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Abstract: In this paper, we concerned with a delayed flexible structure system, where the heat flux is given by
Cattaneo’s law. We prove the wellposed of the system as well as its exponential stability under suitable hypotheses on

the weights of the delay, heating effect and material damping.
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1. Introduction

In this work, we study the following delayed flexible structure system:

m(z)uy — (p(x)uy + 20(2)ugt)s + f:f p(s)ug (x,t —s)ds+nb, =0,
0 + Nty + kq. =0, (1)
7q + B+ kb = 0,

where u(x,t) is the displacement of a particle at position z € (0,L) and time ¢ > 0. 5 > 0 is the coupling
constant, that accounts for the heating effect, and 8,k > 0. 6 is the temperature of the body, ¢ = ¢(x,t) is
the heat flux and the parameter 7 > 0 is the relaxation time describing the time lag in the response for the
temperature. s > 0 is a real number represents the time delay. m(x), §(z) and p(x) are specific functions
denote mass per unit length of structure, coefficient of internal material damping and a positive function related
to the stress acting on the body at a point z, respectively, and for 7, 7 two real numbers satisfying 0 < 7y
< 7o, : [11;72]) — R is a bounded function. The model of heat condition, originally due to Cattaneo, is of

hyperbolic type. We consider the following initial and boundary conditions:

u(-,0) =wuo (x), u(-,0) =u (), 6(.,0) =0 (), ¢(.,0) =qo (), Vae[0,L]
w(0,8) = u(L,t) = ( ) =6(L,t) =0, vt >0, )
ut(xv ) fO( 7t) <t < 7o,

where fy is the history function.
The issue of existence and stability of solutions of dynamical systems continues to attract a great deal
of attention in the recent years (e.g. [2, 9, 13-15, 20, 28]). S. Misra et al. [22] considered the vibrations of a

cantilever structure modeled by the standard linear flexible model of viscoelasticity coupled to an expectedly
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dissipative effect through heat conduction

m(x)uy — (p(x)ug + 20(x)ugt)e — kb = f,
ot - gmm - kutr =0.

By using semigroups theory and multiplier technique, they established the well-posedness and an exponential
stability of the system when the disturbing force is insignificant. Alves et al. [2] concerned with the system
(1)-(2) in the absence of delay term

m(x)ug — (p(r)ug + 26(2)ugt)z + 10, =0,
9,5 + kQI + N = 07 (3)
T7q: + Bq + kb, =0,

with the initial and boundary conditions

w(.,0) =ug (), u (., 1
u(L,t) =60(0,t) =0

They established the well-posedness of the system and proved its stability exponential and polynomial under

suitable boundary conditions. Houasni et al. [17] studied the following inhomogeneous flexible structure system:

m(x)uy — (p(x)uz + 20(x)Uyt)z + dw, + 0, = 0,
Cet - kaa}z + Nty + k1w, = 0, (4)
TWwg — k3Wye + kow + k10, + dug, = 0,

They proved the wellposed of the problem using semi-group theory, as well as an exponential stability using the

multiplier method without any restriction or relation on the coefficients of the system.

Time delays arise in many applications because most phenomena naturally depend not only on the
present state but also on some past occurrences. In recent years, the control of PDEs with time delay effects
has become an active area of research. We refer the interested readers to [3, 4, 6, 7, 11, 12, 16, 18, 21, 29] for
details discussion on the subject. The original motivation of this type of problem was first introduced by Datko
et al. [10] in 1986 when they showed that the presence of the delay may not only destabilize a system which
is asymptotically stable in the absence of it but may also lead to ill-posedness (see also [24] and [27]). On the
other hand, it has been established that voluntary introduction of delay can benefit the control (see [1]). Our
purpose in the present manuscript is to obtain an exponential decay rate estimates of the energy, for this end
we consider (3) with an internal distributed delay term on the first equation, under a suitable assumption on
the weights of the delay, heating effect and material damping, we establish a well-posed result of the system
using semigroups theory and an exponential stability using the multiplier method. We should mention here
that, to the best of our knowledge, there is no result concerning flexible structure system with the presence of
distributed delay term.

This paper is organized as follows; In the second section, we introduce some assumptions needed in our
work then prove the well-posedness of the system (1)-(2). In the last section we state and prove our stability

result.
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2. Preliminaries and well-posedness
In this section, we present some hypotheses and prove the well-posedness of system (1)-(2). Throughout this
paper, ¢ represents a generic positive constant and is different in various occurrences.

Taking the following new variable
z(x, p, 8, t) = uy (x,t — ps), in (0,L) x (0,1) x (11, 72) x (0,00),

then we obtain

Szt($7p7 S7t) + Zp(xa Ps S7t) = 07
z(x,0,8,t) = us(x, t).

Consequently, problem (1)-(2) is equivalent to

m(x)uy — (p(x)ug + 20(x)uzt)e + nbe + f:f w(s)z(x,1,s,t)ds =0,

Ot + kqe + nuge = 0, (5)
Tqt + Bq + kb, =0,

Szt(aj? PsS, t) + Zp(.’L', P S, t) = 07

where (z,p, s,t) € (0,L) x (0,1) x (11,72) x (0,00), with the following initial and boundary conditions:

u(70) = %o (I)v .
u(0,t) =u(L,t) =60,
Z(x7p3870) :f0($7ps) in (0,

:L'), 9(30) = 0o (I)v q('70) ZQO(‘T)’ Vo € [O7LL
L,t) =0, Vt >0, (6)
)X(O,l)X(Tl,TQ).

We shall use the following assumptions:

(H1) p: [r1;72] — R is a bounded function satisfying

[ wtsas <o ()

1

(H2) The functions m(z), é(x) and p(x) will be supposed such that:
m,8,p € WH(0,L), m(x),p(x) > 0 and 26(x) > In, VYre€[0,L], | = L/ (8)

From Equation (5)3 and (6), we infer that

L

4 (xt)dx—i—B/L (z,t)dx =0
dt O q ) T O q ) - )

thus

/OLq(_%t) _ (/OL @ (2) dx) exp (—é’f) .
Tet) = o) - (/ 0 (@) dw) e (<21,

So, if we set
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then, (u,u,6,q) is a solution of (1), and

L
/ 7 (e, t)dr =0,
0

for all t > 0. in what follows, we shall use ¢ instead of q.
Let us introducing the vector function U = (u,v,0,q,2)T, where v = u;, using L?(0,L) and H}(0,L)

with their usual scalar products and norms for define the spaces:
H = Hy(0,L) x [LZ'(O,L)]2 x L2(0,L) x L*((0,L) x (0,1) x (1,72)).

and
H(0,L) = H(0,L) N L2(0, L).

where
L2(0,L) = {w € L*(0,L): /Lw(s) ds = 0} .
0

We equip H with the inner product

L L
U,U)y = /p( )uwumdx—i—/ m (x) vodx + 99dw+7/ qqdzx

0
/ / / s|u(s) z(z, p, 8)z(, p, s)dsdpd.

Next, the system (5)-(6) can be written as the following Cauchy problem:

{ Ut)+(A+B)U®#) =0, t>0 9)
U(O) = UO = (u(),ul;a()aq(),fo)Ta

where the operator A : D(A) — H is defined by

*ﬁ ((p(x)um +26(x)vy, — fT2 wu(s)z(1,s)ds — v f s)| ds)
AU = kqa: + Ny ;
L(k0, + Bq)
%Zp(amp,s)

and
0
J721us)ds
m(x)

BU =

0
0

Where
UeH|ue H*0,L)NHL0,L), ve HL0,L),
D(A) = 0 € H}0,L), g€ HL0,L),
2,25 € L((0,L) x (0,1) x (11, 72)), 2(2,0,8) =v
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One can easily prove that D(A) is dense in #H (see [3, 5, 8]).
Before state an existence and uniqueness result, we refer the reader to [19] (from page 90), [25] and the

references therein, for more details discussion about solutions of (9), then we have

Proposition 2.1. Let Uy € H be given. Assume that (H1)— (H2) are satisfied, Problem (9) possesses then a
unique solution satisfying U € C (RY;H). If Uy € D(A), then U € C* (RT;H)NC (RT; D(A)).

Proof. First, we prove that A is monotone. For any U € D(A), we have
L L L
(AU, U)y = —/ p (z) vpugde — / p (%) ug), vdx — / [0 (z) vg], vdx
0 0

—|—/ N0 vda:—!—/ / z(x,1,s,t)dsdx
0

—l—k/ Hqux—i—/ n@vwdx—i—k/ @qdaz—i—/ Bq?dx
0

T2 T2 L
—|—/ / / |u(s)\zzpdsdpdm+/ |u(s)|ds/ vida.
0 0 T1 T1 0

Integration by parts and by using the fact that

L 1 T2
/ / / |(8)] zz,dsdpdx
0 0 T1

1 L T2 1 a

5/0 / /0 | ()] %zzdpdsdx
/ / 2(2,1,s,t)dsdx
1 L

—f/ (s )|ds/ vida,
2 T1 0

we get

T2 L
(AU, U)y / § (z)vidr + = / e ()ds/ vidx + ﬁqzdx

1

/ / z(x, 1, s)dsdx + = / / (z,1, s)dsdz.

(10)

By using Young’s inequality (see [8] p.92), we get

/ / (2,1, 5)dsde
;(/T1 (s )ds)/o v2ide + = / / (x,1,s)dsdz, (11)
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which implies that

/ / z(x, 1, s)dsdx
> ;(/ P ()|ds)/0 e — = / / (2,1, s)dsdz,

from this last, the Equation (10) yields

L L
(AU, U)y > 2/ S (x) vidx —i—/ Bq*dx > 0.
0 0

Next, we prove that the operator A + Z is surjective.

Given G = (91, 92,93,94,95) € H, we prove that there exists U € D(A) satisfying

ZT+AU=@G,
which gives
—v+u=gi,
—(p(2)uy + 26(x)vy —10)s + [17 p(s)2(., 1 s)ds
(ot ) v

kqz + vy + 0 = g3,
kO, + (B+7)q = Tga,
Zp + 8z = 59s5.
Then, from (13); and (13),, we obtain
v=u—g € Hy(0,L),

Toi— 2T T e 20,1,

O = 1.9 i

by using (15), we get

and then

The last equation in Equation (13), (14) and the fact z(z,0) = v(x) = u — g1(x) give
p
z(x,p,8) =ue P —e Pg; + sefsp/ e’ gs(z,v, s)dv.
0

From equation (14)-(16), we can verify that v and ¢ satisfying

—(p(x)uy +20(2)vy)s — LB g 4w [72 p(s)e=*ds + yu(z) = fi,
—k2q, + (B+7) fo y)dy — knu, = fa,
— Vg + Uy = f37

(12)

(14)

(15)

(16)

(17)
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where
WZm(QT)Jrf:W |d3
20(xz,8) = e %g; — f esVgs(x,v, s)dv
fi=7q1(z )+m( )92( )*?94 +f p(s)zo(z, s)ds € L*(0, L),

fo=—kngi(x) + 7 [ 94(y)dy — kgs € L2(0 L)
f3:g1w€L (0 L)

The variational formulation corresponding to Equation (17) is then

B((u,q), (u,q)) = F(u,q), (18)

where B : [HZ(0,L) x L2(0, L)]> — R is the bilinear form defined by

L L
Bl @) = [ 0lo)+20(0) wisde - "5 [ e

L L
+(B+1) / qqdx + 7/ utdx
0 0

) ()dy/}(y)dy)dx
+(ﬂk+/0 uqd:ch/ uu/ e~*dsda,

and F : H3(0,L) x L2(0, L) — R is the linear functional defined by

P(i,q) - /fud + k2 /fz/ dydx—i—/ 2 f58(2)inda.

For V = HE(0,L) x L2(0, L) equipped with the norm

2 2 2 2
1(w, @Iy = llullz + lluallz + llallz

where ||.||, is the usual norm.

One can easily see that B and F' are bounded. Also, we get

B((u,q), (u,q)) = /OL (p(x) +20()) uidz + (8 + ) /OL ¢*dx
+7/0Lu2da:+’8];T/OL (/OmQ(y)dy)de
—l—AL u?dx /: wu(s)e

2
> c|(uw gy -

Then, B is coercive. Consequently, by the Lax—Milgram lemma (see [8] Corollary 5.8 p. 138-140), system (17)
has a unique solution

u € Hy(0,L), q€L0,L).
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If =0 € L2(0,L), then Equation (18) reduces to
L L L
—/ (p(z)uy), udx + 'y/ uudr — M/ qudx
0 0 k 0
L T2 L
+ / uﬁ/ wu(s)e *dsdx —/ (20(z)uy), udz
0 T1 0
L

L
= frudz —|—/ (2f30(z)), udz, Yu e Hy(0,L) .
0 0

That is

~ ), + 70— g @80)un), +u [ uls)etds = fi+ 500,

T1
then, we have

(p(2)uy +20(x)ug), = yu+u [T p(s)esds — 25D q — fy
— (2f38(x)), € L*(0, L).

Hence,
u € HY0,L) N H*0,L).

Similarly, if u =0 € H}(0,L), we obtain
q € HN0,L).
Moreover, from (14) and (15) we deduce that

v,0 € Hy(0,L).
Consequently, A is a maximal monotone operator. Then, D(.A) is dense in H (see Proposition 7.1 in [8] ).
On the other hand, we show that operator B is Lipschitz continuous. In fact, if U = (u,v,0,q,2)? and
U= (u, v, 5, 4,2)T belong to H, we have

HBU—BﬁHi = c|n)?, (19)

where h = ¥ — v. Using the embedding of H'(0, L) into L>(0,L) (see [8] Theorem 8.8, p. 212) and (7), one

sees that

Bl < elfo =Bl pm oy <c|[U =T - (20)

Combining (19) and (20), then B is Lipschitz continuous in H ( see [6]). Consequently, A + B is the infinitesimal
generator of a linear contraction Cg-semigroup on #H. Hence, the result of Proposition 2.1 follows (see [19],
[26]) and the references therein. O

To state our decay result, we introduce the energy functional associated to (5)-(6), namely,
1t 2 2, 92 2
E(t,p,,0,q,2) = 3 {p(x)u? + m(z)u; + 6° + 7¢° } dz
0

1 L 1 T2
5 [ ][ sl s dsdpda, (21)
0 0 T1
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we denote E(t) = & (t,¢,1,0,q,z) and £(0) = & (0, o, Yo, 0o, o, fo) for simplicity of notations.

3. Exponential stability

In this section, we introduce some lemmas allow us to achieve our goal, which is the proof of the stability result.

Lemma 3.1. [25]: Let h € H{(0,L). Then it holds

L L L2
/ |h|? da < 1/ \he|? da, = (22)
0 0

Lemma 3.2. [2] : Let (u,ut, 6,q) be the solution to system (1)-(2), with an initial datum in D(A). Then, for
any t > 0, there exists a sequence of real numbers (depending on t), denoted by & € [0,L](i = 1,...,6), such

that:
/Lm yulde = p(&1) / w2z, / m () udds = <52>/0Lu%dx,
/ m (x) u?dr = m(&3) / u?de, / o (x 2dx=§(§4)/oLu2d:E,
/0 0 (x )Umd$:5(55)/0 u?dz, /0 8 (x) u,dr = §(&) /()Luitdx.

Lemma 3.3. Let (u,v,0,q,2) be the solution of (5)-(6), then the energy & is non-increasing function and
satisfies, for all t > 0,

L
E't) = —2/ 5 (x) uitdx—ﬁ/ de—/ ut/ 2(x, 1,8, t)dsdx
0
—f/ / 2(2,1, 8, t)dsdx + = / / s)| dsdzx

< —6/ q2d:c—c/ u?,dx < 0. (23)
0 0

where ¢ > 0 is constant.

Proof. Multiplying the equations in (5)1,(5)2, and (5)5 by w;,0 and ¢, respectively, and integrate over (0, L),

we obtain

th/ {p u +m(x )ut+02+7'q }dx

— 75/0 q2d:1:—2/0 (z) u,dx — /ut/ 2(x,1, s, t)dsdz. (24)

Multiplying the last equation in (5) by |u(s)| z, integrating the product over (0, L) x (0,1) x (71, 72), and recall
that z(x,0,s,t) = uy, yield

2dt/ / / s|p(s)| z%(x, p, s,t)dsdpdx
= —f/ / (z,1,s,t)dsdx + = / ut/ )| dsdz. (25)
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Now, a combination of (24) and (25) gives

L
E't) = —2/ (o) uitdx—ﬁ/ 2clac—/ ut/ 2(z,1, s,t)dsdz
0
77/ / 2(2,1,s,t)dsdx + = / ut/ s)| dsdz.
Meanwhile, using Young’s and Cauchy—Schwarz inequalities (see [8] p.92), we have
/ ut/ (x,1,s,t)dsdz
1
7/ |t ()|ds/ 2de + = / / 22(x,1,s,t)dsdz.
2 T1 0

<n

IN

Substitution of (27) into (26), using (7), Lemma 3.2 and (22) gives

L
E't) = —2/ d () uitda:—ﬁ/ de—/ ut/ 2(x,1,s,t)dsdx
0
—7/ / 2(2,1,s,t)dsdx + = / / s)| dsdx

< 75/ defQ/ 0 (x )uxtdaﬁLn/ ulde
0
L L
< —ﬂ/ q2da:—2(5(§6)/ uitdx—klr]/ u?,dx
0 0 0
L L
< 5 oo @) ) [ utde
0 0

L L
< —B/ ¢*dr — c/ u?,dx <0,
0 0

which concludes the proof.

Lemma 3.4. Let (u,v,0,q,z2) be the solution of (5)-(6). Then, for €1,e2 > 0, the functional

Li(t) := T/OLH (/; q(Ly)dy) dz,

L L ™, 18
I () < —(k— Pe1) 0%dx +527'77/ uidr + (7’ +— > / ¢dzx.
0 0

461

satisfies

(26)

(28)

(29)

Proof. Taking the derivative of (28) and using (5)2, (5)3, (22), integration by parts and Young’s inequality, we

obtain (29).

O
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Lemma 3.5. Let (u,v,0,q,z) be the solution of (5)-(6). Then the functional

L
I (t) := /0 (8(2x)u2 + m(z)uu) dz, (30)

satisfies

L
L) < — @) -enl+1) / W2dz + (&) / w4 - / 02dz

1 1
463/ / %(2,1, s,t)dsd, (31)

for any €3 > 0.

Proof. Differentiating Equation (30) gives

L L L Ly
L) = —/0 p(z)uldz Jr/o m(z)udr — 77/0 0, udx — /0 u/ w(s)z(x, 1, s,t)dsdx.
™

Using Young’s inequality, we have for e3 > 0

L L L —
—7]/ O udr = r]/ uzfdr < 7763/ u?dx + —/ 6%dz,
0 0 0 des Jo

from Young’s inequality, (7) and (22), we find

/ / z(x,1,s,t)dsdx

< 63/ (s )|ds/ Qdaj—l——/ / 22(x,1,5,t)dsdx
1 463
<n
< l’f]€3/ udx + —/ / %(x,1, 5,t)dsdz,
application of Lemma 3.2 and the last inequality completes the proof. O

Lemma 3.6. Let (u,v,0,q,z) be the solution of (5)-(6). Then, for some positive constant 1y, the functional

/ / / =50 | u(s)| 22(x, p, 5, t)dsdpdz, (32)

satisfies

I(t) < —771/ / / s|u(s)| 2°(x, p, s,t)dsdpdz
L

—771/ / (z,1,s t)dsdac+n/ uidz. (33)
0
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Proof. Differentiating (32) and using the last equation in (5), we obtain

L 1 T2
e I / €= 1u(3)] 22,y 5, 8)20 (2, 5, )dsdpds
0 0 T1

/ / / e 2% (z, p, 5,1)|dsdpda
/ / / e |u(s)| 2*(x, p, s, t)dsdpdz

L T2
= [ ] e R w150 - 05 s
0 T1

/ / / P u(s)| 2 (x, p, s, t)dsdpda,

using the fact that z(z,0,s,t) = u; and e™® < e <1 we get for all p € [0,1]

L T2 To L
[ [ et s dsar + [ lutlas [t
0 T1 Py 0

<n

L 1 T2
—/ / / se”% |u(s)| 22(x, p, 5, t)dsdpdz.
0 0 T1

Because —e™*

and recalling (7), we obtain (33).

is an increasing function, we have —e™° < —e~" for all s € [11, 72]. Finally, setting n; = —e™™

Next, we define a Lyapunov functional £ and show that it is equivalent to the energy functional £.

Lemma 3.7. For N sufficiently large, the functional defined by
L(t) == NE(t) + NiL1(t) + I>(t) + NaIs(t).
where N1 and No are positive real numbers to be chosen appropriately later, satisfies
AEM) < L(t) < chE(t), Vt>0.

where ¢} and ¢ are positive constants.

Proof. Let

E(t) = lel(t) + I2(t) + N2[3(t)

then, exploiting Young’s, Poincaré’s (see [8] p.218) and Cauchy-Schwarz inequalities, (2

1), and the fact that
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e %7 <1, we obtain

L T L
)| < le/ 9(/ olt, y)dy> dx+/ 5(a 2dm+/ m(@) Jugul de
0
+N2/ / / e~ u(s)| 2%(x, p, s)dsdpda
1 1 L L
< / 6(x)uidx+§/ m(x)uZd:E—i—i/ m(:t)ufdm—&—NlTl/ |0q| dx
0 0
+N2/ / / s|u(s)| 2%(x, p, s)dsdpdx
1 l v
< f/ m(z)uide + -2 oG )H / (x)uidx%—”m(x)”oo/ p(z)ude
NlTl/ 92d +N1Tl/ q2dx
2 Jo
+N2/ // s|u(s)| 2%(x, p, s)dsdpda
< cE(1),

where A = inf,cjo z) {p(z)}, and ¢ > 0. Consequently,

|L(t) = NE(t)| < c&(t),
which yields

(N —¢)E(t) < L) < (N + ) (%)

Choosing N large enough, we obtain estimate (35).

Now, we are ready to state and prove the main result of this section.

Theorem 3.1. Let U = (u,v,0,q,z) be the solution of (5)-(6), assume that (H1) and (H2) are satisfied, then

the energy £ satisfies, for all t >0,

E(t) < cre™

where c¢1 and co are positive constants.
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Proof. We differentiate (34), and recall (22), (23), (31), (29), and (33), to obtain

L L L L
L't < N(—ﬁ/o q2da:—2/0 6(x)uitd:v+77/0 ufdm)—i—m(fg)/o uidzx

L L
—(p(&) —nes (1 + 1))/ us 2de + L 92dgc + Ngn/ u?dw
0 463 0

/ L
/ / (z,1,s,t)dsdz + N, +ﬂ+—ﬁ / ¢dx
463 €2 de1 /) Jo

L L
+MN; (— (k— /3’51)/ 0%dx + 52777/ ufda:)
0 0
7N27’1\/ / / slu(s)| z%(x, p, s, t)dsdpdx
—Ng’l]l/ / 2(z,1,s,t)dsdx

L
—{N (26 (&) — nl) — Noln — m(&)1 — Nlengl}/ u?,dx
0

IA

—{p(€1) — nes (1 + 1)}/Luidx - {N1 (1 — fer) — "} / P

463
—{Nﬁ—N1 (T++f€ll>}/0 ¢*dx

L T2
/ / lu(s)| 2%(x, 1, s, t)dsdx
0 T1

L 1 T2
e [ [ slha(o)] e s, t)dsdpda
0

then we choose N7 and N, large enough so that

1
Nl(/ﬁ—681)—£>0, ThN2_E>O.

Once N; and Ny are fixed, we then choose N large enough so that

N (20 (&) — i) — Naln —m(&2)l — Nyl > 0,

l
NpB— Ny <T+7’n+5> > 0.
451
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Thus, using (21), we arrive at
L'(t) < —c&(t), Vt>0. (36)

A combination of (35) and (36) gives
L'(t) < —cL(t), Vt>0, (37)
where ¢o = ¢/ch, a simple integration of (37) over (0,t) yields
EM) < L(t) < L(0)e ", Vvt >0.

Taking ¢; = £(0)/c} which completes the proof. O
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