

New properties of gb^* -closed map and gb^* -open map in topological spaces

Amin Benaissa Cherif ¹ *and Fatima Zohra Ladrani ²					
¹ Department of Mathematics, Faculty of Mathematics and Informatics,					
University of Science and Technology of Oran "Mohamed-Boudiaf" (USTO-MB),					
BP 1505, Bir El Djir, Oran, 31000, Algeria.					
ORCID iD: 0000-0002-0995-3751					
² Department of Exact Sciences, Higher Training Teacher's School of Oran Ammour Ahmed (ENSO-AA),					
Oran, 31000, Algeria.					
ORCID iD: 0000-0001-7205-5682					

Received: 09 June 2021	•	Accepted: 09 May 2022	•	Published Online: 25 May 2022
-------------------------------	---	-----------------------	---	-------------------------------

Abstract: In this paper, we some of their properties of semi-open, α -open, pre-open, α -open sets to induced topology, we compare with the semi-open or (*b*-open, pre-open, α -open) set if for the topological space and the topological space induced, finally we inntroduce a new properties for gb^* -closed maps and gb^* -open map in topological space induced.

Key words: semi-open set, α -open set, gb^* -closed map, gb^* -open map.

1. Introduction and preliminaries

Different types of closed and open were studied by various researchers. The notion of b-open sets was introduced by D. Andrijevic [4] in the year 1968. A. A. Omari et al [1] made an analytical study and result the concepts of generalized b-closed sets in topological spaces. The idea of introduced regular generalized b-closed map in topological space by S. Sekar and K. Mariappa [13] in 2013. A new class of generalised b star- closed map in Topological Spaces was introduced in 2017 by S. Sekar et al [14].

The aim of this paper is to continue the study of new properties of b star-closed maps in topological spaces ome of its properties are based on the induced topology and compares the state of a set with respect to the topological subspace and the total topological space in the following positions. Throughout the present paper, $(\mathcal{E}, \mathcal{T})$ and (\mathcal{F}, Σ) will denote topological spaces with no separation properties assumed. For a subset Ω of a topological space $(\mathcal{E}, \mathcal{T})$, $cl(\Omega)$ and $int(\Omega)$ will denote the closure and interior of Ω in $(\mathcal{E}, \mathcal{T})$, respectively.

We recall the following definitions which are useful in the sequel.

Definition 1.1. Let a subset Ω of a topological space $(\mathcal{E}, \mathcal{T})$ is called

- (1) a pre-open set [2], if $\Omega \subseteq int(cl(\Omega))$.
- (2) a semi-open set [10], if $\Omega \subseteq cl(int(\Omega))$.
- (3) a α -open set [2], if $\Omega \subseteq int(cl(int(\Omega)))$.
- (4) a *b*-open set [4], if $\Omega \subseteq cl(int(\Omega)) \cup int(cl(\Omega))$.

[©]Asia Mathematika, DOI: 10.5281/zenodo.6580294

^{*}Correspondence: amine.banche@gmail.com

Remark 1.1. The b-closed (resp. semi-closed, pre-closed, α -closed) of a subset Ω of a space $(\mathcal{E}, \mathcal{T})$ is the intersection of all b-closure (resp. semi-closed, pre-closed, α -closed) sets that contain Ω and is denoted by $bcl(\Omega)$ (resp. $scl(\Omega), pcl(\Omega), \alpha cl(\Omega)$).

Remark 1.2. The b-open (resp. semi-open, pre-open, α -open) of a contained in Ω of a space $(\mathcal{E}, \mathcal{T})$ is the union of all b-interior (resp. semi-interior, pre-interior, α -interior) sets that Contained in Ω and is denoted by b-int (Ω) (resp. s-int (Ω) , p-int (Ω) , α -int (Ω)).

Definition 1.2. Let a subset Ω of a topological space $(\mathcal{E}, \mathcal{T})$ is called

- (1) a generalized closed set (briefly *g*-closed) [9], if $cl(\Omega) \subseteq \theta$ whenever $\Omega \subseteq \theta$ and θ is open in \mathcal{E} .
- (2) a generalized b-closed set (briefly gb-closed) [1], if $bcl(\Omega) \subseteq \theta$ whenever $\Omega \subseteq \theta$ and θ is open in \mathcal{E} .
- (3) a α generalized *-closed set (briefly αg^* -closed) [8], if $cl(\Omega) \subseteq int(\theta)$ whenever $\Omega \subseteq \theta$ and θ is α -open in \mathcal{E} .
- (4) a g * s-closed set (briefly g * s-closed) [3], if $scl(\Omega) \subseteq \theta$ whenever $\Omega \subseteq \theta$ and θ is gs-open in \mathcal{E} .
- (5) a regular generalized *b*-closed set (briefly *rgb*-closed) [5] if $scl(\Omega) \subseteq \theta$ whenever $\Omega \subseteq \theta$ and θ is regular open in \mathcal{E} .

Definition 1.3. [14] Let \mathcal{E} and \mathcal{F} be topological spaces. A map $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \mathcal{T})$ is called generalized *b* star-closed (briefly, gb^* -closed map) if the image of every closed set in \mathcal{E} is gb^* -closed in \mathcal{F} .

Definition 1.4. [14]Let \mathcal{E} and \mathcal{F} be topological spaces. A map $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \mathcal{T})$ is called generalized b star open (briefly, gb^* -open) if the image of every open set in \mathcal{E} is gb^* -open in \mathcal{F} .

2. Main Results

In this section, we study the behavior of pre-open sets, *b*-open sets, α -open sets and *b*-closed sets and *g*-closed sets in a sub-space. For simplification, we introduce the following Remark and Notation.

Notation 2.1. Let \mathcal{E}_0 be a nonempty set endowed with the induced topology of $(\mathcal{E}, \mathcal{T})$, we denote $(\mathcal{E}_0, \mathcal{T}_0)$.

Notation 2.2. Let a subset Ω of a topological space $(\mathcal{E}_0, \mathcal{T}_0)$, we give the following set $cl_{\mathcal{E}_0}(\Omega)$, $int_{\mathcal{E}_0}(\Omega)$, $bcl_{\mathcal{E}_0}(\Omega)$ and $scl_{\mathcal{E}_0}(\Omega)$ according to their definitions but in relation to the induced topology.

Remark 2.1. Let a subset Ω of a topological space $(\mathcal{E}_0, \mathcal{T}_0)$, we have

$$cl_{\mathcal{E}_{0}}(\Omega) = cl(\Omega) \cap \mathcal{E}_{0}, \quad int(\Omega) \subseteq int_{\mathcal{E}_{0}}(\Omega).$$
 (1)

The principle of the following theorem, we study the behavior of pre-open sets a sub-space.

Theorem 2.1. Let a subset Ω of a topological space \mathcal{E}_0 , such as $cl(\Omega) \subset \mathcal{E}_0 \subset \mathcal{E}$ and Ω is pre-open in $(\mathcal{E}, \mathcal{T})$. Then Ω is pre-open in $(\mathcal{E}_0, \mathcal{T}_0)$, but not conversely.

Proof. Let Ω is pre-open in $(\mathcal{E}, \mathcal{T})$, by (1), we get that $\Omega \subseteq int(cl(\Omega)) \subseteq int_{\mathcal{E}_0}(cl(\Omega))$, since $cl_{\mathcal{E}_0}(\Omega) = cl(\Omega)$, then $\Omega \subseteq int_{\mathcal{E}_0}(cl(\Omega) \cap \mathcal{E}_0) = int_{\mathcal{E}_0}(cl_{\mathcal{E}_0}(\Omega))$. Hence Ω is pre-open in $(\mathcal{E}_0, \mathcal{T}_0)$. \Box

Remark 2.2. If $(\mathbb{R}, \mathcal{T}_u)$ endowed with the usual topology, then $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ is the induced topology.

Example 2.1. Let $\mathcal{E} = \mathbb{R}$, $\mathcal{E}_0 = \mathbb{N}$ and $\Omega = \{1, 2\}$, we have $cl(\Omega) = \Omega$, $int(cl(\Omega)) = \emptyset$ and $int_{\mathcal{E}_0}(cl_{\mathcal{E}_0}(\Omega)) = \Omega$. Hence Ω is pre-open in the topology for \mathbb{N} and Ω is not pre-open in \mathbb{R} .

The following result is a direct consequence of Theorem 2.1.

Corollary 2.1. Let a subset Ω of a topological space \mathcal{E}_0 , such as $cl(\Omega) \subset \mathcal{E}_0 \subset \mathcal{E}$, then p-int $(\Omega) \subseteq pint_{\mathcal{E}_0}(\Omega)$.

Proof. Let a subset Ω of a topological space \mathcal{E}_0 , we note $\Upsilon_0 = \{\theta \subset \Omega : \theta \text{ is pre-open in } (\mathcal{E}_0, \mathcal{T}_0)\}$ and $\Upsilon = \{\theta \subset \Omega : \theta \text{ is pre-open in } (\mathcal{E}, \mathcal{T})\}$. By Theorem 2.1, we get $\Upsilon \subset \Upsilon_0$, which implies that

$$p\text{-}int\left(\Omega\right) = \underset{\theta \in \Upsilon}{\cup} \theta \subseteq \underset{\theta \in \Upsilon_{0}}{\cup} \theta = p\text{-}int_{\mathcal{E}_{0}}\left(\Omega\right).$$

The principle of the following theorem, we study the behavior of b-open sets a sub-space.

Theorem 2.2. Let a subset Ω of a topological space \mathcal{E}_0 , such as $cl(\Omega) \subset \mathcal{E}_0 \subset \mathcal{E}$ and Ω is b-open in $(\mathcal{E}_0, \mathcal{T}_0)$. Then Ω is b-open in $(\mathcal{E}, \mathcal{T})$, but not conversely.

Proof. Let a subset Ω of a topological space \mathcal{E}_0 , by (1), we have

$$\Omega \subseteq cl_{\mathcal{E}_{0}}\left(int_{\mathcal{E}_{0}}\left(\Omega\right)\right) \cup int_{\mathcal{E}_{0}}\left(cl_{\mathcal{E}_{0}}\left(\Omega\right)\right) \subseteq \left(cl\left(int_{\mathcal{E}_{0}}\left(\Omega\right)\right) \cap \mathcal{E}_{0}\right) \cup int_{\mathcal{E}_{0}}\left(cl\left(\Omega\right) \cap \mathcal{E}_{0}\right)$$
$$\subseteq \left(cl\left(int\left(\Omega\right)\right) \cap \mathcal{E}_{0}\right) \cup int\left(cl\left(\Omega\right) \cap \mathcal{E}_{0}\right) \subseteq \left(cl\left(int\left(\Omega\right)\right) \cap \mathcal{E}_{0}\right) \cup int\left(cl\left(\Omega\right) \cap \mathcal{E}_{0}\right)$$

Hence, $cl(int(\Omega)) \cap \mathcal{E}_0 \subset cl(int(\Omega))$ and $int(cl(\Omega) \cap \mathcal{E}_0) \subset int(cl(\Omega))$, which implies that $\Omega \subseteq cl(int(\Omega)) \cup int(cl(\Omega))$, then Ω is semi-open in $(\mathcal{E}, \mathcal{T})$.

Example 2.2. Let $\mathcal{E} = \mathbb{R}$, $\mathcal{E}_0 = \mathbb{N}$ and $\Omega = \{1, 2\}$, then $int(cl(\Omega)) = cl(int(\Omega)) = \emptyset$ and $cl_{\mathcal{E}_0}(int_{\mathcal{E}_0}(\Omega)) = int_{\mathcal{E}_0}(cl_{\mathcal{E}_0}(\Omega)) = \Omega$. Hence Ω is b-open in $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ and Ω is not b-open in $(\mathbb{R}, \mathcal{T}_u)$.

Corollary 2.2. Let a subset Ω of a topological space \mathcal{E}_0 , such as $cl(\Omega) \subset \mathcal{E}_0 \subset \mathcal{E}$, then $b - int_{\mathcal{E}_0}(\Omega) \subseteq b - int(\Omega)$.

Proof. Let Ω be set in \mathcal{E}_0 , we note $\Theta_0 = \{\theta \subset \Omega : \theta \text{ is } b\text{-open in } (\mathcal{E}_0, \mathcal{T}_0)\}$ and $\Theta = \{\theta \subset \Omega : \theta \text{ is } b\text{-open in } (\mathcal{E}, \mathcal{T})\}$. By Theorem 2.2, we get $\Theta_0 \subset \Theta$, which implies that

$$b\text{-}int_{\mathcal{E}_{0}}\left(\Omega\right)=\underset{\theta\in\Theta_{0}}{\cup}\theta\subseteq\underset{\theta\in\Theta}{\cup}\theta=b\text{-}int\left(\Omega\right).$$

The principle of the following theorem, we study the behavior of α -open sets a sub-space.

Theorem 2.3. Let a subset Ω of a topological space \mathcal{E}_0 , such as $cl(\Omega) \subset \mathcal{E}_0 \subset \mathcal{E}$ and Ω is α -open in $(\mathcal{E}, \mathcal{T})$. Then Ω is α -open in $(\mathcal{E}_0, \mathcal{T}_0)$, but not conversely.

Proof. By remark 2.1, we have

$$cl\left(int\left(\Omega\right)\right)\subseteq cl\left(int_{\mathcal{E}_{0}}\left(\Omega\right)\right)\subseteq cl\left(int_{\mathcal{E}_{0}}\left(\Omega\right)\right)\cap\mathcal{E}_{0}=cl_{\mathcal{E}_{0}}\left(int_{\mathcal{E}_{0}}\left(\Omega\right)\right)$$

Then,

 $int\left(cl\left(int\left(\Omega\right)\right)\right)\subseteq int\left(cl_{\mathcal{E}_{0}}\left(int_{\mathcal{E}_{0}}\left(\Omega\right)\right)\right)\subseteq int_{\mathcal{E}_{0}}\left(cl_{\mathcal{E}_{0}}\left(int_{\mathcal{E}_{0}}\left(\Omega\right)\right)\right).$

Since Ω is α -open in $(\mathcal{E}, \mathcal{T})$, then $\Omega \subseteq int_{\mathcal{E}_0}(cl_{\mathcal{E}_0}(int_{\mathcal{E}_0}(\Omega)))$. Hence Ω is α -open in $(\mathcal{E}_0, \mathcal{T}_0)$.

42

Example 2.3. Let $\mathcal{E} = \mathbb{R}$, $\mathcal{E}_0 = \mathbb{N}$ and $\Omega = \{1, 2\}$, then $int(cl(int(\Omega))) = \emptyset$ and $int_{\mathcal{E}_0}(cl_{\mathcal{E}_0}(int_{\mathcal{E}_0}(\Omega))) = \Omega$. Hence Ω is α -open in the topology for \mathbb{N} and Ω is not α -open in the topology for \mathbb{R} .

Corollary 2.3. Let a subset Ω of a topological space \mathcal{E}_0 , such as $cl(\Omega) \subset \mathcal{E}_0 \subset \mathcal{E}$, then α -int $(\Omega) \subseteq \alpha$ -int $_{\mathcal{E}_0}(\Omega)$.

Proof. Let Ω be set in \mathcal{E}_0 , we note $\Xi_0 = \{\theta \subset \Omega : \theta \text{ is } \alpha \text{-open in } (\mathcal{E}_0, \mathcal{T}_0)\}$ and $\Xi = \{\theta \subset \Omega : \theta \text{ is } \alpha \text{-open in } (\mathcal{E}, \mathcal{T})\}$. By Theorem 2.3, we get $\Xi \subset \Xi_0$, which implies that

$$\alpha\text{-}int\left(\Omega\right) = \underset{\theta\in\Xi}{\cup} \theta \subseteq \underset{\theta\in\Xi_{0}}{\cup} \theta = \alpha\text{-}int_{\mathcal{E}_{0}}\left(\Omega\right)$$

The principle of the following theorem, we study the behavior of *g*-closed sets a sub-space.

Theorem 2.4. Let a subset Ω of a topological space \mathcal{E}_0 , such as $\Omega \subset \mathcal{E}_0 \subset \mathcal{E}$. If Ω is g-closed in $(\mathcal{E}_0, \mathcal{T}_0)$, then Ω is g-closed in $(\mathcal{E}, \mathcal{T})$.

Proof. Assume Ω is *g*-closed in $(\mathcal{E}_0, \mathcal{T}_0)$. Let θ is open in $(\mathcal{E}, \mathcal{T})$ and $\Omega \subseteq \theta$, with $\Omega \subseteq \theta \cap \mathcal{E}_0$, since $\theta \cap \mathcal{E}_0$ is open in $(\mathcal{E}_0, \mathcal{T}_0)$, then $cl(\Omega) \subseteq \theta \cap \mathcal{E}_0 \subseteq \theta$. Hence Ω is *g*-closed in \mathcal{E} .

Theorem 2.5. Let a subset Ω of a topological space \mathcal{E}_0 , such as \mathcal{E}_0 is open in $(\mathcal{E}, \mathcal{T})$, then Ω is g-closed in $(\mathcal{E}, \mathcal{T})$, if and only if Ω is g-closed in $(\mathcal{E}_0, \mathcal{T}_0)$.

Proof. By Theorem 2.4, just show that, Ω is *g*-closed in $(\mathcal{E}, \mathcal{T})$ implies that Ω is *g*-closed in $(\mathcal{E}_0, \mathcal{T}_0)$. Indeed, let θ_0 is open in \mathcal{E}_0 , there is an open θ in \mathcal{E} , such that $\theta_0 = \theta \cap \mathcal{E}_0$, if $\Omega \subseteq \theta_0 = \theta \cap \mathcal{E}_0$, since $\theta \cap \mathcal{E}_0$ is open in $(\mathcal{E}, \mathcal{T})$, give us $cl(\Omega) \subseteq \theta_0$ and $cl_{\mathcal{E}_0}(\Omega) \subseteq cl(\Omega)$, then Ω is *g*-closed in $(\mathcal{E}_0, \mathcal{T}_0)$.

The following result is some properties of gb^* -closed maps.

Theorem 2.6. Let \mathcal{E}_0 be a closed set and let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -closed map, then $\phi : (\mathcal{E}_0, \mathcal{T}_0) \to (\mathcal{F}, \Sigma)$ is gb^* - closed map, but not conversely.

Proof. Let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -closed map and ϑ_0 be an closed set in $(\mathcal{E}_0, \mathcal{T}_0)$. So, it exists is a closed set ϑ in $(\mathcal{E}, \mathcal{T})$, such that $\vartheta_0 = \vartheta \cap \mathcal{E}_0$. As \mathcal{E}_0 is closed in $(\mathcal{E}, \mathcal{T})$. Hence $\phi(\vartheta_0)$ is gb^* -closed in (\mathcal{F}, Σ) . Then $\phi : (\mathcal{E}_0, \mathcal{T}_0) \to (\mathcal{F}, \Sigma)$ is gb^* -closed.

Example 2.4. Let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{E}, \Sigma)$ be a map, such that $\phi(x) = x$, $\phi(y) = x$, $\phi(z) = y$, $\phi(t) = z$, where $\mathcal{E} = \{x, y, z, t\}, \mathcal{T} = \{\mathcal{E}, \emptyset, \{x\}, \{y, z, t\}\}, \Sigma = \{\mathcal{E}, \emptyset, \{y\}, \{x, y, z\}\}$ and $\mathcal{E}_0 = \{x\}$. Then $\phi : (\mathcal{E}_0, \mathcal{T}_0) \to (\mathcal{E}, \Sigma)$ is gb^* -closed map, but $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{E}, \Sigma)$ is not gb^* -closed map.

Lemma 2.1. Let Ω_1 and Ω_2 are gb^* -closed in $(\mathcal{E}, \mathcal{T})$, then $\Omega_1 \cup \Omega_2$ is gb^* -closed in $(\mathcal{E}, \mathcal{T})$.

Proof. Let Ω_1 and Ω_2 are gb^* -closed in $(\mathcal{E}, \mathcal{T})$, if $bcl(\Omega_1 \cup \Omega_2) \subseteq \theta$, with θ is g^* open in $(\mathcal{E}, \mathcal{T})$, we have $bcl(\Omega_1) \subset bcl(\Omega_1 \cup \Omega_2) \subseteq \theta$, then $\Omega_1 \subseteq \theta$, the same way we find $\Omega_2 \subseteq \theta$. Hence $\Omega_1 \cup \Omega_2 \subseteq \theta$.

Theorem 2.7. Let \mathcal{E}_1 and \mathcal{E}_2 sets in \mathcal{E} and let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is map, such as $\mathcal{E}_1 \cup \mathcal{E}_2 = \mathcal{E}$. If $\phi_{\mathcal{E}_1} : (\mathcal{E}_1, \mathcal{T}_1) \to (\mathcal{F}, \Sigma)$ and $\phi_{\mathcal{E}_2} : (\mathcal{E}_2, \mathcal{T}_2) \to (\mathcal{F}, \Sigma)$ are gb^* -closed map, then $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -closed map.

Proof. Let $\phi_{\mathcal{E}_1} : (\mathcal{E}_1, \mathcal{T}_1) \to (\mathcal{F}, \Sigma), \ \phi_{\mathcal{E}_2} : (\mathcal{E}_2, \mathcal{T}_2) \to (\mathcal{F}, \Sigma)$ are gb^* -closed map and ϑ be an closed set in \mathcal{E} , then

$$\begin{split} \phi(\vartheta) &= \phi(\vartheta \cap \mathcal{E}) = \phi(\vartheta \cap (\mathcal{E}_1 \cup \mathcal{E}_2)) = \phi((\vartheta \cap \mathcal{E}_1) \cup (\vartheta \cap \mathcal{E}_2)) \\ &= \phi(\vartheta \cap \mathcal{E}_1) \cup \phi(\vartheta \cap \mathcal{E}_2) \,. \end{split}$$

We have $\vartheta \cap \mathcal{E}_1$ and $\vartheta \cap \mathcal{E}_2$ are a closed in $(\mathcal{E}_1, \mathcal{T}_1)$ and $(\mathcal{E}_2, \mathcal{T}_2)$, respectively, then $\phi(\vartheta \cap \mathcal{E}_1)$ and $\phi(\vartheta \cap \mathcal{E}_2)$ are gb^* -closed in (\mathcal{F}, Σ) . By lemma 2.1, we get that $\phi(\vartheta \cap \mathcal{E}_1)$ and $\phi(\vartheta \cap \mathcal{E}_2)$ are gb^* -closed in (\mathcal{F}, Σ) . Hence $\phi(\vartheta)$ is gb^* -closed in (\mathcal{F}, Σ) . Then $\phi: (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -closed.

The following corollary is a new generalization of the Theorem 2.7.

Corollary 2.4. Let $\mathcal{E}_1, \mathcal{E}_2, ..., \mathcal{E}_n$ be sets, such as $\mathcal{E} = \bigcup_{i=1}^{i=n} \mathcal{E}_i$, if $\phi_{\mathcal{E}_i} : (\mathcal{E}_i, \mathcal{T}_i) \to (\mathcal{F}, \Sigma)$ is gb^* -closed map, for $i \in [1, n] \cap \mathbb{N}$, then $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -closed map.

The following result is some properties of gb^* -open map.

Theorem 2.8. Let \mathcal{E}_0 be a open set in $(\mathcal{E}, \mathcal{T})$ and let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -open map, then $\phi : (\mathcal{E}_0, \mathcal{T}_0) \to (\mathcal{F}, \Sigma)$ is gb^* -open map, but not conversely.

Proof. Let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -closed map and θ_0 be an open set in $(\mathcal{E}_0, \mathcal{T}_0)$. So, it exists is a open set θ in $(\mathcal{E}, \mathcal{T})$, such that $\theta_0 = \theta \cap \mathcal{E}_0$. As \mathcal{E}_0 is open in $(\mathcal{E}, \mathcal{T})$. Hence $\phi(\theta_0)$ is gb^* -open in (\mathcal{F}, Σ) . Then $\phi : (\mathcal{E}_0, \mathcal{T}_0) \to (\mathcal{F}, \Sigma)$ is gb^* -open.

Example 2.5. Let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{E}, \Sigma)$ be a map such that $\phi(x) = x$, $\phi(y) = x$, $\phi(c) = y$, $\phi(d) = c$, where $\mathcal{E} = \{x, y, c, d\}$, $\mathcal{T} = \{\mathcal{E}, \emptyset, \{x\}, \{y, c, d\}\}$, $\Sigma = \{\mathcal{E}, \emptyset, \{y\}, \{x, y, c\}\}$ and $\mathcal{E}_0 = \{x\}$. Then $\phi : (\mathcal{E}_0, \mathcal{T}) \to (\mathcal{E}, \Sigma)$ is gb^* -open map, but $\phi : (\mathcal{E}_0, \mathcal{T}) \to (\mathcal{E}, \Sigma)$ is not gb^* -open map.

Lemma 2.2. Let Ω_1 and Ω_2 are gb^* -open in $(\mathcal{E}, \mathcal{T})$, such as $\Omega_1 \cap \Omega_2 \neq \emptyset$, then $\Omega_1 \cup \Omega_2$ is gb^* -open in $(\mathcal{E}, \mathcal{T})$.

Proof. Let Ω_1 and Ω_2 are gb^* -open in $(\mathcal{E}, \mathcal{T})$, such as $\Omega_1 \cap \Omega_2 \neq \emptyset$, we have \emptyset is gb^* -closed, then $(\Omega_1 \cup \Omega_2)^c$ is gb^* -closed in $(\mathcal{E}, \mathcal{T})$, thus $\Omega_1 \cup \Omega_2$ is gb^* -open in $(\mathcal{E}, \mathcal{T})$.

Theorem 2.9. Let $\mathcal{E}_1, \mathcal{E}_2$ be sets disjoint, such as $\mathcal{E}_1 \cup \mathcal{E}_2 = \mathcal{E}$. If $\phi_{\mathcal{E}_1} : (\mathcal{E}_1, \mathcal{T}_1) \to (\mathcal{F}, \Sigma)$ and $\phi_{\mathcal{E}_2} : (\mathcal{E}_2, \mathcal{T}_2) \to (\mathcal{F}, \Sigma)$ are gb^* -open map, $\phi : \mathcal{E} \to \mathcal{F}$ is an injective map, then $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -open map.

Proof. Let $\phi_{\mathcal{E}_1} : (\mathcal{E}_1, \mathcal{T}_1) \to (\mathcal{F}, \Sigma)$ and $\phi_{\mathcal{E}_2} : (\mathcal{E}_2, \mathcal{T}_2) \to (\mathcal{F}, \Sigma)$ are gb^* -open map, θ be an open set in $(\mathcal{E}, \mathcal{T})$, then

$$\phi(\theta) = \phi(\theta \cap \mathcal{E}) = \phi(\theta \cap \mathcal{E}_1) \cup \phi(\theta \cap \mathcal{E}_2).$$

We have $\theta \cap \mathcal{E}_1$ and $\theta \cap \mathcal{E}_2$ are a open in $(\mathcal{E}_1, \mathcal{T}_1)$ and $(\mathcal{E}_2, \mathcal{T}_2)$, respectively, then $\phi(\theta \cap \mathcal{E}_1)$ and $\phi(\theta \cap \mathcal{E}_2)$ are gb^* -open in (\mathcal{F}, Σ) , now we show that $\phi(\theta \cap \mathcal{E}_1) \cap \phi(\theta \cap \mathcal{E}_2) = \emptyset$. Suppose that $\phi(\theta \cap \mathcal{E}_1) \cap \phi(\theta \cap \mathcal{E}_2) \neq \emptyset$, let $y \in \phi(\theta \cap \mathcal{E}_1) \cap \phi(\theta \cap \mathcal{E}_2)$, there exists $x_1 \in \mathcal{E}_1$ and $x_2 \in \mathcal{E}_2$, such that, $x_1 \neq x_2$ and $y = \phi(x_1) = \phi(x_2)$, which contradicts, by ϕ is injective map. By lemma 2.2, we get $\phi(\theta)$ is gb^* -open in (\mathcal{F}, Σ) . Then $\phi: (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -open.

The following results are consequences of Theorem 2.9.

Corollary 2.5. Let $\mathcal{E}_1, \mathcal{E}_2, ..., \mathcal{E}_n$ be sets, such as $\mathcal{E} = \bigcup_{i=1}^{i=n} \mathcal{E}_i$ and for $i \neq j$, $\mathcal{E}_1 \cap \mathcal{E}_2 = \emptyset$. If, for $i \in [1, n] \cap \mathbb{N}$, $\phi_{\mathcal{E}_i}$ is gb^* -open map, then $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gb^* -open map.

Acknowledgment

The author express their sincere gratitude to the editors and referee for careful reading of the original manuscript and useful comments.

References

- [1] A. Omari and M. S. M. Noorani, On Generalized b-closed sets, Bull. Malays. Math. Sci, 2(32), pp. 19–30, (2009).
- [2] A. S. Mashor, M. E. Abdelmonsef and S. N. E. Deeb, On Pre continous and weak pre-Continuus mapping, Proc. Math., Phys. Soc. Egypt, 53, pp. 47–53, (1982).
- [3] A. Pushpalatha and K. Anitha, g*s-closed set in topological spaces, Int. J. Contemp. Math. Sciences, 6(19), pp. 917–929, (2011).
- [4] D. Andrijevic, b-open sets, Mat. Vesnik, vol. 48, (1996), pp. 59-64.
- [5] K. Mariappa and S. Sekar, On regular generalized b-closed set, Int. Journal of Math. Analysis, 7(13), pp. 613–624, (2013).
- [6] K. Meena, D. Arivuoli, and k. Sivakamasundari, properties of Δ*-closed maps in topological spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2(68), pp. 2209–2215, (2019).
- [7] K. Mariappa, S. Sekar, On Regular Generalized b-Continuous Map in Topological Space, Kyungpook. Math. J. 54, pp. 477-483, (2014).
- [8] M. Murugalingam, S. Somasundaram and S. Palaniammal, A generalised star sets, Bulletin of Pure and Applied sciences, 2(24), pp. 235–238, (2005).
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, pp. 36–41, (1963).
- [10] N. Levine, Generalized closed sets in topology, Tend Circ. Mat. Palermo, 2(19), pp. 89–96, (1970).
- [11] R. Devi, A. Selvakumar, and S. Jafari, \widetilde{G}_{α} -Closed sets in topological spaces, Asia Mathematika, 3(3), pp.16-22, (2019).
- [12] S. Sekar and S. Loganayagi, On generalized b star-closed set in Topological Spaces, Malaya Journal of Matematik, 2(5), pp. 401–406, (2017).
- [13] S. Sekar and K. Mariappa, On regular generalized b-closed map in topological spaces, Int. Journal of Math. Archive, 8(4), pp. 111–116, (2013).
- [14] S. Sekar and S. Loganayagi, On generalized b star-closed map in Topological Spaces, Math. Aeterna, 2(7), pp. 95-103, (2017).
- [15] Hanchuan LU, Wenqing FU, One-point Ultra-F Compactification and $Stone \tilde{C}$ ech Ultra-F compactification of L-topological Spaces, Asia Mathematika Volume: 3 Issue: 1, (2019) Pages: 41 46.
- [16] I. Rajasekaran and O. Nethaji, An introductory notes to ideal binanotopological spaces, Asia Mathematika, Volume: 3 Issue: 1, (2019) Pages: 47 – 59.
- [17] A. Selvakumar and S. Jafari, nano \widetilde{G}_{α} -closed sets in nano topological spaces, Asia Mathematika, Volume: 4 Issue: 1, (2020) Pages: 18 – 25.
- [18] M. Rossafi, A. Bourouihiya, H. Labrigui, and A. Touri, The duals of *-operator frames for $End_{\mathcal{A}}^{*}(H)$, Asia Mathematika, Volume: 4 Issue: 1, (2020) Pages: 45 52.
- [19] S. Ganesan, P. Hema, S. Jeyashri, and C. Alexander, Contra $n\mathcal{I}_{*\mu}$ -continuity, Asia Mathematika, Volume: 4 Issue: 2, (2020) Pages: 127–133.
- [20] I. Rajasekaran, On *b-open sets and *b- sets in nano topological spaces, Asia Mathematika Volume: 5 Issue: 3, (2021) Pages: 84 88.