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Abstract: The purpose of this work is to establish the local existence for a class of higher-order logarithmic wave

equation with memory term. The local existence result was established by means of Faedo-Galerkin technique and

Logarithmic Sobolev inequality.
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1. Introduction

Let Ω ⊂ R3 be an open bounded subset in with smooth boundary ∂Ω. In this article, we investigate the local

existence of solutions the following nonlinear initial boundary value equation for x ∈ Ω× (0, T )

|ut|ρ utt + ∆2utt +M

 t∫
0

∣∣∣A 1
2u
∣∣∣2
Au−

t∫
0

h (t− s)Au ds = u ln |u| , (1)

and initial-boundary conditions

{
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
∂iu
∂νi = 0, i = 0, 1, 2, ...,m− 1, x ∈ ∂Ω,

ρ > 0 is a exponent and A = (−4)
m
u, m ≥ 1 is a positive integer. And we take M (s) = 1 + sγ . Convenient

hypotheses on h to be specified later.

It is clear from the researches that the logarithmic wave equations are contra distinguished from several

interesting physical properties. They appeared in many branches of physics such as inflation cosmology, super

symmetric field theories, quantum mechanics, nuclear physics (see [7, 8, 14]). In past years, the hyperbolic

equations with logarithmic nonlinearity have captured lots of attention. Hereby, logarithmic wave equations

have been analyzed and several results concerning mathematical behavior have been established by many

mathematicians, we refer to the studies [10, 13, 17, 20, 22, 23].

In [4], for case m = 2, problem (1) was studied. The authors obtained well posedness and asymptotic

stability of solutions for the problem. Later, different authors obtained properties of mathematical behavior for
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hyperbolic type equations with viscoelastic term (see [2, 3, 5, 15]). The same authors of this paper, in their

work [19], investigated the following equation

utt + ∆2utt + (−4)
m
u−

t∫
0

g (t− s) (−4)
m
u ds+ u = u ln |u|k . (2)

They showed that energy functional of the problem (2) grow thing exponentially to infinity as the time goes to

infinity growth of the solution. Later, they add the damping and strong damping terms to the problem (2). In

[18], they established the existence and asymptotic behavior of solution for the problem.

On the other hand we can say that it is qualitative theory of higher order and fractional hyperbolic type

equations without logarithmic source term still often studied (see [12, 21]).

Motivated by the above studies, our purpose in the present paper is to proved the local existence of a

weak solution for the problem (1).

2. Preliminaries

We consider Sobolev Space Hm
0 (Ω) as the closure in Hm (Ω) of C∞0 (Ω) . For simplicity of notation, hereafter

we state by ‖.‖q and ‖.‖2 Lq (Ω) norm, ‖.‖2 Lebesgue space L2 (Ω) norm and we write equivalent norm
∥∥∥A 1

2u
∥∥∥

instead of Hm
0 (Ω) norm (see [1, 16], for details). Now we give some Lemma which will be used for the proof of

the Theorem 7.

Lemma 2.1. [11] Suppose that u is any function u ∈ H1
0 (Ω), and a > 0 is a constant. Then,∫

Ω

u2 ln |u| dx <
(

3

4
ln

4a

e

)
‖u‖2 +

a

4
‖∇u‖2 + ‖u‖ ln |u| .

Corollary 2.1. Suppose that s satisfies 2 ≤ s <∞ for n ≤ 2m and 2 ≤ s < 2n
n−2m for n > 2m.Then, cp is

small enough positive constant fulfills

‖u‖s ≤ cp
∥∥∥A 1

2u
∥∥∥ , ∀u ∈ Hm

0 (Ω).

. Then, we obtain ∫
Ω

u2 ln |u| dx <
(

3

4
ln

4a

e

)
‖u‖2 +

cpa

4

∥∥∥A 1
2u
∥∥∥2

+ ‖u‖ ln |u| . (3)

Lemma 2.2. [9]. Suppose that y(t) is element of the bounded function space a.e. everywhere in the (0, T )

region, y(t) ≥ 0 and y (0) ≥ 0, and the function satisfies that for t ∈ [0, T ]

y(t) ≤ y (0) + µ

t∫
0

y (s) [lnµ+ y (s)] ds,

where α > 1 . Therefore, we conclude that

y(t) ≤ (µ+ y (0))
eµt

, t ∈ [0, T ] . (4)
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Lemma 2.3. [4] Let ε0 ∈ (0, 1) hold . Then there is dε0 > 0 such that for ∀x > 0

x |lnx| ≤ x2 + dε0x
1−ε0 . (5)

(A1) h : R+ → R+ is a C1 non increasing function

h (s) ≥ 0, h′ (s) ≤ 0,

∞∫
0

h (s) ds <∞, 1−
∞∫

0

h (s) ds = l0 > 0, (6)

Lemma 2.4. We define the energy of equation (1) such that

E(t) =
1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

2
‖∆ut‖22

+
1

2

1−
t∫

0

h (s) ds

∥∥∥A 1
2u
∥∥∥2

+
1

2 (γ + 1)

∥∥∥A 1
2u
∥∥∥2(γ+1)

+
1

4
‖u‖2 +

1

2
h ◦A 1

2u− 1

2

∫
Ω

ln |u|u2dx. (7)

The energy functional defined by (7) is decreasing with respect to t .

Proof. The both sides of the equation (1) was multiplied by ut and integrated over Ω, we obtain∫
Ω

|ut|ρ+1
uttdx+

∫
Ω

∆2ututdx

+

∫
Ω

M

 t∫
0

∣∣∣(−4)
m
2 u
∣∣∣2
 (−4)

m
uutdx

−
∫
Ω

t∫
0

h (t− s) (−4)
m
uut dsdx

=

∫
Ω

u ln |u|utdx,

d

dt

 1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

2
‖∆ut‖22 +

1

2

1−
t∫

0

h (s) ds

∥∥∥A 1
2u
∥∥∥2

+
1

2 (γ + 1)

∥∥∥A 1
2u
∥∥∥2(γ+1)

+
1

4
‖u‖2 +

1

2
h ◦A 1

2u− 1

2

∫
Ω

u2 ln |u| dx



=
1

2

h′ ◦ P 1
2u−

t∫
0

h (s) ds
∥∥∥A 1

2u
∥∥∥2

 ≤ 0, (8)
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E′ (t) =
1

2

[
h′ ◦A 1

2 − g (t)
∥∥∥A 1

2u
∥∥∥2
]
≤ 0. (9)

3. Local existence

In this section we establish the proof of local existence solution for our problem (1). We used Faedo-Galerkin

technique and Logarithmic Sobolev inequality for our proof.

Definition 3.1. A function u defined as weak solution of problem (1) on [0, T ] if

u ∈ C
(
[0, T ) ;Hm

0 (Ω) ∩H2m (Ω)
)
, ut ∈ C

(
[0, T ) ;H2

0 (Ω)
)
,

and u satisfies ∫
Ω

| ut|ρ utt (x, t)w (x) dx+

∫
Ω

∆utt (x, t) ∆w (x) dx

∫
Ω

M

[(∫
Ω

∣∣∣A 1
2u
∣∣∣2 dx)]A 1

2uA
1
2w (x) dx

−
∫
Ω

t∫
0

h (t− s)
(
A

1
2u,A

1
2w
)
dx

=

∫
Ω

u (x, t) ln |u (x, t)|w (x) dx,

for w ∈ Hm
0 (Ω) .

Theorem 3.1. Let (A1) and initial conditions (u0, u1) ∈
(
Hm

0 (Ω) ∩H2m (Ω)
)
×H2

0 (Ω) hold. Morever there

is a weak solution for problem (1) such that

u ∈ L
(
0, T,Hm

0 (Ω) ∩H2m (Ω)
)
, ut ∈ L

(
0, T,H2

0 (Ω)
)
, utt ∈ L(0, T,H−2

0 (Ω) .

Proof. Our aim is to establish approximate solutions according to Faedo-Galerkin method. Assume that {wj}∞j=1

is an eigenfunctions of the A = (−4)
m

with the initial data on Vn which is defined the finite dimensional

subspace be given by

un0 (x) =

n∑
j=1

ajwj (x)→ u0 in Hm
0 (Ω) ,

un1 (x) =

n∑
j=1

bjwj (x)→ u1 in H2
0 (Ω) , (10)

for j = 1, 2, ..., n. It is well known {wj}∞j=1 is an orthogonal system of a base function in space Hm
0 (Ω) which

is orthonormal in H2
0 (Ω)

Vn = span {w1, w2, ..., wn} .
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Let

un (x, t) =

n∑
j=1

knj (t)wj (x) ,

be approximate solution. Then knj (t) verifies a system of ordinary differantial equations in Vn such that



∫
Ω

[
| unt |

ρ
unttw + ∆untt∆w +M

[(∫
Ω

∣∣∣A 1
2un

∣∣∣2 dx)]A 1
2 (un)A

1
2w (x)

−
t∫

0

h (t− s)
(
A

1
2un, A

1
2w
)
dx

]
=
∫
Ω

ln |un|unwdx, w ∈ Vn,

un (0) = un0 =
n∑
j=1

(u0,wj)wj ,

unt (0) = un1 =
n∑
j=1

(u1,wj)wj .

(11)

Based on standard existence theory (Peano’s theorem) for ordinary differantial equation, there is a maximal

interval [0, tn) such that knj (t) ∈ C2 [0, tn) . Morever we conclude that un ∈ C2 ([0, tn) , Hm
0 (Ω)) . Next, our

aim is to show that

i)tn = T

ii) un is uniformly indboundedependent of t and n .

Firstly, we take w = unt in the equation (11), by direct calculation, we have

d

dt

 1

ρ+ 2
‖unt ‖

ρ+2
ρ+2 +

1

2
‖∆unt ‖

2
+

1

2

1−
t∫

0

h (s) ds

∥∥∥A 1
2un

∥∥∥2

1

2 (γ + 1)

∥∥∥A 1
2un

∥∥∥2(γ+1)

+
1

2
h ◦A 1

2un +
1

4
‖un‖2 − 1

2

∫
Ω

ln |un| (un)
2
dx



=
1

2

h′ ◦A 1
2un −

t∫
0

h (s) ds
∥∥∥A 1

2un
∥∥∥2

 . (12)

So that, from (12) we can write

d

dt
En(t) =

1

2

(
h′ ◦A 1

2un
)
− 1

2
h (t)

∥∥∥A 1
2un

∥∥∥2

≤ 1

2

(
h′ ◦A 1

2un
)
≤ 0, (13)

where

En(t) =
1

ρ+ 2
‖unt ‖

ρ+2
ρ+2 +

1

2
‖∆unt ‖

2
+

1

2

1−
t∫

0

h (s) ds

∥∥∥A 1
2un

∥∥∥2

1

2 (γ + 1)

∥∥∥A 1
2un

∥∥∥2(γ+1)

+
1

2
h ◦A 1

2un +
1

4
‖un‖2 − 1

2

∫
Ω

ln |un| (un)
2
dx.
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Consequently if we integrate (13) over (0, t), we have the following inequality

En(t) ≤ En(0). (14)

If we use the Logarithmic Sobolev Inequality, we leads to

En(t) ≥ 1

ρ+ 2
‖unt ‖

ρ+2
ρ+2 +

1

2
‖∆unt ‖

2
+

1

2 (γ + 1)

∥∥∥A 1
2un

∥∥∥2(γ+1)

+
1

2

1−
t∫

0

h (s) ds

∥∥∥A 1
2 (un)

∥∥∥2

+ h ◦A 1
2un +

1

2
‖un‖2


−1

2

[(
3

4
ln

4a

e

)
‖un‖22 +

cpa

4

∥∥∥A 1
2un

∥∥∥2

+ ‖un‖2 ln ‖un‖
]
,

=
1

ρ+ 2
‖unt ‖

ρ+2
ρ+2 +

1

2

(
l0 −

cpa

4

)∥∥∥A 1
2un

∥∥∥2

+
1

2
h ◦A 1

2un

+
1

2 (γ + 1)

∥∥∥A 1
2un

∥∥∥2(γ+1)

+

(
1

4
−
(

3

8
ln

4a

e

))
‖un‖2

−1

2
‖un‖2 ln ‖un‖ , (15)

By combining (14) and (15), we obtain

2

ρ+ 2
‖unt ‖

ρ+2
ρ+2 + ‖∆unt ‖

2
+
(
l0 −

cpa

4

)∥∥∥A 1
2un

∥∥∥2

+
1

(γ + 1)

∥∥∥A 1
2un

∥∥∥2(γ+1)

+ h ◦ P 1
2 (un)

+

(
1

2
−
(

3

4
ln

4a

e

))
‖un‖2

≤ C + ‖un‖2 ln ‖un‖ , (16)

where C = 2En(0).

By taking α = min

{
4l0
kcp

, e
5
3

4

}
we guarantee

(
l0 −

cpa

4

)
> 0

and (
1

2
−
(

3

4
ln

4a

e

))
> 0.

By this choice we have

‖unt ‖
ρ+2
ρ+2 + ‖∆unt ‖

2
+
∥∥∥A 1

2un
∥∥∥2

+
∥∥∥A 1

2un
∥∥∥2(γ+1)

+ h ◦A 1
2un + ‖un‖2

≤ C
(

1 + ‖un‖2 ln ‖un‖
)
. (17)
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We know that

un (., t) = un (., 0) +

t∫
0

∂un

∂υ
(., υ) dυ.

Then, ıf we use the following inequality

(a+ b)
p ≤ 2p−1 (ap + bp) ,

for p = 2, we obtain

‖un (t)‖2 =

∥∥∥∥∥∥un (., 0) +

t∫
0

∂un

∂υ
(., υ) dυ

∥∥∥∥∥∥
2

≤ 2 ‖un (0)‖2 + 2

∥∥∥∥∥∥
t∫

0

∂un

∂υ
(., υ) dυ

∥∥∥∥∥∥
2

≤ 2 ‖un (0)‖2 + max {1, 2T} C1 + 1

C1

t∫
0

‖unt (υ)‖2 dυ. (18)

Because of inequality (17), inequality (18) leads to

‖un (t)‖2 ≤ 2 ‖un (0)‖2 + max {1, 2T} C1 + 1

C1
C
(

1 + ‖un‖2 ln ‖un‖
)
. (19)

Then by (19), we obtain

‖un‖2 ≤M +N

t∫
0

‖un‖2 ln ‖un‖ dτ, (20)

where

M = 2 ‖un (0)‖2 + max {1, 2T} (1 + C1)T, N = max {1, 2T} (1 + C1) .

Because of knowing N ≥ 1, then using Logarithmic Gronwall inequality, we obtain

‖un‖2 ≤ (M +N)
eNt ≤ C2. (21)

Hence, from inequality (21) and (17)

‖unt ‖
ρ+2
ρ+2 + ‖∆unt ‖

2
+
∥∥∥A 1

2un
∥∥∥2

+ h ◦A 1
2un + ‖un‖2 ≤ C3, (22)

where C3 > 0 and independent of n and t . So, we show that un is uniformly bounded independent of n and

t . Morever, we can take tn = T .
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Substituting untt = w in (11) and by thanks to Young’s, Cauchy-Schwarz and embedding’s inequalities,

we get

∫
Ω

|unt |
ρ |untt|

2
dx+ ‖∆untt‖

2

= −
∫
Ω

M

(∥∥∥A 1
2u
∥∥∥2
)
A

1
2unA

1
2unttdx+

∫
Ω

un ln |un|unttdx

+

∫
Ω

t∫
0

h (t− s)A 1
2unA

1
2untt dsdx

≤ −
∫
Ω

A
1
2uA

1
2uttdx−

∥∥∥A 1
2u
∥∥∥2γ

∫
Ω

A
1
2uA

1
2uttdx

+

∫
Ω

t∫
0

h (t− s)A 1
2unA

1
2untt dsdx+

∫
Ω

un ln |un|unttdx

≤ δ

(
1 +

∥∥∥A 1
2u
∥∥∥2γ
)∥∥∥A 1

2untt

∥∥∥2

+
1

4δ

 t∫
0

h (t− s)
∥∥∥A 1

2un
∥∥∥ ds

2

+δ
∥∥∥A 1

2untt

∥∥∥+
1

4δ

(
1 +

∥∥∥A 1
2u
∥∥∥2γ
)∥∥∥A 1

2un
∥∥∥2

+

∫
Ω

ln |un|ununttdx. (23)

Now, we try to have estimation for last term of (23). For this reason Lemma 4 with ε0 = 1
2 and some based

inequalities are used. So that, (23) becomes

∫
Ω

ln |un|ununttdx ≤ c

∫
Ω

(
|un|2 + d2

√
un
)
unttdx

≤ c

δ ∫
Ω

unttdx+
1

4δ

∫
Ω

(
|un|2 + d2

√
un
)2

dx



≤ cδ ‖∆untt‖
2

+
c

4δ

∫
Ω

|un|4 dx+

∫
Ω

|un| dx


≤ cδ ‖∆untt‖

2
+

c

4δ

(
‖∆un‖42 + ‖un‖2

)
. (24)
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Combining (24) and (23) to have∫
Ω

|unt |
ρ |untt|

2
dx+

(
1− cδ − δ

(
2 +

∥∥∥A 1
2u
∥∥∥2γ
))
‖∆untt‖

2

≤ 1

4δ

 t∫
0

h (t− s)
∥∥∥A 1

2un
∥∥∥

2
ds

2

+
1

4δ

∥∥∥A 1
2un

∥∥∥2

+
c

4δ

(
‖∆un‖42 + ‖un‖2

)
.

Integrate the last inequality on (0, T ) and use (22) and (A2) leads to

T∫
0

∫
Ω

|unt |
ρ |untt|

2
dxdt+

(
1− cδ − δ

(
2 +

∥∥∥A 1
2u
∥∥∥2γ
)) T∫

0

‖∆untt‖
2
dt

≤ c

δ

T∫
0

[
h ◦A 1

2un +
∥∥∥A 1

2un
∥∥∥2

+ ‖∆un‖42 + ‖un‖2

]
dt. (25)

That is to say, if we take δ > 0 and using (22), we have the following inequality,

T∫
0

‖∆untt‖
2
dt ≤ C3. (26)

where C3 > 0 constant which is independent n or t.

Therefore the estimations (22) and (26) satisfies that un, is uniformly bounded in L∞
(
0, T ;Hm

0 (Ω) ∩H2m (Ω)
)
,

unt , is uniformly bounded in L∞
(
0, T ;H2

0 (Ω)
)
,

untt, is uniformly bounded in L2
(
0, T ;H2

0 (Ω)
)

.
(27)

We deduce that there is a subsequence of (un) (still denoted by (un)), such that

un
w∗

−→ u, L∞
(
0, T ;Hm

0 (Ω) ∩H2m (Ω)
)
,

unt
w∗

−→ ut, L∞
(
0, T ;H2

0 (Ω)
)
,

untt
w∗

−→ utt, L
2
(
0, T ;H2

0 (Ω)
)
,

unt −→ ut, in L2
(
0, T ;H2

0 (Ω)
)

weakly,

untt
w∗

−→ utt, in L2
(
0, T ;H2

0 (Ω)
)

weakly,

(28)

where
w∗

−→ is defined as the weakly star convergence.

By using (27), we have the solution (un) is bounded in L∞ (0, T ;Hm
0 (Ω)) by using Hm

0 (Ω) ↪→
L∞ (Ω)

(
Ω ⊂ R3

)
the boundedness of (un) in L2 (Ω× (0, T )). Similary, we have (unt ) is bounded in L2 (Ω× (0, T )) .

Then, thanks to Aubin–Lions–Simon Lemma and (27), we obtain

un → u, in L2 (Ω× (0, T )) strongly
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which satisfies
un → u, Ω× (0, T ) .

Similary we conclude that

unt → ut, in L2
(
0, T ;L2 (Ω)

)
strongly,

and
unt → ut,Ω× (0, T ) . (29)

Using (22) and the embedding theorems, we have

‖|unt |
ρ
unt ‖

2
L2(0,T ;L2(Ω)) =

T∫
0

‖unt ‖
2(ρ+1)
2(ρ+1) dt

≤ c

T∫
0

‖∆unt ‖
2(ρ+1)
2 dt ≤ cTC2, (30)

which implies that (|unt |
ρ
unt ) is bounded in L2 (Ω× (0, T )) . Combining (29) and (30) and using Aubin–Lions’

lemma, we have

|unt |
ρ
unt → |ut|

ρ
ut in L2

(
0, T ;L2 (Ω)

)
weakly. (31)

We obtain the following convergence

un ln |un| → u ln |u| , Ω× (0, T ) . (32)

because of s→ s ln |s| is continuous.

It is clear that |un ln |un| − u ln |u|| is bounded in L∞ (Ω× (0, T )) thanks to Hm
0 (Ω) ↪→ L∞ (Ω) .

Morever, this satisfies that

un ln |un| → u ln |u| , in L2
(
0, T ;L2 (Ω)

)
strongly. (33)

On the other hand, integrating the equation of (11) over (0, t) , we have

1

ρ+ 1

∫
Ω

| unt |
ρ
unt wdxds−

1

ρ+ 1

∫
Ω

| un1 |
ρ
un1wdx

+

∫
Ω

∆unt ∆wdxds−
∫
Ω

∆un1 ∆wdx

+

t∫
0

∫
Ω

M

(∥∥∥A 1
2u
∥∥∥2
)
A

1
2uA

1
2wdxds

−
t∫

0

∫
Ω

 τ∫
0

h (t− s)A 1
2um

A
1
2wdsdτdx

=

t∫
0

∫
Ω

un ln |un|wdxds, (34)
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for ∀w ∈ Vm.
Consequently by using convergences (10), (28) ,(33) and (31) , passing to the limit in (34) as n → ∞

will be possible. Thus (34) becomes such that

1

ρ+ 1

∫
Ω

| ut|ρ utwdxds

=
1

ρ+ 1

∫
Ω

| u1|ρ u1wdx−
∫
Ω

∆ut∆wdxds

+

∫
Ω

∆u1∆wdx−
t∫

0

∫
Ω

M

(∥∥∥A 1
2u
∥∥∥2
)
A

1
2uA

1
2wdxds

+

t∫
0

∫
Ω

 υ∫
0

h (t− s)A 1
2um

A
1
2wdsdυdx

+

t∫
0

∫
Ω

u ln |u|wdxds, (35)

which implies for ∀w ∈ Hm
0 (Ω) .We can see clearly the terms of right-hand side of equation (35) are differentiable

for a.e. t ∈ R+ .Therefore, taking derivative of (35) over t ∈ (0, T ), we have,∫
Ω

| ut|ρ utt (x, t)w (x) dx+

∫
Ω

∆utt (x, t) ∆w (x) dx

+

∫
Ω

M

(∥∥∥A 1
2u
∥∥∥2
)
A

1
2uA

1
2wdxds

−
∫
Ω

t∫
0

h (t− s)
(
A

1
2u,A

1
2w
)
dx

=

∫
Ω

ln |u (x, t)|u (x, t)w (x) dx,

for any w ∈ Hm
0 (Ω). This completes proof.
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[5] Al-Mahdi AM. Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity.

Bound. Value Probl 2020; 2020(1) :1-20.

[6] Barrow JD, Parsons P. Inflationary models with logarithmic potentials. Physical Review D 1995; 52(10): 5576–5587.
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