

On some nano Δ -open set in nanotopological spaces

I. Rajasekaran^{*},

Department of Mathematics, Tirunelveli Dakshina Mara Nadar Sangam College, T. Kallikulam-627 113, Tirunelveli District, Tamil Nadu, India. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India). Orchid iD: 0000-0001-8528-4396

Received: 29 Jul 2021	•	Accepted: 10 Sep 2021	•	Published Online: 18 Sep 2021
------------------------------	---	------------------------------	---	-------------------------------

Abstract: The object of the article work is define a new class of some nano sets, we study properties of nano Δ -open and semi nano Δ -open and we define the nano Δ -interior, nano Δ -closure, semi nano Δ -interior and semi nano Δ -closure of a set E_1 in a nano topological spaces.

Key words: *n*-open sets, *ns*-open sets, nano Δ -open sets, semi nano Δ -open sets.

1. Introduction and Preliminaries

In 2013 M. Lellis Thivagar et al. introduced the concept of nano topological spaces and weak form of nano sets, nano semi-open (or ns-open) sets and nano semi-closed (or ns-closed) sets.

After that many nano topologist paved their own pathway in nano spaces introducing new types of nano sets.

Through out this article, The elements of $\tau_R(X)$ are called nano-open sets (or n-open sets).

The complement of a *n*-open set is called *n*-closed. we signify a nano space by (U, \mathcal{N}) , where $\mathcal{N} = \tau_R(X)$. The nano-interior and nano-closure of a subset E_1 of U are denoted by $n \cdot I(E_1)$ and $n \cdot C(E_1)$.

2. On nano Δ -open and semi nano Δ -open sets

Definition 2.1. A subset E_1 of a nano space is called a

1. nano Δ -open $\iff E_1 = (Z_1 - Z_2) \cup (Z_2 - Z_1)$, where Z_1 and Z_2 are *n*-open subsets in U.

2. semi nano Δ -open $\iff E_1 = (Z_1 - Z_2) \cup (Z_2 - Z_1)$, where Z_1 and Z_2 are *ns*-open subsets in U.

The complements of the above mentioned sets are called their respective nano closed sets.

Definition 2.2. A subset E_1 of a nano space is called a

- 1. nano Δ -interior of E_1 is defined as $\cup \{D : D \subseteq E_1 \text{ and } D \text{ is nano } \Delta\text{-open}\}.$
- 2. nano Δ -closure of E_1 is defined as $\cap \{D : E_1 \subseteq D \text{ and } D \text{ is nano } \Delta\text{-closed}\}$.
- 3. semi nano Δ -interior of E_1 is defined as $\cup \{D : D \subseteq E_1 \text{ and } D \text{ is semi nano } \Delta$ -open $\}$.

©Asia Mathematika, DOI: 10.5281/zenodo.5518562

*Correspondence: sekarmelakkal@gmail.com

I. Rajasekaran

4. semi nano Δ -closure of E_1 is defined as $\cap \{D : E_1 \subseteq D \text{ and } D \text{ is semi nano } \Delta\text{-closed}\}$.

The nano Δ -interior, nano Δ -closure, semi nano Δ -interior and semi nano Δ -closure of a subset E_1 of U are indicated by $n-\Delta I(E_1)$, $n-\Delta C(E_1)$, $ns-\Delta I(E_1)$ and $ns-\Delta C(E_1)$ respectively.

Remark 2.1. In a nano space, if E_1 is nano Δ -open set as moreover every nano semi-open set is semi nano Δ -open.

But the converse implications are not true.

Example 2.1. Let $U = \{100, 101, 102\}$ with $U/R = \{\{100\}, \{101, 102\}\}$ and $X = \{100\}$. Then $\mathcal{N} = \{\{100\}, \phi, U\}$ is a nano topology on U. Then $\{101\}$ is semi nano Δ -open but is nighter nano Δ -open nor ns-open.

Theorem 2.1. If E_1 is a semi nano Δ -open $\Longrightarrow \exists$ a nano Δ -open set $V_1 \ni V_1 \subseteq E_1 \subseteq n$ - $C(V_1)$.

Proof.

If E_2 is semi nano Δ -open, there exist ns-open sets Z_1 and Z_2 such that $E_2 = (Z_1 - Z_2) \cup (Z_2 - Z_1))$. Now, Z_1 and Z_2 are ns-open sets, it follows that $\exists n$ -open sets K_1 and K_2 in $U \ni K_1 \subseteq Z_1 \subseteq n$ - $C(K_1)$ and $K_2 \subseteq Z_2 \subseteq n$ - $C(K_2)$. This implies that $(R_1 - R_2) \cup (R_2 - R_1) \subseteq (Z_1 - Z_2) \cup (Z_2 - Z_1) \subseteq [n$ - $C(R_1) - n$ - $C(R_2)] \cup [n$ - $C(R_2) - n$ - $C(R_1)] \subseteq n$ - $C(R_1 - R_2) \cup n$ - $C(R_2 - R_1) = n$ - $C[(R_1 - R_2) \cup (R_2 - R_1)]$.

Theorem 2.2. If E_1 is n-open and E_2 is semi nano Δ -open in a nano space, then $E_1 \cap E_2$ is semi nano Δ -open in U.

Proof.

Let $E_1 \cap E_2 = E_1 \cap [(Z_1 - Z_2) \cup (Z_2 - Z_1)]$ where Z_1 and Z_2 are *ns*-open in U. $E_1 \cap [(Z_1 - Z_2) \cup (Z_2 - Z_1)] = [E_1 \cap (Z_1 - Z_2)] \cup [E_1 \cap (Z_2 - Z_1)] = [(E_1 \cap Z_1) - (E_1 \cap Z_2)] \cup [(E_1 \cap Z_2) - (E_1 \cap Z_1)]$ which is semi nano Δ -open (since $(E_1 \cap Z_2)$ and $(E_1 \cap Z_1)$ are *ns*-open).

Theorem 2.3. A subset E_1 of a nano space is semi nano Δ -open $\iff E_1 \subseteq n - C(n - \Delta I(E_1))$.

Proof.

 E_1 be a semi nano Δ -open subset of U. Then \exists a nano Δ -open set $G \ni G \subseteq E_1 \subseteq n - C(G)$. But $G = n - \Delta I(G) \subseteq n - \Delta I(E_1)$ and so $n - C(G) \subseteq n - C(n - \Delta I(E_1))$. Thus $E_1 \subseteq n - C(G) \subseteq n - C(n - \Delta I(E_1))$. Now, suppose $E_1 \subseteq n - C(n - \Delta I(E_1))$. Put $G = n - \Delta I(E_1)$. Thus G is nano Δ -open with $G \subseteq E_1 \subseteq n - C(n - \Delta I(E_1))$. Hence $G \subseteq E_1 \subseteq n - C(G)$ and E_1 is semi nano Δ -open.

Theorem 2.4. If $\{\{E_1\}_i : i \in K\}$ is a family of semi nano Δ -open subsets, then $\bigcup_{i \in K} \{E_1\}_i$ is semi nano Δ -open.

Proof.

For each $i \in K$, \exists a semi nano Δ -open set G_i such that $G_i \subseteq \{E_1\}_i \subseteq n - C(G_i)$. Now $\bigcup_{i \in E_1} \{E_1\}_i \subseteq \bigcup_{i \in K} R - C(G_i) \subseteq n - C(\bigcup_{i \in K} G_i)$. Then $\bigcup_{i \in K} \{E_1\}_i$ is semi nano Δ -open.

Theorem 2.5. Let E_1 be a subset of a nano space. Then $ns - \Delta I(E_1) = E_1 \cap n - C(n - \Delta I(E_1))$.

I. Rajasekaran

Proof.

Let $E_1 \cap n - C(n - \Delta I(E_1)) \subseteq n - C[n - \Delta I(E_1 \cap n - I(E_1))] \subseteq n - C[n - \Delta I(E_1 \cap n - C(n - \Delta I(E_1))]$. Thus $E_1 \cap n - C(n - \Delta I(E_1))$ is semi-nano Δ -open set contained in E_1 . Hence $E_1 \cap n - C(\Delta I(E_1)) \subseteq ns - \Delta I(E_1)$.

On the other hand, since $ns-\Delta I(E_1)$ is a semi nano Δ -open set, we have $ns-\Delta I(E_1) \subseteq n-C(n-\Delta I(ns-\Delta I(E_1)) \subseteq n-C(ns-\Delta I(E_1))$. Hence $ns-\Delta I(E_1) = E_1 \cap n-C(n-\Delta I(E_1))$.

Theorem 2.6. Let (V, \mathcal{N}) be a subspace of a space (U, \mathcal{N}) and let $E_1 \subseteq V$. If E_1 is semi nano Δ -open in U, then E_1 is semi nano Δ -open in V.

Proof.

Let E_1 is semi nano Δ -open in U, there exist a nano Δ -open set K in U such that $K \subseteq E_1 \subseteq n - C(K)$. Then $K = K \cap V \subseteq E_1 \subseteq n - C(K) \cap V = n - C_V(K)$. Thus E_1 is semi nano Δ -open in V.

Theorem 2.7. Let V be a nano Δ -open set in a space (U, \mathcal{N}) . If $E_1 \subseteq V$ and E_1 is semi nano Δ -open in V, then E_1 is semi nano Δ -open in U.

Proof.

Let E_1 be semi nano Δ -open in V. Then \exists a nano Δ -open subset K of $(V, \mathcal{N}) \ni K \subseteq E_1 \subseteq n - C_V(K)$. Since V is nano Δ -open in U, therefore, K is nano Δ -open in U and $K \subseteq E_1 \subseteq n - C_V(K) \subseteq n - C(K)$. Hence E_1 is semi nano Δ -open in U.

Theorem 2.8. A subset E_1 of a space (U, \mathcal{N}) is semi nano Δ -closed $\iff n \cdot I(n \cdot \Delta C(E_1)) \subseteq E_1$.

Proof.

Obvious.

Theorem 2.9. If E_1 is a subspace of a space (U, \mathcal{N}) , then $ns - \Delta C(E_1) = E_1 \cup n - I(n - \Delta C(E_1))$.

Proof.

Let $n - I[n - \Delta C(E_1 \cup n - I(n - \Delta C(E_1))] \subseteq n - I[n - \Delta C(E_1 \cup n - C(E_1))] = n - I[n - \Delta C(E_1)] \subseteq E_1 \cup n - I[n - \Delta C(E_1))]$. Thus by Theorem 2.8 is $E_1 \cup n - I(n - \Delta C(E_1))$ is a semi nano Δ -closed set containing E_1 and so $ns - \Delta C(E_1) \subseteq E_1 \cup n - I(n - \Delta C(E_1))$.

On the other hand, since $ns - \Delta C(E_1)$ is semi-nano Δ -closed, therefore,

n-I[n- $\Delta C(ns$ - $\Delta C(E_1) \subseteq ns$ - $\Delta C(E_1)].$

Hence $n - I[n - \Delta C(E_1)] \subseteq n - I[n - \Delta C(ns - \Delta C(E_1))] \subseteq ns - \Delta C(E_1)$ and consequently $E_1 \cup n - I(n - \Delta C(E_1)) \subseteq ns - \Delta C(E_1)$. Thus $ns - \Delta C(E_1) = E_1 \cup n - I(n - \Delta(E_1))$.

Theorem 2.10. Let E_1 is a subset of (U, \mathcal{N}) . Then $ns - \Delta C(E_1) \subseteq ns - C(E_1) \cap n - \Delta C(E_1)$

Proof.

Let
$$ns-\Delta C(E_1) = E_1 \cup n-I(n-\Delta C(E_1)) \subseteq n-I(n-C(E_1)) = ns-C(E_1)$$
.
Also, $ns-\Delta C(E_1) \subseteq E_1 \cup n-\Delta C(E_1) = n-\Delta C(E_1)$. Therefore, $ns-\Delta C(E_1) \subseteq ns-C(E_1) \cap \Delta n-C(E_1)$.

Theorem 2.11. If K is n-closed and M is semi nano Δ -closed in a space (U, \mathcal{N}) , then $K \cup M$ is semi nano Δ -closed.

I. Rajasekaran

Proof.

Let (U - K) is *n*-open and (U - M) is semi nano Δ -open. Then by Theorem 2.2 $(U - K) \cap (U - M)$ is semi nano Δ -open. That is $U - (K \cup M)$ is semi nano Δ -open. Hence $K \cup M$ is semi nano Δ -closed.

References

- R. Asokan, O. Nethaji and I. Rajasekaran, On nano generalized *-closed sets in an ideal nanotopological space, Asia Mathematika, 2(3)(2018), 50-58.
- [2] M. Lellis Thivagar and Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention,1(1) 2013, 31-37.
- [3] M. Lellis Thivagar1 and Carmel Richard, On Nano Continuity, Mathematical Theory and Modeling, 3(7)2013 32-37.
- [4] Z. Pawlak, Rough sets, International journal of computer and Information Sciences, 11(5)(1982), 341-356.
- [5] I. Rajasekaran and O. Nethaji, Unified approach of several sets in an ideal nanotopological spaces, Asia Mathematika, 3(1)(2019), 70-78.