

On Analytic Functions defined by Combination of Operators

A. A. \mathbf{YUSUF}^{1*} and M. \mathbf{DARUS}^2

¹Department of Mathematics, federal University of Africulture, Abeokuta, Ogun State, Nigeria. ORCID: 0000-0002-6322-0970 ²Department of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia. Bangi 43600 Selangor. ORCID: 0000-0001-9138-916X

Received: 24 Jun 2021	٠	Accepted: 17 Sep 2021	•	Published Online: 30 Dec 2021
Received: 24 Juli 2021	•	Accepted: 17 Dep 2021	•	I ublished Ollille: 50 Dec 2021

Abstract: In this work, we introduce a new class of analytic functions defined by a combination of two operator. We obtain univalency condition of the new class, its integral representations, sufficient inclusion conditions and coefficient inequalities.

Key words: Analytic functions, starlike, bounded turning and univalent functions.

1. Introduction

Let A denote the class of analytic functions of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$$
 (1)

in the unit disk $\{\mathbb{U} = |z| < 1\}$. Let P denote the class of the functions

$$p(z) = 1 + c_1 z + c_2 z^2 + \cdots$$
(2)

analytic in U, satisfying Rep(z) > 0 and by $P(\beta)$ if $p(z) > \beta$ for some real number $0 \le \beta < 1$.. It is well-known that $f(z) \in A$ is a starlike function of order β , if

$$Re\frac{zf'(z)}{f(z)} \in p(\beta)$$

denoted as $S^*(\beta)$ (see [18]) and $Ref'(z) \in p(\beta)$ denoted as $R(\beta)$ referred to as the class of bounded turning of order β , (see [17]).

In [1], Abdulhalim generalized the class of bazilevic function consisting of functions satisfying the geometric condition

$$Re\frac{D^n f(z)^{\alpha}}{z^{\alpha}} > 0, z \in \mathbb{U}.$$
(3)

denoted as $B_n(\alpha)$, where $D^n f(z) = D(D^{n-1}f(z))$, $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and proved that the class contains only univalent functions in the unit disk.

[©]Asia Mathematika, DOI: 10.5281/zenodo.5809168

^{*}Correspondence: yusufaa@funaab.edu.ng

A further generalization, $T_n^{\alpha}(\beta)$, was introduced by Opoola [11] which consists of functions satisfying the geometric condition

$$\frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} > \beta$$

He proved the inclusion property and the univalency of functions in the class. Using the salagean differential operator $D^n f(z)$ and and inverse of integral operator

$$\mathcal{L}_{\sigma,\gamma}f(z) = \frac{(\alpha+\gamma)^{-\sigma}t^{\gamma-1}}{z^{\gamma}\Gamma - \sigma} \int_0^z (\log\frac{z}{t})^{-\sigma-1}f(t)^{\lambda}dt.$$

(see [8], [16]), on $f(z)^{\alpha}$, we have

$$D^{n}(\mathcal{L}_{\sigma,\gamma}f(z)^{\alpha}) = z^{\alpha}\alpha^{n} + \sum_{k=2}^{\infty} \left(\frac{\alpha+\gamma+k-1}{\alpha+\gamma}\right)^{\sigma} (\alpha+k-1)^{n}A_{k}(\alpha)z^{\alpha+k-1}.$$
(4)

where A_k for $k = 2, 3, \cdots$ depends on the coefficients a_k of f(z) and the index α . We denote

$$\mathcal{L}_{\sigma,\gamma}(D^n f(z)^{\alpha}) = D^n(\mathcal{L}_{\sigma,\gamma} f(z)^{\alpha}) = L^n_{\sigma,\gamma} f(z)^{\alpha}.$$
(5)

 $n \in N \cup \{0\}, \sigma > 0, \gamma > -1, \alpha > 0.$

Remark 1.1. $L_{1,0}^n = D^{n+1}f(z)^{\alpha}$, $L_{1,0}^0 = Df(z)^{\alpha} = zf'(z)^{\alpha}$. If $\alpha = 1$, then $L_{1,0}^0 = zf'(z)$.

From the series expansions of the operator $\mathcal{L}_{\sigma,\gamma}$ on $f(z)^{\alpha}$, we have the recursive relation

$$z(\mathcal{L}_{\sigma,\gamma}f(z)^{\alpha})' = (\alpha + \gamma)\mathcal{L}_{\sigma+1,\gamma}f(z)^{\alpha} - \gamma\mathcal{L}_{\sigma,\gamma}f(z)^{\alpha}.$$
(6)

Applying D^n on (6), we have

$$L^{n+1}_{\sigma,\gamma}f(z)^{\alpha} = (\alpha + \gamma)L^n_{\sigma+1,\gamma}f(z)^{\alpha} - \gamma L^n_{\sigma,\gamma}f(z)^{\alpha}.$$
(7)

Using the salagean anti-derivative define as $I_n = I(I_{n-1}f(z)) = \int_0^z \frac{I_{n-1}f(t)}{t} dt$ and

$$\mathcal{J}_{\sigma,\gamma}f(z) = \frac{(\alpha+\gamma)^{\sigma}t^{\gamma-1}}{z^{\gamma}\Gamma\sigma} \int_0^z (\log\frac{z}{t})^{\sigma-1}f(t)dt, \text{ (see [8], [16]) on } f(z)^{\alpha}.$$

Therefore

Therefore

$$I_n(\mathcal{J}_{\sigma,\gamma}f(z)^{\alpha}) = \frac{z^{\alpha}}{\alpha^n} + \sum_{k=2}^{\infty} \left(\frac{\alpha+\gamma}{\alpha+\gamma+k-1}\right)^{\sigma} \frac{A_k(\alpha)}{(\alpha+k-1)^n} z^{\alpha+k-1}.$$
(8)

We denote

$$I_n(\mathcal{J}_{\sigma,\gamma}f(z)^{\alpha}) = \mathcal{J}_{\sigma,\gamma}(I_nf(z)^{\alpha}) = J_{\sigma,\gamma}^n f(z)^{\alpha}.$$
(9)

It can be seen that

$$L^{n}_{\sigma,\gamma}(J^{n}_{\sigma,\gamma}f(z)^{\alpha}) = J^{n}_{\sigma,\gamma}(L^{n}_{\sigma,\gamma}f(z)^{\alpha}) = f(z)^{\alpha}.$$
(10)

The concept of combining operators in theory of geometric function has been a very useful tool and this has been considered by many researchers to introduce subclasses of analytic and meromorphic functions, (see [2–7]). Using the operator $L^n_{\sigma,\gamma}$, we introduce a new class defined as follows:

Definition 1. An analytic function $f \in A$ is said to belong to the class $B^{n,\alpha}_{\sigma,\gamma}(\beta)$ if and only if

$$\frac{L^{n}_{\sigma,\gamma}f(z)^{\alpha}}{\alpha^{n}z^{\alpha}} > \beta.$$
(11)

 $n\in N\cup\left\{ 0\right\} ,\sigma>0,\gamma>-1,\;\alpha>0.$

Remark 1.2. If $\sigma = 1$, $\gamma = 0$, n = 0 and $\alpha = 1$ we have the class of analytic function satisfying

$$Ref'(z) > \beta \tag{12}$$

which is the class of functions of bounded turning of order β denoted as $R(\beta)$.

2. Prelimary Lemmas

Lemma 2.1. [9] Let p(z) be holomorphic in E with p(0) = 1. Suppose that

$$Re\left(1+\frac{zp'(z)}{p(z)}
ight) > \frac{3\beta-1}{2\beta}$$

Then

$$Rep(z) > 2^{1-\frac{1}{\beta}}, \frac{1}{2} \le \beta < 1, z \in U.$$
 (13)

and the constant $2^{1-\frac{1}{\beta}}$ is the best possible.

Lemma 2.2. [10] Let $u = u_1 + u_2 i$, $v = v_1 + v_2 i$ and $\Phi(u, v)$ a complex valued function satisfying (i) $\Phi(u, v)$ is continuous in a domain Ω of C^2 . (ii) $(1,0) \in \Omega$ and $Re\Phi(1,0) > 0$. (iii) $Re\Phi(\beta + (1-\beta)u_2 i, v_1) \leq \beta$ when $(\beta + (1-\beta)u_2 i, v_1) \in \Omega$ If $p \in P$ such that $(p(z), zp'(z)) \in \Omega$ and $Re(p(z), zp'(z)) > \beta$ for $z \in \mathbb{U}$. Then $Rep(z) > \beta$ in \mathbb{U} .

Lemma 2.3. [12] Let $p \in P$. where $p(z) = 1 + c_1 z + p_2 z^2 + \cdots$, then

$$|p_k| \le 2, k = 1, 2, 3, \cdots . \tag{14}$$

Lemma 2.4. [11] Let $p \in P$. then for any real or complex number μ , we have sharp inequalities

$$\left| p_2 - \mu \frac{p_1^2}{2} \right| \le 2 \max\{1, |1 - \mu|\}.$$
(15)

3. Main Results

Theorem 3.1. Let $f \in B^{n,\alpha}_{\sigma,\gamma}(\beta)$, then f(z) has the integral representation

$$f(z) = J^n_{\sigma,\gamma}[\alpha^n z^n(p(z))]^{\frac{1}{\alpha}}$$

Proof. Since $f \in B^{n,\alpha}_{\sigma,\gamma}(\beta)$, then there exists $p \in P(\beta)$ such that

$$\frac{L^n_{\sigma,\gamma}f(z)^\alpha}{\alpha^n z^\alpha} = p(z)$$

 $\quad \text{and} \quad$

$$L^n_{\sigma,\gamma}f(z)^\alpha = \alpha^n z^\alpha p(z)$$

applying the antiderivatie operator $J^n_{\sigma,\gamma}$, we obtain

$$f(z) = J^n_{\sigma,\gamma}[\alpha^n z^n(p(z))]^{\frac{1}{\alpha}}$$

Theorem 3.2. $B^{n,\alpha}_{\sigma,\gamma}(\beta) \subset T^{\alpha}_{n}(\beta)$, for $\alpha > 0$.

Proof. Let

$$p(z) = \frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}}$$

Then, from (11), we obtain

$$Re\left(p(z)^2 + \frac{zp(z)p'(z)}{\alpha}\right) > \beta.$$

We define

$$\Phi(u,v) = u^2 + \frac{uv}{\alpha}, \alpha > 0.$$

Clearly, $\Phi(u, v)$ satisfies the condition of Lemma 2.2. whenever $2v_1 < -(1 - \beta)(1 + u_2^2)$, we have

$$Re\Phi(\beta + (1-\beta)u_2i, v_1) = \beta^2 - (1-\beta)^2 u_2^2 - \frac{\beta(1-\beta)(1+u_2^2)}{2\alpha} < \beta < \beta$$

Hence by lemma 2.2, we have Rep(z), implies that $Re \frac{D^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} > \beta$ and the proof completes.

Corollary 3.1. For $n \ge 1$, the class $B^{n,\alpha}_{\sigma,\gamma}(\beta)$ consists of univalent functions.

Theorem 3.3. If $f \in A$ satisfies

$$Re\left(\frac{L^{n+1}_{\sigma,\gamma}f(z)^{\alpha}}{L^{n}_{\sigma,\gamma}f(z)^{\alpha}}\right) > \frac{2\alpha\beta + \beta - 1}{2\beta}.$$
(16)

Then

$$Re\frac{L^n_{\sigma,\gamma}f(z)^{\alpha}}{\alpha^n z^n} > 2^{1-\frac{1}{\beta}}, \frac{1}{2} \le \beta < 1, z \in \mathbb{U}.$$

25

Proof. Let

$$\frac{L_{\sigma,\gamma}^{n+1}f(z)^{\alpha}}{\alpha^n z^n} = p(z),$$

then we have that

$$\frac{zp'(z)}{p(z)} = \frac{L^{n+1}_{\sigma,\gamma}f(z)^{\alpha}}{L^n_{\sigma,\gamma}f(z)^{\alpha}} - \alpha.$$

By the condition of the theorem,

$$Re\left(1+\frac{zp'(z)}{p(z)}\right) = Re\left(\frac{L_{\sigma,\gamma}^{n+1}f(z)^{\alpha}}{L_{\sigma,\gamma}^{n}f(z)^{\alpha}} - \alpha + 1\right) > \frac{3\beta - 1}{2\beta}$$

and this is equivalent to

$$Re\left(\frac{L_{\sigma,\gamma}^{n+1}f(z)^{\alpha}}{L_{\sigma,\gamma}^{n}f(z)^{\alpha}}\right) > \frac{2\alpha\beta + \beta - 1}{2\beta}$$

Thus by lemma 2.1, $\operatorname{Rep}(z) > 2^{1-\frac{1}{\beta}}, \ \frac{1}{\beta} \leq \beta < 1, z \in \mathbb{U}.$

Corollary 3.2. If $f \in A$ satisfies the condition, then $f \in B^{n,\alpha}_{\sigma,\gamma}(2^{1-\frac{1}{\beta}})$.

If n = 0, $\alpha = 0$, we have

Corollary 3.3. Suppose

$$Re\left(rac{zf^{''}(z)}{f^{'}(z)}+1
ight)>rac{eta-1}{2eta}$$

Then

$$\operatorname{Ref}'(z) > 2^{1-\frac{1}{\beta}}.$$

If n = 0, $\alpha = 1/2$, we have

Corollary 3.4. Suppose

$$Re\left(rac{zf^{\prime\prime}(z)}{f^{\prime}(z)}+1
ight)>rac{3eta-1}{2eta}.$$

Then

$$Ref'(z) > 2^{1-\frac{1}{\beta}}.$$

If n = 0, $\alpha = 1$ and $\beta = 1/2$, we have

Corollary 3.5. Suppose

$$Re\left(\frac{zf''(z)}{f'(z)}+1\right) > \frac{1}{2}$$

 $. \ Then$

$$Ref^{'}(z) > rac{1}{2}.$$

റ	c	
2	n	
_	~	

Theorem 3.4. Let $f \in B^{n,\alpha}_{\sigma,\gamma}(\beta)$, then

$$|a_{2}| \leq \frac{2\alpha^{n-1}(1-\beta)}{(\alpha+1)^{n}} \left(\frac{\alpha+\gamma}{\alpha+\gamma+1}\right)^{\sigma} .$$

$$|a_{3}| \leq \frac{\alpha^{n-1}(\alpha+\gamma)^{\sigma}(1-\beta)}{(\alpha+2)^{n}(\alpha+\gamma+2)^{\sigma}} max\{1, |\mathbf{M}_{1}|\}$$

$$(17)$$

where $\mathbf{M_1} = \frac{2(\alpha+1)^{2n}(\alpha+\gamma+1)^{2\sigma} + (1-\alpha)\alpha^n(\alpha+\gamma)^{\sigma}(\alpha+2)^n(\alpha+\gamma+2)^{\sigma}}{(\alpha+1)^{2n}(\alpha+\gamma+1)^{2\sigma}}$ The bounds are best possible. Equalities are obtained also by

$$f(z)^{\alpha} = \left\{ J_{\sigma,\gamma}^{n} \left[\alpha^{n} z^{\alpha} \left(\beta + (1-\beta) \frac{1+z}{1-z} \right) \right] \right\}^{\frac{1}{\alpha}}$$
$$= z + \frac{\alpha^{n}}{(\alpha+1)^{n}} \left(\frac{\alpha+\gamma}{\alpha+\gamma+1} \right)^{\sigma} z^{2} + \frac{\alpha^{n} (\alpha+\gamma)^{\sigma}}{(\alpha+2)^{n} (\alpha+\gamma+2)^{\sigma}} \left\{ \frac{(\alpha+1)^{2n} (\alpha+\gamma+1)^{2\sigma} + (1-\alpha) \alpha^{n} (\alpha+\gamma)^{\sigma} (\alpha+2)^{n} (\alpha+\gamma+2)^{\sigma}}{(\alpha+1)^{2n} (\alpha+\gamma+1)^{2\sigma}} \right\} z^{3} + \cdots$$

Proof. Let $f \in B^{n,\alpha}_{\sigma,\lambda}(\lambda)$, then there exists $p \in P_{\beta}$ such that

$$\frac{L_{\sigma,\gamma}^n f(z)^{\alpha}}{\alpha^n z^{\alpha}} = p(z) = 1 + (1-\beta)c_1 z + (1-\beta)c_2 z^2 + (1-\beta)c_3 c^3 + \cdots$$
(18)

$$L^{n}_{\sigma,\gamma}f(z)^{\alpha} = \alpha^{n}z^{\alpha} + \alpha^{n}(1-\beta)c_{1}z^{\alpha+1} + \alpha^{n}(1-\beta)c_{2}z^{\alpha+2} + \alpha^{n}(1-\beta)c_{3}z^{\alpha+3} + \alpha^{n-1}(1-\beta)c_{4}z^{\alpha+4} + \cdots$$

Using the anti-derivative of the operator $L^n_{\sigma,\gamma}$ denoted as $J^n_{\sigma,\gamma},$ we have that

$$f(z)^{\alpha} = z^{\alpha} + \frac{\alpha^{n}(1-\beta)}{(\alpha+1)^{n}} \left(\frac{\alpha+\gamma}{\alpha+\gamma+1}\right)^{\sigma} c_{1} z^{\alpha+1} + \frac{\alpha^{n}(1-\beta)}{(\alpha+2)^{n}} \left(\frac{\alpha+\gamma}{\alpha+\gamma+2}\right)^{\sigma} c_{2} z^{\alpha+2} + \frac{\alpha^{n}(1-\beta)}{(\alpha+3)^{n}} \left(\frac{\alpha+\gamma}{\alpha+\gamma+3}\right)^{\sigma} c_{3} z^{\alpha+3} + \frac{\alpha^{n}(1-\beta)}{(\alpha+4)^{n}} \left(\frac{\alpha+\gamma}{\alpha+\gamma+4}\right)^{\sigma} c_{4} z^{\alpha+4} \cdots$$

Given that

$$f(z)^{\alpha} = z^{\alpha} + \alpha a_2 z^{\alpha+1} + \left(\alpha a_3 + \frac{\alpha(\alpha-1)}{2}a_2^2\right) z^{\alpha+2} + \left(\alpha a_4 + \alpha(\alpha-1)a_2a_3 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}a_2^3\right) z^{\alpha+3} + \left(\alpha a_5 + \alpha(\alpha-1)a_2a_4 + \frac{\alpha(\alpha-1)}{2}a_3^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{2}a_2^2a_3 + \frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{12}a_2^4\right) z^{\alpha+4} + \cdots$$

By comparing the coefficient, we have

$$a_2 = \frac{\alpha^{n-1}}{(\alpha+1)^n} \left(\frac{\alpha+\gamma}{\alpha+\gamma+1}\right)^{\sigma} c_1$$

By Lemma 2.3, we obtained the bound of a_2 , also

$$a_{3} = \frac{\alpha^{n}(\alpha+\gamma)^{\sigma}(1-\beta)}{(\alpha+2)^{n}(\alpha+\gamma+2)^{\sigma}} \left[c_{2} - \frac{\alpha^{n}(\alpha-1)(\alpha+\gamma)^{\sigma}(\alpha+2)^{n}(\alpha+\gamma+2)^{\sigma}}{(\alpha+1)^{2n}(\alpha+\gamma+1)^{2\sigma}} \frac{c_{1}^{2}}{2} \right]$$

By Lemma 2.4 and with $\rho = \frac{\alpha^n (\alpha - 1)(\alpha + \gamma)^{\sigma} (\alpha + 2)^n (\alpha + \gamma + 2)^{\sigma}}{(\alpha + 1)^{2n} (\alpha + \gamma + 1)^{2\sigma}}$, we obtained the bound on the third coefficient of these function. By letting

$$p(z) = \beta + (1 - \beta)\frac{1 + z}{1 - z}$$

from the integral representation we have the equality attained by the extremal function given. \Box

Theorem 3.5. Let $f \in B^{n,\alpha}_{\sigma,\gamma}(\beta)$. Then

$$|a_3 - \rho a_2^2| \le \frac{\alpha^{n-1}(1-\beta)(\alpha+\gamma)^{\sigma}}{(\alpha+2)^n(\alpha+\gamma+2)^{\sigma}} \max\{1, |\mathbf{M_2}|\}$$

$$\tag{19}$$

where $\mathbf{M_2} = \frac{2(\alpha+1)^{2n}(\alpha+\gamma+1)^{2\sigma} + (1+2\rho-\alpha)\alpha^{n-1}(\alpha+\gamma)^{\sigma}(\alpha+2)^n(\alpha+\gamma+2)^{\sigma}}{(\alpha+1)^{2n}(\alpha+\gamma+1)^{2\sigma}}$

Proof. From the computation and by comparing coefficient with respect to z, then

$$a_2 = \frac{\alpha^{n-1}(1-\beta)}{(\alpha+1)^n} \left(\frac{\alpha+\gamma}{\alpha+\gamma+1}\right)^{\sigma} c_1$$
(20)

and

$$a_{3} = \frac{\alpha^{n}(\alpha + \gamma)^{\sigma}c_{2}}{(\alpha + 2)^{n}(\alpha + \gamma + 2)^{\sigma}} + \frac{(1 - \alpha)\alpha^{2(n-2)}(\alpha + \gamma)^{2\sigma}}{(\alpha + 1)^{2n}(\alpha + \gamma + 1)^{2\sigma}}\frac{c_{1}^{2}}{2}$$
(21)

Hence

$$|a_3 - \rho a_2^2| = \frac{\alpha^{n-1} (\alpha + \gamma)^{\sigma}}{(\alpha + 2)^n (\alpha + \gamma + 2)^{\sigma}} c_2 - \frac{(\alpha - 1 + 2\rho)(\alpha + 2)^n \alpha^{n-1} (\alpha + \gamma)^{\sigma} (\alpha + \gamma + 2)^{\sigma}}{(\alpha + 1)^{2n} (\alpha + \gamma + 1)^{2\sigma}} \frac{c_1^2}{2}$$
(22)

by lemma 2.4 we have the required inequality.

4. Conclusion

In this work we have been able to determine the univalency condition of the new class, its integral representations, sufficient inclusion conditions and coefficient inequalities of a subclass of analytics functions defined by combination of two operators.

Acknowledgment

The author would like to thank the anonymous referee whose comments improved the original version of this manuscript.

A. A. YUSUF and M. DARUS

References

- Abdulhalim S. On a class of analytic functions involving the Salagean differential operator. Tankang Journal of mathematics 1992; 23(1): 51-58.
- [2] Al-Kaseasbeh, M. and M. Darus, Concave meromorphic functions involving constructed operators. Acta Universitatis Apulensis, 2017; (52),11-19.
- [3] Al-Kaseasbeh, M. and Darus, M. Inclusion and convolution properties of a certain class of analytic functions, Eurasian Mathematical Journal. 8(4), 11-17.
- [4] Al-Kaseasbeh, M and Darus, M. Meromorphic functions involved constructed differential operator, Janabha-Vijana Parishad of India. 2017; 47(1),63-76.
- [5] Al-Kaseasbeh M., Darus M. and Al-Kaseasbeh S., Certain differential sandwich theorem involved constructed differential operator. International Information Institute 2016; 19(10), 4663-4670.
- [6] Al-Kaseasbeh M. and M. Darus, On an operator defined by the combination of both generalized operators of Salagean and Ruscheweyh. Far East Journal of Mathematical Sciences 2015; 97(4)443-455.
- [7] M. Al-Kaseasbeh and M. Darus, On subclass of harmonic univalent functions defined by generalized Salagean operator and Ruscheweyh operator. Transylvanian Journal of Mathematics and Mechanics 2015; 7(2), 95-100.
- [8] Babalola, K.O. Subclasses of Analytic Functions defined by the Inverse of Certain Integral Operator, Analele Universitatis Oradea Fasc. Matematica, Tom XIX, Issue No.2012; 1: 255-264.
- [9] Babalola, K. O. and T. O. Opoolo, Iterated integral transforms of Caratheodory functions and their applications to analytic and Univalent functions, Tamkang Journal of Mathematics, 2006; 37(4), 355-366.
- [10] Babalola, K. O. On λ pseudo-starlike functions, Journal of Classical Analysis, 2013; 3(2), 137-147.
- [11] Babalola, K. O. and T. O. Opoola, On the coefficients of a certain class of analytic functions, Advances in Inequalities for Series, (2008), 1-13.
- [12] Caratheodory, C. Theory of functions of a complex variable, II. (1960). Chelsea Publishing Co. New York.
- [13] Lin, L. J. and S. Owa. Properties of the Salagean Operator. Georgian Mathematics Journal 1998; 5(4), 361-366.
- [14] Opoola, T. O. On a new subclass of Univalent functions. Mathematica (cluj) 1994; 36: 59 (2), 195-200.
- [15] Ravichandran, V; Selvaraj, C and Rajalaksmi, R. Sufficient conditions for Starlike functions of order α. Journal of Inequalities, Pure and Applied Mathematics. 2012; 3(5): 1 - 6.
- [16] Salagean, G. S. Subclasses of Univalent functions. Lecture notes in maths, 1013, 362-372. Springer-verlag, Berlin, New York.
- [17] Singh, R. On Bazilevic functions. Proceedings of the American Mathematical Society. 1973; 38(2): 261-271.
- [18] Yamaguchi, K. On functions satisfying Re $\frac{f(z)}{z} > 0$. Proceedings of American Mathematical Society 1966; 17: 588-591.