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Abstract: In this paper we investigate the following semi-linear structurally damped wave equation with nonlinear
memory

t
et — Amu + (—Au) 2wy = / (t—s) "u(s)|Pds, ne R t>0,
0

U(n: 0) = UO(T/) ) ut(’% O) = ui (77)7
where o € (0,2), v € (0,1), p€ R, p>1 and Ay is the Kohn-Laplace operator on the (2n+1)-dimensional Heisenberg

group H. We intend to apply the method of a modified test function to establish the nonexistence of global weak solutions

a

and to overcome some difficulties as well caused by the well-known fractional Laplacian (—A)z.
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1. Introduction and preliminaries

This paper is concerned with the nonexistence of global weak solutions for the following semi-linear wave

equation with nonlinear mixed damping term:

t
Uy — Agu 4+ (—Ag)Tup = / (t—s) "|u(s)|Pds, (1)
0
subject to the following initial conditions

U(U, 0) - UO(U)a ut(777 0) - Ul(ﬂ)a ne IRszrla (2)

where 0 <y < 1,0 € (0,2), p > 1, Ay is the Kohn-Laplace operator on the (2n + 1)-dimensional Heisenberg
group. The operator (—Ag)? accounts for anomalous diffusion. Our article is motivated by the paper of A.

Hakem et al. [3] which deals with the blow-up of solutions for the following Cauchy problem
¢
upr — Au+ |u|™ tuy = / (t—s)""u(.,9)|Pds; t>0, xzeR",
0

subject to the initial data

uo(z,0) = ug(z), u(z,0) =uq(x),z € R,
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where the unknown function v is real-valued, n > 1, 0 <~y <1, m > 1 and p > 1. More precisely, in
[3] it is proved that if

n < min{ 2(m + (1 —)p) 2(1+(2—7)p) }

=1+ (1-7m-1) (@0e 1))

or p < %, then the solution of the above problem does not exist globally in time. Recently, T. Dao and A.Z.

Fino in [4] have succeeded to prove blow-up results to determine the critical exponents for the following Cauchy

problem for semi-linear structurally damped wave model with nonlinear memory:

t
utt—Au—l—,u(—A)%ut:/(t—s)_"’|u(s)|pds, zelR", ¢t>0,
0

u(z,0) =up(x) , w(x,0)=mwui(x),

where > 0, o € (0,2) for some v € (0,1) and p > 1, by using a modified test function method. Namely, it

was shown that, if

24+ (1-v)(2-9)

<p.=1
P=Pe +max[n—2+’y(2—&)70]’

/ (@) + (~2)Fup(a)dr > 0,

then, there is no global (in time) weak solution. The problem of nonexistence of global solutions in the Heisenberg
groups was previously analyzed by several authors from a different point of view in recent years (see [2], [5],[7],
[8] and references therein). For instance, see the papers [5], [6], [7], [8],[12] and references therein for a variety
of problems related to Heisenberg groups and partial differential equations in Heisenberg groups.

The paper is organized as follows. In the next section we give some auxiliary results for the Heisenberg
group H, the operator Ay and Riemann-Liouville fractional differentiation and integration. In Section 3, we

formulate and prove our main result.

2. Auxiliary Results

In this section, for the sake of the reader, we give some known facts about the Heisenberg group H and the
operator Ag.

The Heisenberg group H whose points will be denoted by 1 = (x,%,7), is the Lie group (R?"*!;0) with

the non-commutative group operation o defined by

n
non = <w+x’7y+y’,7+7’+22(%-yé—xé-w)),

i=1
for all n = (z,y,7),7 = (¢/,y/,7") € R" x R"® x R, where - denotes the standard inner product in R™. This

group operation endows H with the structure of a Lie group.

The Laplacian Ay over H is obtained from the vector fields X; = % + 2yi% and Y; = ai

Vs - 2:1;75%’ by

AHZZ(X3+1/;2).

i=1
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Observe that the vector field T = 8% does not appear in the equality above. This fact makes us presume

a ”loss of derivative” in the variable 7. The compensation comes from the relation
[(X;.Y;] = —4T6;;, i,j=1,2,3,...,n.

The relation above proves that H is a nilpotent Lie group of order 2. The sub-Laplacian Ay on H is

"/ 92 0? 0? 0? o2
Ay = st oy i —Ar——— A ) o ) -
§ Z ( T3 - Yi M 0x;07 v 0y;0T 4l +yZ)@ﬂ)

A natural group of dilatations on H is given by
Sx(n) = Az, Ay, A1), A >0,

whose Jacobian determinant is A, where Q = 2n + 2 is the homogeneous dimension of H.
The operator Ay is a degenerate elliptic operator. It is invariant with respect to the left translation of H and

homogeneous with respect to the dilations &y . More precisely, we have
Ar(u(non)) = (Aru)(non'), Au(uody) = A*(Agu) 0 dx, 7,7 € H.

The natural distance from 7 to the origin is introduced by Folland and Stein, see [6],

1
n 2\ 4
T e (z@:% m) |

i=1

For the reader convenience, we present some definitions and results concerning the fractional integrals
and fractional derivatives that will be used hereafter.

We denote by AC[0,T] the space of all functions which are absolutely continuous on [0,7] with 0 < T <
00.

Definition 2.1. ([13]) Let f € IL'(0,T) with T > 0. The Riemann-Liouville left- and right-sided fractional
integrals of order « € (0,1) are defined by

I5f(t) = ﬁ/o (t—s)" 1= f(s)ds, t>0, (3)
and
T
Iipf(t) = ﬁ/t (t—s)" U= f(s)ds, t<T, (4)

respectively, where T is the Euler gamma function.

Definition 2.2. ([13]) Let f € AC[0,T] with T > 0. The Riemann-Liouville left- and right-sided fractional
derivatives of order € « € (0,1) are defined by

D) = G 10 = Fray o [, (=97 s >0 )
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d 1 d

T
Dijrf(t) = = Iy (t):_m%/t (t—s)""f(s)ds, t<T, (6)

respectively.
Proposition 2.1. ([18]) Let T >0 and « € (0,1). The fractional integration by parts formula
T T
| rongawi= [ g 0gar @
is valid for every f € Itol‘T(]Lp(O,T)) and g € Ig‘lt(]Lq(O,T)) such that % + % <1+« with p,q > 1, where

{r(ILP(0,7)) = {f =Ijsh, he LP(O,T)},

and

S0, T) = {f = I§h, heLO.T)}.
Proposition 2.2. (/9]) Let T >0 and o € (0,1). Then, we have the following identities:
D Lo f(t) = f(t), ae t€(0,T) forall fel”(0,T) with 1<r<oo, (8)

and
(—1)" D™Dy f =Dyt f forall  f € AC™0,T], (9)

t[t

where

AC™ 0, T] = {f . [0,T] — R, such that D™f ¢ AC[O,T]},

and D™ = jt—r,; is the usual m times derivative.

Lemma 2.1. ([9]) Let T > 0,0 < a <1 and m > 0. For all t € [0,T], we have

m4o t ? _ F(ﬁ + 1) —(m+a) 4 framm
Dijr (1_T> _r(5+1—m—a)T i (1_T) ' (10)

Lemma 2.2. ([4]) Let T > 0,0 < a <1,m >0 and p> 1. Then, we have

T
| v Ao a - etz (11)

3. Main results

Before stating our main result, we define weak solutions for (1)-(2).
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Definition 3.1. A function u € IL? ((0,7), ILP(R*"*")) nIL ((0,T), IL*(IR***")) is said to be a local weak
solution of (1)-(2) subject to the initial data (ug,u;) € H?(IR** ') x IL?(IR***!) if the following formulation

T
v [ [ B0 metn i+ [ .0

m2n+1

- / wo(m)pr(n, 0)dy + / (— Am) Fuo(n)p(n, 0)d
R2n+1

R2n+1

T T
:/l/ 1@@%Mﬁ®ﬁi//) u(n,t)Aup(n, t)dndt
0 R27+1 0 R2n+1
T o
[ A et s
0 IR,2"+1
holds for any regular function
@ € C((0,T]; H7(R*™1)) n C ((0, T]; H*(IR**1)) N C? (0, T); L*(R*"H1)

such that o(n,T) =0 and ¢,(n,T) = 0 for all n € IR*"*. The solution is called global if T = +oo0.

Our main result reads as follows.

Theorem 3.1. Let 0 < 0 < 2,6 = min(o,1) and n > 1. We assume that the initial data (ug,u1) €
Ho(R*™Y) x IL2(IR*™ ™) satisfy the following relation

Z;H}mw%+@Am%mmmn>g )
If
. Q+2-0
PEPT o tq 2 (13)
or
1
p<—,
v

then no nontrivial global weak solutions exist for problem (1)-(2).

Proof. Throughout, C denotes a positive constant, whose value may change from line to line. The proof is

based on a contradiction. Suppose that u is a local weak solution to (1)-(2), then u satisfies

T
v [ 0+ [ .0

Ui
]R2n+l

—/ WW%W®M+/ (—Am) 2 uo(n)e(n,0)dn
]:RQn+l

R2n+1

T T
:/./ Mmm%MﬁMﬂ—/‘/ u(n, t) Amp(n, t)dndt
0 [R2n+1 0 ]:R2n+1
T a
[ -28)E e, tande,
0 ]:R2n+1
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where o =1 — € (0,1), for all test function ¢ such that ¢(n,T) = ¢:(n,T) = 0 for all T >> 1. We define

the following auxiliary functions:

B
o) =& (%), @00 = orl)e(t), b(t) = (1 - ;) 7
where ¢ is a non-negative smooth function such that
o(x) = o(|z]), #(0)=1, 0<¢(r)<1, for r>0. (15)

Moreover, ¢ is decreasing and ¢(r) — 0, as r — oo sufficiently fast. Then, we define the test function
@(n,t) = Dijrp(n,t) = ¢r(n) Dyjr(¥(1)).
From (14), using (9) and (10), we have
T o
v [ I ) Dge e tnde + T [ (o) + (~88) Fuan)) (i
0 mR2n+1 R27+1
T
—ere [ wmontdn= [ [l 0on(n D (0(0)dni (16)
R2n+1 0 R2n+1
T T )
[ [ w0 ) dsortdnde+ [ [t 0D (000 (~Aw) (Gl
0 R2n+1 0 R27+1

Using (7) and then (8), we arrive at

2n+41

Ber [ )+ (-aa) Fun)ontndn - T [ wmontndy
T T
= u 2+« _ w o
=0 [ [ oD ma =0 [t 0D O) Ssontmant (17

e / / (i, ) DY (6(6)) (— D) ¥ (Sr(n))dndt = A() + Bw) + C(8),
0 Jmzn+1

where

T
h=[ [ luoPem
0 IR2"+1

On the other hand, using Holder’s inequality with % + z% =1, we can proceed the estimate for A(v)) as follows:

Al <c [ ] lontlDE w0 dn

- C/O /m [u(n, D)7 (0, )7 (0, )or (0) | DI52 (0 (1))|dndt

e

<cry ( L] enmwe) Df&aw(t)np’dndt)
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At this stage, we pass to the scaled variables

G U
’ R

-t
t=— and 7= (& y,7) suchthat 7= =

T il
T R2’ R

Using Lemma 2.2, one has
i e 1 5 4,
JA(w)| < CIY Ry T7 ~27°,

Similarly, one obtains

L T
B)| < CIf ( / /{ L lent”

1 9
< CIFR?Y *Tv™°

4
Y

C1LE

w(t))—‘?DﬁTw(t))v“|AH¢R<n>|p’dndt>

)

where

T
I = / / fu(n, BB, £)dndt.
0 {Inlu>R}

Moreover, we can proceed the estimate for C'(¢)) as follows:

.
o7

P P

cw) < cr ( I 27L+1<¢R<n>>—p<w<t>>—‘¥|D;;a<w(t>>|p’|<—AH>%¢R<n>|ﬂdndt>
< CIFRY TV

Combining the estimates from (18) to (20) into (17 ), one deduces that

I + CT_“/

IR2n+1

(ur () + (~ ) S () b () — CT—1=2 / o (n) b ()i

]R2'7L+1
5 L ol —a—1 9 L 2 q 22,1 4
<CI? (Rv’ Tw =o' 4 RV T ) +CIFRY 2TV O

Hence, one has

L+cre / (s (1) + (—Asg) Fuuo(n)) ()

R2n+1

1 1
< CI{RgTi‘“ (T*+T7'R77)+ CI;Rg‘QTﬁ‘a +orte / uo(n)dr(n)dn.

R2n+1

(18)

(22)

Because of the assumption (12) and the fact that ¢r(n) — 1, as R — oo, there exists a sufficiently large

constant Rg > 0 such that it holds

[ o)+ 88 Euata)ntndy 0.

(23)

for all R > Ry. It is easy to see that the inequality (13) is equivalent to 1 — ap’ + % <. So, we have

2—6 —

to consider two cases:
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1. Case 1. If 1 —ap’ + % - % <0, then we take R = T'7 . Therefore, we clearly have from (22) and (23)
that

L 1 @ 2 1
h<errrt TR Lor e [ u)ontidy
R2TL+1

Thanks to the following Young inequality:

a? b
abg——l——/ for all a,b >0,
p p

with
i A g Q 2
a = Ilp, b = TP/ at (2—5)p’ 2*[”

we conclude that

1 C an' -9 2p —l—a
pll < ETl ap'+3% -2 | op-1 / , uo(m)or(n)ds. (24)
]R, n+41

It is clear that if 1 —ap’ + % ;f:} < 0, then by letting T'— 400, we deduce that w = 0. By invoking (22),

we easily obtains

/ (ur () + (~Ag) Fug (1)) b () < OT / wo(m)r(n)dn
m2n+l an«Fl

Hence, passing to the limit in the above inequality as T goes to +00, one obtains a contradiction to (12).

2. Case 2. If 1 —ap’ + % - ;f =0, then we can see the following estimate from (24)

1 C
]7[1 < St CT‘HX/ uo(n)or(n)dn

IR2n+1

Hence, it follows that I; < C', as T'— +o0o0. By the dominated convergence theorem, one has

+oo
A R / [ a0 s tnde = tim 1, < C.
0 R2n+1 T—+oco ]R2n+1

which yields, u € ILP ((O, +00) X IRQ”H). On the other hand, repeating the same calculations as above, with

R = TﬁLfﬁ, where 1 < L < R is large enough such that when R — +o0o do not have L — +o0o at the

same time, we arrive at

1 _20-5) ___Q _o—3& + +L_
I <CIy (T -5 ], G-ow 4T 2-5 ] (- U)p/ 7= U)+I L a)p/ P

+Cr e /IR%+1 uo(n)pr(n)dn

Therefore, using Young’s inequality with

1 2(1 5)

Q
b = T —c L (2-3)p’ y

l + 2,
a=1I7, b=T 5[ a7t
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one concludes that

1 C 2(1-5)p Q (c-5)0 __Q-op’ Lo Q 42
*,Il < - (T 27521 L 2-75 _|_T7T5PL7 27&p ) +]2”L (2—&)p/+275
p

p
(25)
vere [ i
R27+1
We have to distinguish two cases:
e If 0 € (0,1], then o = &. Consequently, using the fact that u € ILP ((O, +00) X ]RQ”H), one has
lim Iy = lim u(n, t)[Po(n, t)dndt = 0.
T oo 2 Tostoo {ITIIHETﬁLfﬁ} I (77 )| 90(77 ) ul
Taking into account the inequality (25), it follows by letting T'— +o0 that
+oe _Q Qo
lu(n, t)|Pdndt < C (L 25 4 [ )
0 R2n+1
Applying similar arguments as in Case 1, one concludes the desired result.
e If 0 € (1,2], then & = 1. Due to the fact that u € IL” ((0, +00) x ]Rznﬂ), we get
T
lim I = lim / / lu(n, t)|P@(n, t)dndt = 0,
T—+o00 T—+o0 Jo {In|le>TL-1}
which implies, as T — +o00, that
“+o0
| [ o < oz
0 IR2n+1
Employing similar arguments as in Case 1, one obtains a contradiction with the fact that
[ )+ (-82)%) wo(adn > .
[R2n+1
1
3. Case 3. If p< 5 Substituting R = Ln(T') in (22), we may immediately derive
neor [ () + (5w Fus(n) or(ndy
IR n
1
< CIF (Ln(T) 7 T7 ~* (I72 + T-'R™7) (26)

]

+ CIF (Ln(T))» 2T~ 4 OT 1= / wo(n)dr(n)d.

R2n+1

Letting R — +o00 in the above inequality, one obtains
[ )+ (8w Fuo(m)) dn <0,
IR2"+1

1
where we have used the fact that — — a < 0. This is the desired contradiction. Summarizing, the proof of
p

Theorem 3.1 is completed.
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