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On Analytic Functions defined by Combination of Operators
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Abstract: In this work, we introduce a new class of analytic functions defined by a combination of two operator. We

obtain univalency condition of the new class, its integral representations, sufficient inclusion conditions and coefficient

inequalities.
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1. Introduction

Let A denote the class of analytic functions of the form

f(z) = z + a2z
2 + a3z

3 + · · · (1)

in the unit disk {U = |z| < 1}. Let P denote the class of the functions

p(z) = 1 + c1z + c2z
2 + · · · (2)

analytic in U , satisfying Rep(z) > 0 and by P (β) if p(z) > β for some real number 0 ≤ β < 1. .

It is well-known that f(z) ∈ A is a starlike function of order β , if

Re
zf
′
(z)

f(z)
∈ p(β).

denoted as S∗(β) (see [18]) and Ref
′
(z) ∈ p(β) denoted as R(β) referred to as the class of bounded turning

of order β , (see [17]).

In [1], Abdulhalim generalized the class of bazilevic function consisting of functions satisfying the geometric

condition

Re
Dnf(z)α

zα
> 0, z ∈ U. (3)

denoted as Bn(α), where Dnf(z) = D(Dn−1f(z)), n ∈ N0 = N ∪ {0} and proved that the class contains only

univalent functions in the unit disk.
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A further generalization, Tαn (β), was introduced by Opoola [11] which consists of functions satisfying the

geometric condition

Dnf(z)α

αnzα
> β.

He proved the inclusion property and the univalency of functions in the class.

Using the salagean differential operator Dnf(z) and and inverse of integral operator

Lσ,γf(z) =
(α+ γ)−σtγ−1

zγΓ− σ

∫ z

0

(log
z

t
)−σ−1f(t)λdt.

(see [8], [16]), on f(z)α , we have

Dn(Lσ,γf(z)α) = zααn +

∞∑
k=2

(
α+ γ + k − 1

α+ γ

)σ
(α+ k − 1)nAk(α)zα+k−1. (4)

where Ak for k = 2, 3, · · · depends on the coefficients ak of f(z) and the index α .

We denote
Lσ,γ(Dnf(z)α) = Dn(Lσ,γf(z)α) = Lnσ,γf(z)α. (5)

n ∈ N ∪ {0} , σ > 0, γ > −1, α > 0.

Remark 1.1. Ln1,0 = Dn+1f(z)α , L0
1,0 = Df(z)α = zf

′
(z)α . If α = 1 , then L0

1,0 = zf
′
(z) .

From the series expansions of the operator Lσ,γ on f(z)α , we have the recursive relation

z(Lσ,γf(z)α)
′

= (α+ γ)Lσ+1,γf(z)α − γLσ,γf(z)α. (6)

Applying Dn on (6), we have

Ln+1
σ,γ f(z)α = (α+ γ)Lnσ+1,γf(z)α − γLnσ,γf(z)α. (7)

Using the salagean anti-derivative define as In = I(In−1f(z)) =
∫ z
0

In−1f(t)

t
dt and

Jσ,γf(z) =
(α+ γ)σtγ−1

zγΓσ

∫ z
0

(log
z

t
)σ−1f(t)dt , (see [8], [16]) on f(z)α .

Therefore

In(Jσ,γf(z)α) =
zα

αn
+

∞∑
k=2

(
α+ γ

α+ γ + k − 1

)σ
Ak(α)

(α+ k − 1)n
zα+k−1. (8)

We denote
In(Jσ,γf(z)α) = Jσ,γ(Inf(z)α) = Jnσ,γf(z)α. (9)

It can be seen that
Lnσ,γ(Jnσ,γf(z)α) = Jnσ,γ(Lnσ,γf(z)α) = f(z)α. (10)

The concept of combining operators in theory of geometric function has been a very useful tool and this has

been considered by many researchers to introduce subclasses of analytic and meromorphic functions, (see [2–7]).

Using the operator Lnσ,γ , we introduce a new class defined as follows:
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Definition 1. An analytic function f ∈ A is said to belong to the class Bn,ασ,γ (β) if and only if

Lnσ,γf(z)α

αnzα
> β. (11)

n ∈ N ∪ {0} , σ > 0, γ > −1, α > 0.

Remark 1.2. If σ = 1 , γ = 0 ,n = 0 and α = 1 we have the class of analytic function satisfying

Ref
′
(z) > β (12)

which is the class of functions of bounded turning of order β denoted as R(β).

2. Prelimary Lemmas

Lemma 2.1. [9] Let p(z) be holomorphic in E with p(0) = 1 . Suppose that

Re

(
1 +

zp
′
(z)

p(z)

)
>

3β − 1

2β
.

Then

Rep(z) > 21−
1
β ,

1

2
≤ β < 1, z ∈ U. (13)

and the constant 21−
1
β is the best possible.

Lemma 2.2. [10] Let u = u1 + u2i , v = v1 + v2i and Φ(u, v) a complex valued function satisfying

(i) Φ(u, v) is continuous in a domain Ω of C2.

(ii) (1, 0) ∈ Ω and ReΦ(1, 0) > 0.

(iii) ReΦ(β + (1 − β)u2i, v1) ≤ β when (β + (1 − β)u2i, v1) ∈ Ω If p ∈ P such that (p(z), zp
′
(z)) ∈ Ω and

Re(p(z), zp
′
(z)) > β for z ∈ U . Then Rep(z) > β in U.

Lemma 2.3. [12] Let p ∈ P . where p(z) = 1 + c1z + p2z
2 + · · · , then

|pk| ≤ 2, k = 1, 2, 3, · · · . (14)

Lemma 2.4. [11] Let p ∈ P . then for any real or complex number µ , we have sharp inequalities∣∣∣∣p2 − µp212
∣∣∣∣ ≤ 2 max{1, |1− µ|}. (15)
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3. Main Results

Theorem 3.1. Let f ∈ Bn,ασ,γ (β) , then f(z) has the integral representation

f(z) = Jnσ,γ [αnzn(p(z))]
1
α

Proof. Since f ∈ Bn,ασ,γ (β), then there exists p ∈ P (β) such that

Lnσ,γf(z)α

αnzα
= p(z)

and
Lnσ,γf(z)α = αnzαp(z)

applying the antiderivatie operator Jnσ,γ , we obtain

f(z) = Jnσ,γ [αnzn(p(z))]
1
α

Theorem 3.2. Bn,ασ,γ (β) ⊂ Tαn (β) , for α > 0.

Proof. Let

p(z) =
Dnf(z)α

αnzα

Then , from (11), we obtain

Re

(
p(z)2 +

zp(z)p
′
(z)

α

)
> β.

We define

Φ(u, v) = u2 +
uv

α
, α > 0.

Clearly, Φ(u, v) satisfies the condition of Lemma 2.2. whenever 2v1 < −(1− β)(1 + u22), we have

ReΦ(β + (1− β)u2i, v1) = β2 − (1− β)2u22 −
β(1− β)(1 + u22)

2α
< β < β.

Hence by lemma 2.2, we have Rep(z), implies that ReD
nf(z)α

αnzα > β and the proof completes.

Corollary 3.1. For n ≥ 1 , the class Bn,ασ,γ (β) consists of univalent functions.

Theorem 3.3. If f ∈ A satisfies

Re

(
Ln+1
σ,γ f(z)α

Lnσ,γf(z)α

)
>

2αβ + β − 1

2β
. (16)

Then

Re
Lnσ,γf(z)α

αnzn
> 21−

1
β ,

1

2
≤ β < 1, z ∈ U.
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Proof. Let

Ln+1
σ,γ f(z)α

αnzn
= p(z),

then we have that

zp
′
(z)

p(z)
=
Ln+1
σ,γ f(z)α

Lnσ,γf(z)α
− α.

By the condition of the theorem,

Re

(
1 +

zp
′
(z)

p(z)

)
= Re

(
Ln+1
σ,γ f(z)α

Lnσ,γf(z)α
− α+ 1

)
>

3β − 1

2β

and this is equivalent to

Re

(
Ln+1
σ,γ f(z)α

Lnσ,γf(z)α

)
>

2αβ + β − 1

2β
.

Thus by lemma 2.1, Rep(z) > 21−
1
β , 1

β ≤ β < 1, z ∈ U.

Corollary 3.2. If f ∈ A satisfies the condition, then f ∈ Bn,ασ,γ (21−
1
β ).

If n = 0, α = 0, we have

Corollary 3.3. Suppose

Re

(
zf
′′
(z)

f ′(z)
+ 1

)
>
β − 1

2β
.

Then

Ref
′
(z) > 21−

1
β .

If n = 0, α = 1/2, we have

Corollary 3.4. Suppose

Re

(
zf
′′
(z)

f ′(z)
+ 1

)
>

3β − 1

2β
.

Then

Ref
′
(z) > 21−

1
β .

If n = 0, α = 1 and β = 1/2, we have

Corollary 3.5. Suppose

Re

(
zf
′′
(z)

f ′(z)
+ 1

)
>

1

2

. Then

Ref
′
(z) >

1

2
.
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Theorem 3.4. Let f ∈ Bn,ασ,γ (β) , then

|a2| ≤ 2αn−1(1−β)
(α+1)n

(
α+γ
α+γ+1

)σ
.

|a3| ≤
αn−1(α+ γ)σ(1− β)

(α+ 2)n(α+ γ + 2)σ
max {1, |M1|} (17)

where M1 =
2(α+ 1)2n(α+ γ + 1)2σ + (1− α)αn(α+ γ)σ(α+ 2)n(α+ γ + 2)σ

(α+ 1)2n(α+ γ + 1)2σ

The bounds are best possible. Equalities are obtained also by

f(z)α =

{
Jnσ,γ

[
αnzα

(
β + (1− β)

1 + z

1− z

)]} 1

α

= z +
αn

(α+ 1)n

(
α+ γ

α+ γ + 1

)σ
z2 +

αn(α+ γ)σ

(α+ 2)n(α+ γ + 2)σ

{
(α+ 1)2n(α+ γ + 1)2σ + (1− α)αn(α+ γ)σ(α+ 2)n(α+ γ + 2)σ

(α+ 1)2n(α+ γ + 1)2σ

}
z3 + · · ·

Proof. Let f ∈ Bn,ασ,λ (λ)), then there exists p ∈ Pβ such that

Lnσ,γf(z)α

αnzα
= p(z) = 1 + (1− β)c1z + (1− β)c2z

2 + (1− β)c3c
3 + · · · (18)

Lnσ,γf(z)α = αnzα + αn(1− β)c1z
α+1 + αn(1− β)c2z

α+2 + αn(1− β)c3z
α+3 + αn−1(1− β)c4z

α+4 + · · ·

Using the anti-derivative of the operator Lnσ,γ denoted as Jnσ,γ , we have that

f(z)α = zα + αn(1−β)
(α+1)n

(
α+γ
α+γ+1

)σ
c1z

α+1 + αn(1−β)
(α+2)n

(
α+γ
α+γ+2

)σ
c2z

α+2

+αn(1−β)
(α+3)n

(
α+γ
α+γ+3

)σ
c3z

α+3 + αn(1−β)
(α+4)n

(
α+γ
α+γ+4

)σ
c4z

α+4 · · ·

Given that

f(z)α = zα + αa2z
α+1 +

(
αa3 +

α(α− 1)

2
a22

)
zα+2 +

(
αa4 + α(α− 1)a2a3 + α(α−1)(α−2)

6 a32

)
zα+3

+
(
αa5 + α(α− 1)a2a4 + α(α−1)

2 a23 + α(α−1)(α−2)
2 a22a3 + α(α−1)(α−2)(α−3)

12 a42

)
zα+4 + · · ·

By comparing the coefficient , we have

a2 =
αn−1

(α+ 1)n

(
α+ γ

α+ γ + 1

)σ
c1
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By Lemma 2.3, we obtained the bound of a2 , also

a3 =
αn(α+ γ)σ(1− β)

(α+ 2)n(α+ γ + 2)σ

[
c2 −

αn(α− 1)(α+ γ)σ(α+ 2)n(α+ γ + 2)σ

(α+ 1)2n(α+ γ + 1)2σ
c21
2

]

By Lemma 2.4 and with ρ =
αn(α− 1)(α+ γ)σ(α+ 2)n(α+ γ + 2)σ

(α+ 1)2n(α+ γ + 1)2σ
, we obtained the bound on the third

coefficient of these function. By letting

p(z) = β + (1− β)
1 + z

1− z

from the integral representation we have the equality attained by the extremal function given.

Theorem 3.5. Let f ∈ Bn,ασ,γ (β) . Then

|a3 − ρa22| ≤
αn−1(1− β)(α+ γ)σ

(α+ 2)n(α+ γ + 2)σ
max {1, |M2|} (19)

where M2 =
2(α+ 1)2n(α+ γ + 1)2σ + (1 + 2ρ− α)αn−1(α+ γ)σ(α+ 2)n(α+ γ + 2)σ

(α+ 1)2n(α+ γ + 1)2σ

Proof. From the computation and by comparing coefficient with respect to z, then

a2 =
αn−1(1− β)

(α+ 1)n

(
α+ γ

α+ γ + 1

)σ
c1 (20)

and

a3 =
αn(α+ γ)σc2

(α+ 2)n(α+ γ + 2)σ
+

(1− α)α2(n−2)(α+ γ)2σ

(α+ 1)2n(α+ γ + 1)2σ
c21
2

(21)

Hence

|a3 − ρa22| =
αn−1(α+ γ)σ

(α+ 2)n(α+ γ + 2)σ
c2 −

(α− 1 + 2ρ)(α+ 2)nαn−1(α+ γ)σ(α+ γ + 2)σ

(α+ 1)2n(α+ γ + 1)2σ
c21
2

(22)

by lemma 2.4 we have the required inequality.

4. Conclusion

In this work we have been able to determine the univalency condition of the new class, its integral representa-

tions, sufficient inclusion conditions and coefficient inequalities of a subclass of analytics functions defined by

combination of two operators.
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