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Abstract: In this paper, we use the direct method to prove two generalized quadratic functional inequalities with 2k-
variables and their Hyers-Ulam-Rassias stability. The first is investigated in Banach spaces and the last are investigated
in non-Archimedean Banach spaces. Then I will show that the solutions of the equation are quadratic mapping. These

are the main results of this paper.
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1. Introduction

Let X; and X5 be a normed spaces on the same field K, and F : X7 — X5. We use the notation H . H for all

the norm on both X; and X5. In this paper, we investisgate some quadratic functional inequality when X4
and X5 is a Banach spaces or X7 is a non-Archimedean normed space and X5 is a non-Archimedean Banach
space.

In fact, when X; and X is Banach spaces we solve and prove the Hyers-Ulam-Rassias type stability of

forllowing quadratic functional inequality.
k k k
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and when X; is a non-Archimedean normed space and X5 is a non-Archimedean Banach spaces we solve and

prove the Hyers-Ulam stability of forllowing quadratic functional inequality.
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The study of the functional equation stability originated from a question of S.M. Ulam [24], concerning
the stability of group homomorphisms. Let (G7 *) be a group and let (G’ , 0, d) be a metric group with metric
d(-,-). Geven € > 0, does there exist a § > 0 such that if f: G — G’ satisfies

d(f(z*y), f(z) o f(y)) <o

for all z,y € G then there is a homomorphism h: G — G’ with

a(f(2)h(2)) <

for all x € G, if the answer, is affirmative, we would say that equation of homomophism h(m * y) = h(y) o h(y)
is stable. The concept of stability for a functional equation arises when we replace functional equation by an
inequality which acts as a perturbation of the equation. Thus the stability question of functional equations is
that how do the solutions of the inequality differ from those of the given function equation.

The stability of quadratic functional equation was proved by Skof [21] for mappings f : E; — E2 where
E; is a normed space and Fs is a Banach space. Cholewa [5] noticed that the theorem of Skof is still true if

the relevant domain F; is replaced by an Abelian group. The functional equation:

fla+y) + flz+y) —2f(2) —2f(v)

is called the quadratic functional equation.
The functional equation:

I 1 () - 5 @) - 5 ) =0

1 .

is called a Jensen type the quadratic functional equation.
The first work on the stability problem for functional equations in non-Archimedean spaces was started
by Moslehian and Rassias [16]. Moslehian and Sadeghi [15] investigated the stability of cubi functional equations

in non-Archimedean normed space

In [10] Gildny showed that is if satisfies the functional inequality

|27(@) +27 () = F(ay™) || < (17 (a)|
then f satisfies the Jordan-von Newman functional equation

2f(2) +2f(v) = f(wy) + [ ey ™) (3)

Seen [20]. Gildnyi [11] and Fechner [8] proved the Hyers-Ulam-Rassia stability of the functional inequality.
Choonkil Park [18] obtained the solutions of the quadratic functional inequality. Recently, in [2, 14, 18] the
authors studied the Hyers-Ulam-Rassia stability for the following functional inequalities in Banach space and
non-Archimedean Banach space:

|£(@+v) + 12+ ) —27(2) - 200

<[ 4 1Y - 55 @) - 550)] 4)
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and
[r ) + (552 - 500 - 5000
<[ f@+v) + 1@ —y) —2f(2) — 27 () (5)
Next
|1+ + 12 -2 — 2 () — 21 )|
<G+ D+ =D - 15 -0 ©)
and

[rt 4 )+ 15t -5 - 1550 - 16|

T+y T+y Tty
<||rERE o) + 1 (-2 —2r (B2 —21(9)|. (7)
In this paper, we solve and proved the Hyers-Ulam-Rassias type stability for two quadratic functional
inequalities (1)-(2), ie the quadratic functional inequalities with 2k — variables . Under suitable assumptions
on spaces X3 and X, we will prove that the mappings satisfying the quadratic functional inequatilies (1) or
(2). Thus, the results in this paper are generalization of those in [2, 14, 18] for functional inequatilies with

2k — variables.
The paper is organized as followns:

In section preliminaries we remind some basic notations in [15, 16] such as We only redefine the solution
definition of the quadratic equation function.
Section 3: is devoted to prove the Hyers-Ulam stability of the quadratic functional inequalities (1) when we
assume that X; and X5 is a Banach spaces.
Section 4: is devoted to prove the Hyers-Ulam stability of the quadratic functional inequalities (2) when Xj is

a non-Archimedean normed space and Xz is a non-Archimedean Banach space.

2. preliminaries
2.1. non-Archimedean normed spaces.

In this subsection we recall some basic notations from [14-16] such as non-Archimedean fields, non-Archimedean
normed spaces and non-Archimedean Banach spaces. A valuation is a function | . ‘ from a field K into [0, c0)

such that 0 is the unique element having the 0 valuation,
M =0&r=0

|r-s| = |r||s],¥r,s € K

and the triangle inequality holds, i.e.,

|r+s| < |r|+ |s|,vr,s € K.
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A field K is called a valued field if K carries a valuation. The usual absolute values of R and C
are examples of valuation. Let us consider a valuation which satisfies a stronger condition than the triangle

inequality. If the strong triangle inequality is replaced by

|T+S| < max{’r , s|},Vr,s e K,
then the function | . | is called a non-Archimedean valuation. Clearly, |1| = | — 1| =1 and |n| <1,vn € N.
A trivial example of a non-Archimedean valuation is the function } - | talking everything except for 0 into 1

and ’O‘ = 0. In this paper, we assume that the base field is a non-Archimedean field with ’2‘ # 1, hence call it
simply a field. .

Definition 2.1. Let be a vecter space over a filed K with a non -Archimedean || . A function || - H X — [07 oo)

is said a non -Archimedean norm if it satisfies the follwing conditions:

. HxH =0 if and only if z = 0;
Nirall = Irllle] ¢ € K@ € %)

N+ ol < maw{ 2]l ly)] by € X hold.

Then (X, - ||) is called a norm -Archimedean norm space.

Definition 2.2. A sequence {xn} in a norm -Archimedean normed space X is a Cauchy sequence if and only
if {xnfxm} —0 .

Definition 2.3. Let {xn} be a sequence in a norm -Archimedean normed space X.

[ee] (oo}

. A sequence {xn}

converges to zero.

in a non -Archimedean space is a Cauchy sequence iff the sequence {an — xn}

n=1 n=1

. The sequence {xn} is said to be convergent if, for any € > 0, there are a positive integer N and x € X such

that
||xn — :cH <e¥Vn > N,

for all n,m > N. The we call x€ X a limit of sequence z,, and denote lim, o, £, = x.

. If every sequence Cauchy in X converger, then the norm -Archimedean normed space X is called a norm

-Archimedean Bnanch space.

2.2. Solutions of the equation.
The functional equation
fle+y)+ flz—y) =2f(z) +2f(y)
is called the quadratic equation. In particular, every solution of the quadratic equation is said to be an quadratic

mapping .
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3. Quadratic functional inequality in Banach space
Now, we study the solutions of (1). Note that for these inequalitie, X;and Xz is a Banach spaces. Under this

setting, we can show that the mapping satisfying (1) is qudratic. These results are give in the following.

Lemma 3.1. A mapping F : X1 — Xy satilies

k k k k k
\\F(ézmwzm+F<§zxk+j—zxj> ~2) F(EE) — 23 R ()|
j=1 j=1 j=1 j=1 1

j=1
—H T k2 TR T “R 2P (2))]
=1 j=1 Jj=1 7

(®)
Jj=1 j=1 X2
Jor all zj,xp4; € Xy for all j =1—=k if and only if F: Xy — Xy is quadratic.
Proof. Assume that F': X; — Xy satisfies (8).
Letting z; = x4 = 0,7 =1 — k in (8), we get
([2k =1[ =) [|F(0) [, <0
S0 F(0) = 0.
Letting 234, =0 and z; =« for all j =1 — k in (8), we get
| (k) = kf (@), <0 ©)
and so f(kx) =kf(z) for all z € X;.
Thus
1
(5) = £ 1@ (10)
for all x € X4 It follows from (3.1) and (10) that:
L F k L E k k l”k
Hf(%zxwﬂ'zzj)+f(EZ$k+j—sz)—QZ ﬂ QZf T H
Jj=1 Jj=1 Jj=1 j=1 j=1
1.1 b 1.1 b 2 & (Tt 2
sH;f(EZmﬁij)+;f(g2xk+j—2wj ;Z s %Zf(xj))’xz
j=1 j=1 j=1 = j=1 j=1
LI k
=G me + Z% I zxkﬂ S -2Xr -2Y ),
Jj=1 Jj=1 j=1
and so
1 E k k SUk k
f szk+j+zxj)+f Zxkﬂ Z% —QZf +1 QZf(%')
j=1 Jj=1 = J=1
for all zj,z4; € Xq forall j =1 — k. Hence F': X; = X5 is quadratic.
O

The coverse is obviously true.
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Theorem 3.1. Let ¢ : X2k — [0, oo) be a function and let F : X1 — Xy be mapping such that

P21, 2, ooy Ty Thp 1, Thog 2, ooy Tok) = Z Jw(ﬂ @ % ijl,ijz,...,%k) < o0 (12)
j=1
Lk k Lk k E e k
HF(EZka + D) (LY e — Y wy) —2) F(=) —QZF(%)‘ X,
j=1 j=1 j=1 j=1 j=1 j=1

X2

1o e 2 & xkﬂ 2 &
<[ kQZfﬂm pP L +Fk22wk+a R 2 ti) 2 E )= £ L F ()
j=1 = j=1 j=1 j=1

+ (21, 2, oy Thy Tho 15 Tht2, - T2k (13)

forall zj,xpy; € X, for all j =1 — k. Then there exists a unique quadratic mapping @ : X; — Xy such that

HF(:E) — Q(x)’ - < %gp(m,x, ...,:E,(),O...,()) (14)

for all x € Xy.

Proof. Letting z; = x4+, =0 for all j =1 — k in (13), we get

(]2k—1]—1)HF(O)‘X2 <0. (15)
So
F(0) =0.
Letting 234, =0, 2; =2 for all j =1— k in (13), we get
|F k)~ kF )|, < 30w 02,0,0,..,0) (16)
T 1 =z T
|F@) - kP (D) o S G 3 0:0.0)

Hence

|¥P () =k (

),

IN

m—1
. x
> e P

m

! (17)

INA

\
SN
<
—
T &
T =
=
-

“O
uO
“O
SN—

for all nonnegative integers m and [ with m > [ and all x € X;. It follows from (17) that the sequence

{k"F(k%)} is a cauchy sequence for all x € X;. Since Xg is complete space, the sequence {k"F(k%)}
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coverges.

So one can define the mapping @ : X; — X3 by

Q( ) lim k;"F(

for all x € X;. Moreover, letting [ = 0 and passing the limit m — oo in (17), we get (14).
Now, It follows from (12) and (13) that

k k k k k
x Tkt T
Q- 4> a) + QY =S ) — 2 ) Q) — 23 ()|
Jj=1 Jj=1 Jj=1 Jj=1 Jj=1 Jj= :
lim k" S I Tkt T
= R F(; for+1 +Fn;x])+F(; et _Fn;xﬂ) _QEF(k =) 2; G lx,
b T 1 il b T 1 k 2 k T 2 k T
. n + + +
S i k F(Fl s +k7;%)+F<FI s _Fn;x]) _%;F(kwjl) E;F(ki)
. n(T1 T2 LTk Tg+1 Tk42 L2k
+nh—>H;ok w(ﬁ’ﬁ"”’ﬁ’ E 7...7F)
L ap 1< T 1< 2. a 2
+ + +
=P+ e ) + P - ) - L F(EE) - R (18)
Jj=1 j=1 Jj=1 Jj=1 Jj=1 j=1
for all zj,z44; € Xq,forall j=1—%
So
k . k . k xk k
[CIODE- R SEDERTO D D L e ) =23 Q)|
j=1 j=1 j=1 j=1 J=1 J=1 ’
AR . AR . 2 & (2 2 o
+j j +
IR +p om) + QA T+ g w2 — g 0k )] T
for all z;, x4, € Xy, for all j =1 — k. By Lemma (3.1), the mapping @ : Xy — X3 is quadratic.
Next, suppose that T : X; — X2 be another quadratic mapping satisfying (14). Then we have
T
@ - T<f>H TG,
x T x
<|\cz< =P, TG -FGR)|,)
n T x 1 T T T
Sk (k"(p(ki’“k”’ 7kn70707 70)—’_}(}7%0(1{:7” k_i k_n7070 ,0))
n 2 ,T T
=k"- Ego(kin’kin’ akn70a07"'50>
n z z
<k"p (k" kn,...,kn,0,0,...,O) (20)

which tends to zero as n — oo for all x € X;. So we can conclude that Q(m) = T(ac) for all z € X;.

This proves the uniqueness of ). Thus the mapping @ : X; — X5 is a unique quadratic mapping satisfying
(14). O
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Corollary 3.1. Let r > 1 and 0 be nonnegative real numbers and F : X1 — Xg be a mapping satisfying
k

k k
HF Z$k+1+zx1 )+ F (= Zl“kﬂ ij)_QZF(xZH)_QZF(%‘)
j=1 j=1

j=1

X2

k k k k
1 1 P (@ P
HF k2zmk+] %g +F k2]zlxk;+J E;f Eg +j k]_ZIF(.’L'j)‘Xz
k k
+0(3_ llwills, + D lowsillx,) (21)
j=1 j=1

for all zj,x4; € Xy, for all j =1 — k. Then there exists a unique quadratic mapping Q : X; — Xg such
that

2k9
|F@) -Q@)|, <=zl (22)
for all x € X4
Theorem 3.2. Let ¢ : X2k — [0, oo) be a function and let F : X1 — Xy be mapping such that
sﬁ(wl,xQ,...,xk,xk+1,1’k+2,...,ka)
= Z k%?/} k]xl,ijg, ...,kj{L‘k, kj$k+1, ijk+2, ey kjl‘gk) < 0 (23)
=1
1> k 1k k k xk . k
“F(Ezkarj"’ij) +F (2w — Y wy) —2) F(=) —QZF(%‘)HX
j=1 j=1 j=1 j=1 j=1 j=1 2
1k k 9 K xk 9 k
< |7 ( k;?zxk” R 2 +szzxkﬂ @Z SFL PR S X F@),
j=1 j=1 j=1 j=1 j=1
+1/)(331,$2,-~-,$k,$k+1,$k~+27---,332k) (24)

for all zj, x5 € X1, for all j =1 — k. Then there exists a unique additive mapping @Q : X1 — Xo such that

@(x,x,...,a:,0,0,...,O) (25)

|re) - e, <7

, for all x € Xj.

Proof. Letting z; = x4, =0 for all j =1 — k in (24), we get

(|12 — 1] = 1) | F (o),

<0. 26
S (20)

So
F(0) =0.
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Letting x4, =0, 2; =2 for all j =1—k in (24), we get

|F(ke) =k (@) < (@.2,002,0,0,..,0) (27)
thus
1 1
HF(m) — EFUM)‘ X < Ew(x,x, .., 2,0,0, 7O)
Hence
1 1,
| (e) - gt x))x2
= z_: HkJ kﬂ'+1F(kj+1x)’ Xo
<IN L e M k92.0.0...0 28
— E; k‘]+1¢( x? x?"'7 'T) b 90 ) ( )

for all nonnegative integers m and [ with m > [ and all © € X;. It follows from (28) that the sequence

{k%F(k"x)} is a cauchy sequence for all 2 € X;. Since X5 is complete space, the sequence {k%F(k:”x)}
coverges.
So one can define the mapping @ : X; — X5 by

Q(z) := lim —f(k” )

7L—>OO

for all € X. Moreover, letting | = 0 and passing the limit m — oo in (28), we get (25).

We use the similar manner to the proof of Theorem 3.2 for the rest of the proof.

Corollary 3.2. Let r <1 and 0 be nonnegative real numbers and F : X1 — Xo be a mapping satisfying

k k k
HF Z$k+J+Z$] +F Zxk_;,_] Z ) ZF mk"t‘J ZF
j=1 Jj=1 Jj=1
F 1 k k 9 k . Tht 9 k -
IS i)+ S TR - ]

k k
O Nl + 3 llowssl") (29)
j=1 j=1

for all zj, x5 € X1, for all 5 =1 — k. Then there exists a unique additive mapping @Q : X1 — Xo such that

|7 _Q(m)H < k%iTH I (30)

forall x € X4
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4. quadratic functional inequality in non-Archimedean Banach space

Now, we study the solutions of (2). Note that for these inequalitie, X; is a non-Archimedean normed space
and Xy is a non-Archimedean Banach spaces. Under this setting, we can show that the mapping satisfying

(2) is quadratic. These results are give in the following. Assume that where k is a fixed positive integer with

|k| # 1.

Lemma 4.1. A mapping F : X1 — Xg satilies

k k k k
1 1 2 2
HF 2 Zxkﬂ EZ +F k2 Zxkﬂfgzxj)*g xkﬂ %ZF(IJ))HXZ
j=1 j=1 j=1 j=1 j=1
1 k k k . k
SHF(%Z%‘HH-Z%) Z£k+3_z ) -2 F( ];”)—ZZF(xj) N (31)
j=1 Jj= j=1 j=1 j=1
forall xj, x4 € Xy for all j =1—=k if and only if F': X1 — Xy is quadratic.
Proof. Assume that F: X; — X satisfies (31).
Letting 2; = 23x4; =0 for all j =1 — k in (31), we get
(26— 1] = 1)| P(0)] o <0
So
F(0) =0.
Other face
Letting 1 =, ¢j41 = 245 = 0,5 =1 — k in (31), we obtain
|~ FP@)|, <o
R Wk, =
and so F(%) %F(a:) Thus
1 & 1< 1 & 1 2N ha 2
HF(pzxkﬂ‘ +gzxa‘) +F(ﬁ2$k+a‘ %Zx‘) - ;ZF(T) - ;ZF(%))‘X
j=1 j=1 j=1 j=1 j=1 j=1 2
Fl Z$k+J+ZSIJJ +F l Z$k+3 i j giF(Lkﬂ)—gZF(gcj))
G (3 P e I Xa
1 1 k 1k k k . k
= LllF G e 4 3o m) 4 F (Y ownes = Do) 23 F(RE) 23 F(w)
j=1 j=1 Jj=1 Jj=1 J=1 Jj=1 :
L F k 1 k k . k
< HF(%Zxk-‘rj_Fij)+F(%sz+j—zx]’)—2ZF( I:‘J)_QZF(CC]')‘XQ (32)
j=1 j=1 j=1 j=1 j=1 j=1
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for all z;,z44; € Xy forall j =1 — k. Since ‘k’ <1

k k k k k k
1 1 Thtj
F(E Zkarj +Z.%'j) +F(szk+3 — Z{L‘j) — 2ZF( k;:j) —2ZF($J) =0
j=1 j=1 j=1 j=1 j=1 j=1
for all z;,z14; € Xy forall j =1 — k. On the other hand the converse is obviously true. O

Theorem 4.1. Let ¢ : X2k — [0, oo) be a function and let F : X1 — Xg be mapping with ¢(0,...,0,0,...,0) =0
satisfying

xl 332 Tk Tk+1 Tk+2 T2k
@(1'17.’172,...,{L’k,.’L’k+17.’L'k+2,...,fEQk) Z‘ ]’1/1( ”7@7 kj ) kj 7"'7?) < oo (33)
j=1

and

a 1o k 1 2 & xkﬂ 2 &
i k2zxk+3 R +Fk22_:xk+’ RO I i DI
Lk k k w k
HF Zl‘]ﬁ; ZJJJ +F||(kzxk+j—z Z k+] — ZF(:Cj)HXZ
Jj=1 Jj=1 = j=1
+ (21,22, ooy Thy Tt 1, Tt 2, s T2k) (34)

or all xj,x+; € Xq, for all j =1 — k. Then there exists a unique quadratic mapping H : X1 — Xo such
J +J
that

|F () - H()]

< |k|e(,0,...,0,0,..,0) (35)
X2
for all x € X5.
Proof. Letting x; = x4, =0 for all j =1 — k in (34), we get

<0.

X2

(|26~ 1] = 1)|[F (0),

So
F(0) =0.

Other face
Letting 1 =z, ©j41 = T4+, =0 for all j =1 — k in (34), we get

HF _ kF( ’

< |k|¢(=,0,...,0,0,...,0) (36)
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for all x € X; Hence

() - ()l

< maa{ [KF(5) = K F (i) | oo I P ) = k) |

kml

l xT €T
< max{w HF(k]) — kF(W)H&’. -

W Gomr) = RE G,

<SR (k] 0,...,0,0,0, ..., 0) (37)

for all nonnegative integers m and [ with m > [ and all z € X;. It follows from (37) that the sequence

{k"F(,%)} is a cauchy sequence for all x € X;. Since X5 is complete space, the sequence {k”F(k%)}
coverges.

So one can define the mapping H : X; — X5 by

H(z) = lim k”F(le)

for all € X1. Moreover, letting [ = 0 and passing the limit m — oo in (37), we get (35).
Now, It follows from (33) and (34) that

k k k
. n T+ 1 T4 1 2 Tl 2 €T,
:nlglgo\’ﬂ F(Z knJr; T Z%) +F(Z: kné T pntl Z%) - %ZF(k’”Jl) - EZ:F(ki) %,
j=1 Jj=1 j=1 Jj=1 j=1 j=1
< lim \k|”HF(i Tty | iim) +F( - Thyj iix) _2iF($k+J’) _2iF($j) ‘
~ n—oo = fn+1 kn = J e kntl km = J = kntl = k11X,
Ty T2 Tk Tkl Tk42 T2k
+| lim_ |k|" zp( S T o ?n)
:HF(Z Sy )+ F( Z b3 ) -2 kk+J)_QZF(1‘j)’X2 (38)
j=1 j=1 j=1 j=1 j=1 j=1
for all z;, x4 € Xg,forall j=1—=k.
So
"any 1 "apy 1 2N apy 2
|HCS S 4 e + B — 2 w) — 2 H(E) = DY H ()
j=1 j=1 j=1 j=1 j=1 j=1 X
ko k Eoo ok k - k
< HOC ™ Y )+ B, P > ay) — 2 H(EE) 23" H(a) (39)
i=1 =1 i=1 =1 i=1 i=1 X,
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for all xj,z4; € Xq, for all j =1 — k. By Lemma 4.1, the mapping H : X; — X3 is quadratic.
Next, suppose that T': X; — X2 be another quadratic mapping satisfying (35). Then we have

n T n xz
| @)~ @) = |FE R TR
n € n r n € n €
<maa{ ||k H (1) =P ()| TG =R EGR) )
|k||ky <p(kn,o,...,0,o,...,0) (40)

which tends to zero asn — oo for all z € X;. So we can conclude that H(x) = T(x) for all z € X;.
This proves the uniqueness of H. Thus the mapping H : X; — X3 is a unique quadratic mapping satisfying
(35). O

Corollary 4.1. Let r <1 and 6 be nonnegative real numbers and F : X1 — Xg be a mapping satisfying

1 & 1< 1 2 & & 2 &
|7 G Somwes 5 2o ”szzxkﬂ Fom) PR - @)
Jj= Jj= = Jj=1 Jj=1 j=1
1 k k 1 k k k . ) k
<P anns + D ws) + P Y s = > ) —2) F(E) —2 ) Fay)|
j=1 j=1 j=1 j=1 j=1 j=1
k k
+ 9(21 l2illx, + Z zxrillx,) (41)
J= J=

forall xj,xp4; € Xq, for all j =1 — k. Then there exists a unique quadratic mapping H : X1 — Xo such
that

- Ly ’k‘r+1 )
|F ()~ H(2) ST || (42)

for all x € X4

Theorem 4.2. Let ¢ : X2% — |0, oo) be a function and let F : X1 — Xo be mapping with with ¢(0, ...,0,0,...,0) =
0 satisfying

(p(.l?l,l‘g, oy Ly T4-15 Th42, ...,xgk)

= Z {klj|1/)(kj$1, kjl‘g, "'7ijk7ijk+17ijk+27 ...,ijgk) < o0 (43)

j=1
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Xa

1< 1< 2 2
|7 ( kgzxm EZ )+ F( ,@Zxkﬂ gZ EZ ) kZIF%)\
: = : : j=

k k k k k k
1 1 ;
<P anns + D @) + P Y e+ > a5) =2 F(PH) =23 F(ay)|
j=1 j=1 j=1 j=1 j=1 j=1 2
+w(l‘l)an"'axk7xk+1)xk+23"'a'erZ) (44)

forall xj,xp4; € Xq, for all j =1 — k. Then there exists a unique quadratic mapping H : X1 — Xo such
that

HF(@ —H(x)‘ .

< |k|¢(z,0,...,0,0,..,0) (45)
for all x € X;.

Proof. Letting x1 =, xj41 = xk4; =0 for all j =1 — k in (44), we get

|F () — 2 (h)|

N < ¢(kz,0,...,0,0,0,...,0) (46)

for all x € X7 the rest of the proof is similar to the proof of theorem 4.2. O

Corollary 4.2. Let r > 1 and 0 be nonnegative real numbers and F : X1 — Xao be a mapping with F(0) =0
satisfying

i i P xkﬂ 2 &
HszZ“ﬂ R +Fk2;”+f P TR L PO T L 2,

k k k k k k
1 1 i
<[Py + D) + P Y ey = Y owy) —2 ) F(EH) —2) " F(ay)|
j=1 j=1 j=1 j=1 j=1 j=1 2
k k
+0(2 [l@illx, + 2 llewrillx,) (47)
Jj=1 Jj=

forall xj,xp4; € Xq, for all j =1 —= k. Then there exists a unique qudaratic mapping H : X1 — Xo such
that

’k"r+1

HF((E) —H(m)H (48)

for all x € X4
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