of the force applied with frequency ω . In the following, Eq. (24) is solved numerically and

solutions along with corresponding phase spaces are presented first in the fractional Λ-space and then in the

initial space, for various parameter values.

For the forced VdP oscillator without damping (µ = 0), force amplitude F = 10, frequency ω = 3, and

initial conditions Y (0) = 1, (dY/dT )(0) = 0, the numerical solution in the fractional Λ-space yields the trace

and phase space presented in Figure 15. Transferring the results to the initial space, see Eq.(23), the solutions

and corresponding phase spaces for various γ values are illustrated in Figure 16, which exemplifies and renders

easily understood the influence of the fractional order γ on the forced VdP oscillator without friction.

Proceeding to the study of the VdP equation with small friction and smaller force amplitude, with all

other parameters remaining the same, the numerical solution in the Λ-space and associated phase space for

µ = 1, F = 5, ω = 3, and initial conditions Y (0) = 1, (dY/dT )(0) = 0 is presented in Figure 17. Recalling
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Figure 15. Solution and phase of the forced VdP oscillator in Λ-space for γ = 1, µ = 0, F = 10 and ω = 3.

Figure 16. Solutions and phase spaces of the forced VdP oscillator in the initial space for fractional orders γ =
0.8, 0.6, 0.4; µ = 0, F = 10 and ω = 3.

Eq.(23), the results are transferred to the initial space and the solution y(t) and corresponding phase space for

various γ values are presented in Figure 18.

Increasing the friction coefficient and force amplitude such that µ = 10 and F = 10, with ω = 3, Y (0) =

1, (dY/dT )(0) = 0, Eq. (24) of the forced VdP oscillator is solved numerically in the fractional Λ-space and

the solution trace along with the corresponding phase space are shown in Figure 19. In turn, the corresponding
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Figure 17. Solution and phase space of the forced VdP oscillator in Λ-space for µ = 1, F = 5 and ω = 3.

Figure 18. Solutions and phase spaces of the forced VdP oscillator in the initial space for fractional orders γ =
0.8, 0.6, 0.4; µ = 1, F = 5 and ω = 3.

solution y(t) and phase space (dy/dt, y) in the initial (real time) space, for various values of γ , are presented

in Figure 20.

Finally, the effect of friction in the forced VdP oscillator is increased further, such that µ = 100. Equation

(24) is then solved numerically for F = 5, ω = 0.2, Y (0) = 1, (dY/dT )(0) = 0, and the resulting trace and

phase space are shown in Figure 21. The corresponding solution and phase space in the initial (real time) space,

for various values of γ , are illustrated in Figure 22.
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Figure 19. Solutions and phase spaces of the forced VdP oscillator in Λ-space for µ = 10, F = 10 and ω = 3.

Figure 20. Solutions and phase spaces of the forced VdP oscillator in the initial space for fractional orders γ =
0.8, 0.6, 0.4; µ = 10, F = 10 and ω = 3.

5. Conclusion

The analysis of the fractional VdP oscillator, without and with a forcing term, introduced in the present

work, explores the influence of the fractional order γ on the oscillator’s behaviour. The latter is thoroughly

investigated for various γ and for different values of the system’s parameters, and then graphically exemplified

through a series of figures of the solutions and associated phase portraits. It is evident from the figures that the

influence of the fractional order on the fractional VdP equation is quite important since the oscillator’s response

becomes more pronounced with decreasing γ values.

The Λ-fractional analysis satisfies the prerequisites of Differential Topology and offers mathematical

accuracy. Furthermore, the Λ-fractional derivative is the unique fractional derivative corresponding to a

differential and, therefore, able to generate Fractional Differential Geometry. It is quite important to point

out that there is no Fractional Differential Geometry with the well known fractional derivatives, although
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Figure 21. Solution and phase space of the forced VdP oscillator under strong friction in Λ-space µ = 100, F = 5 and
ω = 0.2.

Figure 22. Solution and phase space of the forced VdP oscillator under strong friction in the initial space for fractional
orders γ = 0.8, 0.6; µ = 100, F = 5 and ω = 0.2.

Fractional Calculus is used in solving real problems in physics, mechanics, etc.
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[7] Liouville J. Sur le calcul des différentielles à indices quelconques. Journ Ec Polytech 1832; 13: 71-162.

[8] Riemann B. Versuch einer allgemeinen Auffassung der integration und differentiation. In: Weber H, editor. Gesam-

melte Mathematische Werke. Leipzig, Germany: 1876.

[9] Ross B. The development of fractional calculus 1695-1900. Hist Math 1977; 4: 75-89.

[10] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives: theory and applications. Amsterdam,

The Netherlands: Gordon and Breach, 1993.

[11] Podlubny I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, Some Methods of Their Solution and Some of Their Applications. San Diego, CA, USA: Academic

Press, 1999.

[12] Oldham KB, Spanier J. The fractional calculus. New York, NY, USA: Academic Press, 1974.

[13] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam,

The Netherlands: Elsevier, 2006.

[14] Chillingworth DRJ. Differential Topology with a view to applications. Londok, UK: Pitman, 1976.

[15] Lazopoulos K, Lazopoulos A. Fractional vector calculus and fractional continuum mechanics. In: Mechanics through

Mathematical Modelling Conference Abstracts; 6-11 September 2015; Novi Sad, Serbia.

[16] Thompson JMT, Stewart HB. Nonlinear Dynamics and Chaos. New york, NY, USA: Wiley, 2002.

[17] Barbosa RS, Machado JT. Analysis of the Van der Pol oscillator containing derivatives of fractional order. J Vib

Control 2007; 13(9-10): 1291-1301.

[18] Vandana, Dubey R, Deepmala, Mishra LN, Mishra VN. Duality relations for a class of a multiobjective fractional

programming problem involving support functions. Am J Oper Res 2018; 8(4): 294-311.

[19] Marashi HR, Mishra VN, Daneshbastam M. A constructive approach for solving system of fractional differential

equations. Waves Wavelets Fract 2017; 3(1): 40-47.

[20] Beddani H. n+ 1-Parameter singular fractional differential equation. Asia Math 2021; 5(1): 11-18.

[21] Elarbi Benattia M, Belghaba H, Djilali M. Solution of time fractional order biological population using Aboodh

transform method. Asia Math 2021; 5(1): 56-66.

[22] Benali A, Bouzid H, Houas M. Existence of solutions for Caputo fractional q-differential equations. Asia Math 2021;

5(1): 143-157.

[23] Lazopoulos KA, Karaoulanis D, Lazopoulos AK, Mylonas ED. On Λ-fractional Maxwell equations. Asia Math 2021;

5(1): 178-189.

95


	Introduction
	The -Fractional Derivative
	The -Fractional Van der Pol Oscillator
	The Forced -Fractional Van der Pol Oscillator
	Conclusion

