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Abstract: We investigate the effect of the restriction and induction functors on the indecomposable modules of finite

cyclic p -group algebra over a field of characteristic. Such functors are significant in studying modules in blocks with

cyclic defect groups.
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1. Introduction

It is known that the cyclic p -group G = Cq =< x : xq = 1 > ; q = pa and p is a prime number has q

non-isomorphism classes of indecomposable modules over a field of characteristic p (Higman [6]). The Green

ring of G has been a subject of studies by many authors such as Green [5], Srinivasan [12] and T. Ralley [11].

The aim of this paper is to determine the effect of the induction and restriction functors on the indecomposable

kG-modules. The induction functor is straightforward (Theorem 3.1); thanks to the Green indecomposable

theorem, while the restriction functor turns out to be less obvious. We also determine the vertices and sources

of the indecomposable kG-modules (Theorem 3.5). Restriction and induction of indecomposable modules for

cyclic groups are essential in dealing with modules in blocks with cyclic defect groups (see for instance [9], [7]).

2. The indecomposable modules

Let G = Cq =< x : xq = 1 > be the cyclic group of order q = pa for some prime p and let k be a

field of characteristic p . We then have kG =
∑q−1
i=0 kx

i = kG =
∑q−1
i=0 k(x − 1)i . On the other hand, since

(x − 1)q =
∑

0≤i≤q(−1)ixq−i = xq −
(
q
1

)
xq−1 + · · · − (1)q . we conclude, by taking u = (x − 1). that kG =

k− alg < u/uq = 0 > . It is known, by Higmann criterion (see [2], Theorem 62.21), that such a group algebra is

of finite representation type and has q classes of indecomposable kG -modules Vi = (V ai ); i = 1, 2, . . . .q . where

Vi = kG/(x− 1)ikG.dimkVi = i .

Theorem 2.1. Every indecomposable kG-module is isomorphic to one of Vi = (V ai ); i = 1, 2, . . . .q .

Proof. 1. Vi has a k -basis

1̄, ū, ū2, . . . .ūi−1 (1)
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where ū = u+ (x− 1)ikG . We notice that xū = x((x− 1) +uikG) = (x− 1) +uikG+ (x− 1)2 +uikG = ū+ ū2

Hence xūσ = ūσ + ūσ+1 . therefore relative to the basis (1) we get a matrix representation

x 7→


1
1 1

1 .
. .

1 1


i×i

= ρ(x)

Note that xūi−1 = ūi−1+ūi = ūi−1 since ūi = ui+uikG = 0̄. So if you look at the commutant (endomorphism)

algebra of Vi

E(ρ) = {T ∈Mq(k)/Tρ(x) = ρ(x)T} =


a
b a
. . .
. . . .
c . . .
d c . . b a

 /a, b, . . . .c, d ∈ k}

we notice at once that it is a local algebra, since F 2 = F ;F ∈ E(ρ) ⇒ F = 0 ∨ F = Iq Hence Vi is

indecomposable.

2. It is clear that if i 6= j then i = dimkVi 6= dimkVj = j and so Vi � Vj .

3. To show that Every indecomposable kG -module is isomorphic to one of Vi = (V ai ); i = 1, 2, . . . , q , we

note that kG = k − alg < u/uq = 0 >∼= k[t]/tqk[t] , where k[t] is the polynomial ring in t with coefficients in

k . Therefore any kG -module U can be considered a left k[t] -module by the action (k[t]× U → U ; [(f, u) 7→
(f + tqk[t])u]) and U = Vi1 ⊕ Vi2 ⊕ Vik , where ij ∈ {1, 2, . . . .q} . Since the polynomial ring k[t] is a principle

ideal domain, we have U = k[t]s⊕k[t]/f1k[t]⊕ . . . k[t]/frk[t] with s = 0 ; since kG is torsion, also fi is non-unit

and fi/fi+1;∀i = 1, 2, . . . , r − 1 (See [3],theorem2(10.6)). It follows that U = k[t]/f1k[t]⊕ . . . k[t]/frk[t] . Now

tqU = 0 ⇒ tq(k[t]/fik[t]),∀i ⇒ tqk[t] ⊂ fik[t] ⇒ tq = fia.a ∈ k[t] . But since k[t] is a unique factorization

domain, we have fi = λts, λ ∈ kx, 1 ≤ s ≤ q . Hence fik[t] = tsk[t] and k[t]/fik[t] = k[t]/tsk[t] ∼= Vs . This

completes the proof.

. It is easy to deduce that Vi is projective kG -module if and only if i = w ,in which case Vi = Vq = kG .

The first notion need to be investigated is the projective cover of nonprojective indecomposable kG -modules.

Theorem 2.2. ([2], Exercise 6 page 829) For all 1 ≤ i ≤ q we have:

1. Ω(Vi) ∼= Vq−i

2. Ω2(Vi) ∼= Vi

Proof. 1. Define εi : Vq(∼= kCq) → Vi as follows: εi(1̄) = 1 + uikG .It is clear εi is a kG-epimormism with

Kerε = Vq−i ≤ J(Vq). since J(Vq) �max Vq . Therefore εi is essential and so Vq(∼= kCq) is the projective cover

of each Vi and Ω(Vi) = Kerεi = Vq−i .

2. By the same procedure as in (1), we see that Ω2(Vi) = Vi .
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It follows from 2.2(1) that the indecomposable modules Vi, Vq−i ; being the two ends of the minimal

projective presentation 0 → Vq−i → Vq(∼= kCq) → Vi → 0. have the same vertices (we shall determine Vertex

(Vi) lately in this paper). It is known that all the subgroups of the cyclic group G = Cq are cyclic and are

indexed by the divisors of the number q (see [10], Theorem 4). We now study the effect of the induction and

restriction functors on the modules Vi = (V ai ); i = 1, 2, . . . .q .

3. The induction functor

Now let H = Gα =< xp
α

>= {1, xpα , x2pα, . . . , x(p(α−α)−1)pα} . Then it is clear that Gα ≤ G = Cq(= Ca), and

G = H ∪Hx∪ · · · ∪Hxpα−1 with | G : Gα |= pα . We start by investigating the effect of the induction functor.

According to theorem 1.1, the group H = Gα have indecomposable kH -modules V
(α)
j ; j = 1, 2, . . . .pα−α . By

the Green indecomposability theorem (see[1], Theorem 19.22] the induced kG -module (V
(a−α)
j )G (as G/Gα is

p -group) is indecomposable of dimension j | G : H | . Hence, by 2.1 (V
(a−α)
j ) ↑G∼= V aj|G:H| . Summarizing we

have:

Theorem 3.1. (V
(a−α)
j ) ↑G∼= V aj|G:Gα| = V ajpα

The following theorem determines the subgroups Gα of G = Cq for which the module Vi = V ai is relative

projective which is a step towards finding the vertices of the indecomposable modules Vi = V ai .

Theorem 3.2. The module Vi = V ai ; 1 ≤ i ≤ pα is a Gα -projective, where Gα =< xp
α

> . if and only if pα | i .

Proof. Vi = V ai is Gα -projective if and only if Vi | (V αj ) ↑G for some 1 ≤ j ≤ pa−α . But by Green’s theorem

V
(a−α)
j is indecomposable kG-module of dimension j | G : Gα |= jpα . Hence Vi = V ai is Gα -projective if and

only if Vi ∼= V
(a−α)
j . Comparing dimensions, we then have Vi = V ai is Gα -projective if and only if i = jpα ,

that is if and only if pα | i .

We now consider the vertex vx(V ) and the source sc(V ) of indecomposable K(g = Cq)-modules. We

shall use the following known general fact which relates the dimension of an indecomposable kG -module to the

index of its vertex in a Sylow p -subgroup of G .

Theorem 3.3. ([1],Theorem.19.26) If V ∈ indec(kG) and S ∈ vx(V ) then | Gp : S || dimV . So if p - dimV
then Gp ∈ vx(V ) .

The previous theorem implies at once the following:

Lemma 3.1. If p - dimVi = i then vx(Vi) = G = Cq .

It remains then; in order to determine the vertex of the indecomposable kG-modules Vi , to consider

vx(Vi) in the case when p | dimVi = i

Theorem 3.4. For Vi = V
(α)
i ∈ indec(kG) we have

1. vx(Vi) =< xq−i >
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2. sc(Vi) = V a−αi/pα . (Note:i/pα ≤ pa−α = pa/pα since i ≤ pa )

Proof. (1) We need to distinguish two cases:

(I) If p - dimVi = i then vx(Vi) = G = Cq =< xq−i > , since hcf(q, q− i) = 1 which implies that O(xq−i) = O(x).

(II) If p | dimVi = i ; say i = pmt , m is maximal, then hcf(q, q − i) = pm 6= 1 and so O(xq−i) = q/hcf(q, q − i) =

pa−m . Hence < xq−i >= Gm . On the other hand Vi = (V a−mt ) ↑G and < xq−i >= Gm is minimal subgroup

with this property by the choice of m . this completes the proof.

(2) Clear since V a−αi/pα = V ai/pα.pα = V ai ; by 2.1.

As a corollary to the previous theorem we have the following:

Corollary 3.1. vx(Vi) = vx(Vq−i)

Proof. vx(Vi) =< xq−i >=< xqx−i >=< x−i >=< xi >=< xq−(q−i) >= vx(Vq−i).

4. The restriction functor

We now take H = Gα =< xp
α

>= {1, xpα , x2pα, . . . , x(p(α−α)−1)Pα} . Then Gα ≤ G with | Gα |= O(x)/pα =

pa/pα = pa−α ,G = H ∪Hx ∪ · · · ∪Hxpα−1 and | G : Gα |= pα . Consider the restriction module (V ai ) ↓H to

the subgroup H = Gα . Let v = xp
α − 1 = (x− 1)p

α

= up
α ∈ kH , then vp

a−α
= 0 and the element v generates

the group algebra kH = kGα of H = Gα ; i.e.kGα =< v = up
α

/(up
α

)p
a−α

= 0 > . We need to know how

v acts on basis 1 of Vi = V ai . We have vūσ = up
α

ūσ = ūσ+p
α

and so 1̄ 7→ ūp
α

, ū 7→ ū1+p
α

, . . . .etc . Write

i = i0 + i1p + i2p
2 + · · · + ivp

α, 0 ≤ ik ≤ p − 1. Hence the generatorv = xp
α − 1 = (x − 1)p

α

= up
α ∈ kGα of

kGα is represented on Vi = V ai by the matrix:

1
.

1 1
1

.
1

1


Note that: v1̄ = up

α

1̄ = ūp
α

, vū = up
α+1, vū2 = up

α+2, . . . , vū(i−1)−p
α

=

ūi−1, vūi−p
α

= 1̄, vūi−p
α+1 = ū, vūi−p

α+2 = ū2, . . . , vūi−1(vūi−p
α+(pα−1)) = ū = ūp

α−1

Example 4.1.1. (1) p = 2, q = 24, | H |= pa−α = p = 2(α = 3), H =< x8 >, (x − 1)8 = u8 ∈ kH and ;

kH = k − alg < u8 >, V9(= V
(4)
9 ) =< 1̄, ū, ū2, . . . , ū8 >; ū = u+ u9kG . Consider the restriction (V

(4)
9 )<x8> to

C3 =< x8 > , (note that | C3 |= 24−3 = 2 hence the largest dimension of an indecomposable kC3 -module is 2).

Since u8ūi = ūi+8 , and since ū9 = 0 , the generator u8 of kH is represented on V
(4)
9 by the matrix:

u8 7→



1
1

1
1

1
1

1 1


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It is clear that x81̄ = 1̄ + ū8 also x8ū = ū since ū9 = 0 in V
(4)
9 . The fact that xūσ = ūσ + ūσ+1 and

char(k) = 2 implies that xiū = ū + ūi+1 . Therefore x8ū2 = ū2, x8ū3 = ū3, . . . , x8ū7 = ū7, x8ū8 = ū8 which

implies that (V
(4)
9 )<x8> = (k1̄ + kū8)⊕ kū⊕ ū2 ⊕ kū3 ⊕ · · · ⊕ kū3 .

x8 7→
(

1
1 1

) (
1
) (

1
) (

1
)
. . .

(
1
)

Hence (V
(4)
9 ) ↓<x8>= V

(1)
2 ⊕ V (1)

1 ⊕ · · · ⊕ V (1)
1 = V

(1)
2 ⊕ 7V

(1)
1 .

2. (2) Similarly we consider the restriction of (V
(4)
9 ) to C2 =< x4 > , (note that | C2 |= 24−2 = 4 = 22 , hence the

largest dimension of an indecomposable kC2 -module is 4 . The following matrix represents the C2 =< x4 >-

action on (V
(4)
9 ) .

u4 7→



1
11

1
1

1
1

1
11


Hence x41̄ = 1̄ + ū4, x4ū2 = ū2 + ū6, x4ū3 = ū3 + ū7, x4ū4 = ū4 + ū8, x4ū5 = ū5 , since ū9 = 0 in (V

(4)
9 ) .

Also x4ū6 = ū6 ; since ū10 = ū9ū = 0̄ū = 0̄ and x4ū7 = ū7 ,x4ū8 = ū8 . Therefore (V
(4)
9 )<x4> =

(k1̄⊕ kū4 ⊕ kū8)⊕ (kū⊕ ū5)⊕ (kū2 ⊕ kū6)⊕ (kū3 ⊕ kū7) .

x4 7→

1
1 1

1 1

 ⊕ (
1
1 1

) ⊕ (
1
1 1

) ⊕ (
1
1 1

)

Hence (V
(4)
9 )<x4> = V

(2)
3 ⊕ 3V

(2)
2 .

(3) Now consider the restriction of (V
(4)
9 ) to G1 =< x2 > . It follows that α = 1, pα = 2 and that | G1 |= 8 .

We also have (V
(4)
9 )G1

= V
(1)
8 ⊕ V (1)

1 . Note also that in the previous two cases, the number of indecomposable

summands of (V
(a)
i ) ↓Gα ; 1 ≤ i ≤ pα = q . (with possible repetition) equals pα provided that i > pα .

What about the case when i ≤ pα . Consider the following case:

(4) Now we consider the restriction of (V
(4)
5 ) to the subgroup G3 =< x8 > has k-basis 1̄, ū, ū2, ū3, ū4 . As we

saw before we have: xj ū = ū + ūj+1 and so xj ūt = ūt + ūj+t x81̄ = 1̄ + ū8 = 1̄ , since ū8 = 0̄ as ū5 = 0̄

x8ū = ū, x8 + ū2 = ū2, x8 + ū3 = ū3, x8 + ū4 = ū4 . Therefore (V
(4)
5 ) ↓G3

= 5(V
(3)
1 )

In order to study the restriction of the indecomposable kG -module Vi to a subgroup we need to investigate

the action of the group generators on the basis elements of Vi . First we have the following lemma:

Lemma 4.1. In Vi , x
j 1̄ =

∑j
s=0

(
j
s

)
ūs .

Proof. Note first that x1̄ = x+(x−1)ikG = 1+(x−1)+(x−1)ikG = 1̄+ū , x21̄ = x1̄+xū = 1̄+ū+ū+ū2 ,x31̄ =

x1̄ + 2xū + xū2 = 1̄ + ū + 2(ū + ū2) + ū2 + ū3 = 1̄ + 3ū + 3ū2 + ū3 , x41̄ = x1̄ + 3xū + 3xū2 + xū3 =

1̄ + 4ū+ 6ū2 + 4ū3 + ū4 ,. . . . Hence xj 1̄ =
∑j
s=0

(
j
s

)
ūs .
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Also we have

Lemma 4.2. In Vi , we have xj ūt =
∑j
s=0

(
j
s

)
ūt+s .

Proof. We have: xūt = x(x− 1)t + (x− 1)ikG = (x− 1)(x− 1)t + (x− 1)t + uikG = ūt + ūt+1 , x2ūt = xxū2 =

x(ūt + ūt+1) = ūt + ūt+1 + ūt+1 + ūt+2 = ūt + 2ūt+1 + ūt+2 , x3ūt = xx2ūt = x(ūt + 2ūt+1 + ūt+2) = ūt + ūt+1 +

2(ūt+1 + ūt+2) + ūt+2 + ūt+3 = ūt + 3ūt+1 + 3ūt+2 + ūt+3 , x4ūt = xx3ūt = x(ūt + 3ūt+1 + 3ūt+2 + ūt+3) = ūt +

ūt+1+4(ūt+1+ūt+2)+6(ūt+2+ūt+3)+4(ūt+3+ūt+4)+ūt+4+ūt+5 = ūt+5ūt+1+10ūt+2+10ūt+3+5ūt+4+ūt+5 .

Hence xj ūt =
∑j
s=0

(
j
s

)
ūt+s .

Remark 4.1. We can deduce the formula xj 1̄ =
∑j
s=0

(
j
s

)
ūs of 4.1 from the formula xj ūt =

∑j
s=0

(
j
s

)
ūt+s of

4.2 by letting 1̄ = ū0 .

Corollary 4.1. In Vi , we have xp
α

1̄ = 1̄ + ūp
α

Proof. Apply the formula in 4.1.

Corollary 4.2. In Vi , we have xp
α

ūt =

{
ūt + ūt+p

α

: if t+ pα ≤ i− 1
ūt : if t+ pα > i− 1

Proof. From the previous lemma we have: xp
α

ūt =
∑pα

s=0

(
pα

s

)
ūt+s = ūt + ūt+p

α

, since
(
pα

s

)
= 0(modp). Now

we have two cases:

1. If t+ pα ≤ i− 1 then xp
α

ūt = ūt + ūt+p
α

2. If t+ pα > i− 1 then xp
α

ūt = ūt , since ūi = 0̄, we have ūt+p
α

= 0̄.

Lemma 4.3. Suppose that t 6= i− 1 . Then xp
α

ūt = ūt ⇐⇒ t+ pα > i− 1

5. Main results

We now summarize the results in the previous section and present the main results in this paper which determines

the number of indecomposable direct summands for the restriction of indecomposable k(G = Cq) -modules

to a subgroup of G . The following theorem determines the number of indecomposable summands in such

decomposition.

Theorem 5.1. The number of indecomposable k(Gα)-summands of (V ai ) ↓Gα is:

{
pα : if i > pα

i : if i ≤ pα

In the second case all the indecomposable summands are trivial.The following theorem determines basis

for the indecomposable summands of the restriction module:

Theorem 5.2. (V ai ) ↓Gα=
∑pα−1
j=0

⊕
(V

(α)
ij

) . In fact: (V ai )Gα =< 1̄, ūp
α

, . . . , ūi0p
α

> ⊕ < ū, ūp
1+α

, . . . , ū1+i1p
α

>

⊕ · · ·⊕ < ūp
α−1, . . . , ū2p

α−1, . . . , ū2p
α−1+ipα−1pα > , where ij is the least number with j+ ijp

(α) < i . Note that

when i ≤ pα this forces ij to be 0 and hence every direct kGα -summand in the above decomposition would be

one dimensional in this case.

130



Khammash and Makki

References

[1] C. Curtis and R. Riener. Methods in representation theory I. John Wiley. New York 1981

[2] C. Curtis and R. Riener. Methods in representation theory II. John Wiley. New York 1985

[3] P. M. Cohn. Algebra Vol 2. John Wiley and Sons 1979.

[4] J.A. Green, On the indecomposable representation of a finite group, Math. Z. 70(1959), 430-445.

[5] J. A. Green, The modular representation algebra of a finite group, Illinoi J.Math. 6(1962), 607-619.

[6] D. Higman, Indecomposable representation at characteristic p, Duke Math. J. 21 (1954) 377-81.

[7] G. HISS and N. NAEHRIG, The classification of the indecomposable liftable modules in blocks with cyclic defect

group, Bulletin of the LMS, Volume 44, Issue 5, 2012, 974–980.

[8] R. Knorr, Relative Projective Covers, in ”Proc. Of symp. Mod. Representations of Finite Groups”, Arhus University,

1978; Publication Series No.24, Math. Institute, Arhus University.

[9] S. KOSHITANI and C. LASSUEUR, Trivial source characters in blocks with cyclic defect groups, arXiv.org-math-

arXiv:2003.05243v1.

[10] W. Ledermann, Introduction to group theory, Longman 1981

[11] T. Ralley, Decomposition of products of modular representations,

[12] B. Srinivasan, The modular representation ring of a cyclic p-group, Proc. LMS (3) 14(1964) 677-688.

131


	Introduction
	The indecomposable modules
	The induction functor
	The restriction functor
	Main results

