New properties of gb^*–closed map and gb^*-open map in topological spaces

Amin Benaissa Cherif1 and Fatima Zohra Ladrani2

1Department of Mathematics, Faculty of Mathematics and Informatics, University of Science and Technology of Oran "Mohamed-Boudiaf" (USTO-MB), BP 1505, Bir El Djir, Oran, 31000, Algeria. ORCID iD: 0000-0002-0995-3751

2Department of Exact Sciences, Higher Training Teacher’s School of Oran Ammour Ahmed (ENSO-AA), Oran, 31000, Algeria. ORCID iD: 0000-0001-7205-5682

Received: 09 June 2021 • Accepted: 09 May 2022 • Published Online: 25 May 2022

Abstract: In this paper, we some of their properties of semi-open, α-open, pre-open, α-open sets to induced topology, we compare with the semi-open or (b-open, pre-open, α-open) set if for the topological space and the topological space induced, finally we introduce a new properties for gb^*-closed maps and gb^*-open map in topological space induced.

Key words: semi-open set, α-open set, gb^*-closed map, gb^*-open map.

1. Introduction and preliminaries

Different types of closed and open were studied by various researchers. The notion of b-open sets was introduced by D. Andrijevic [4] in the year 1968. A. A. Omari et al [1] made an analytical study and result the concepts of generalized b-closed sets in topological spaces. The idea of introduced regular generalized b-closed map in topological space by S. Sekar and K. Mariappa [13] in 2013. A new class of generalised b star-closed map in Topological Spaces was introduced in 2017 by S. Sekar et al [14].

The aim of this paper is to continue the study of new properties of b star-closed maps in topological spaces one of its properties are based on the induced topology and compares the state of a set with respect to the topological subspace and the total topological space in the following positions. Throughout the present paper, $(\mathcal{E}, \mathcal{T})$ and (\mathcal{F}, Σ) will denote topological spaces with no separation properties assumed. For a subset Ω of a topological space $(\mathcal{E}, \mathcal{T})$, $cl(\Omega)$ and $int(\Omega)$ will denote the closure and interior of Ω in $(\mathcal{E}, \mathcal{T})$, respectively.

We recall the following definitions which are useful in the sequel.

\textbf{Definition 1.1.} Let a subset Ω of a topological space $(\mathcal{E}, \mathcal{T})$ is called

(1) a pre-open set [2], if $\Omega \subseteq int(cl(\Omega))$.

(2) a semi-open set [10], if $\Omega \subseteq cl(int(\Omega))$.

(3) a α-open set [2], if $\Omega \subseteq int(cl(int(\Omega)))$.

(4) a b-open set [4], if $\Omega \subseteq cl(int(\Omega)) \cup int(cl(\Omega))$.
Remark 1.1. The b-closed (resp. semi-closed, pre-closed, α-closed) of a subset Ω of a space $(\mathcal{E}, \mathcal{T})$ is the intersection of all b-closure (resp. semi-closure, pre-closure, α-closure) sets that contain Ω and is denoted by $\text{bcl}(\Omega)$ (resp. $\text{scl}(\Omega)$, $\text{pcl}(\Omega)$, $\text{acl}(\Omega)$).

Remark 1.2. The b-open (resp. semi-open, pre-open, α-open) of a contained in Ω of a space $(\mathcal{E}, \mathcal{T})$ is the union of all b-interior (resp. semi-interior, pre-interior, α-interior) sets that are contained in Ω and is denoted by $\text{b-int}(\Omega)$ (resp. $\text{s-int}(\Omega)$, $\text{p-int}(\Omega)$, $\text{\alpha-int}(\Omega)$).

Definition 1.2. Let a subset Ω of a topological space $(\mathcal{E}, \mathcal{T})$ is called

1. a generalized closed set (briefly g-closed) [9], if $\text{cl}(\Omega) \subseteq \theta$ whenever $\Omega \subseteq \theta$ and θ is open in \mathcal{E}.
2. a generalized b-closed set (briefly gb-closed) [1], if $\text{bcl}(\Omega) \subseteq \theta$ whenever $\Omega \subseteq \theta$ and θ is open in \mathcal{E}.
3. a α-generalized \ast-closed set (briefly αg^\ast-closed) [8], if $\text{cl}(\Omega) \subseteq \text{int}(\theta)$ whenever $\Omega \subseteq \theta$ and θ is α-open in \mathcal{E}.
4. a $g^\ast s$-closed set (briefly $g^\ast s$-closed) [3], if $\text{scl}(\Omega) \subseteq \theta$ whenever $\Omega \subseteq \theta$ and θ is gs-open in \mathcal{E}.
5. a regular generalized b-closed set (briefly rgb-closed) [5] if $\text{scl}(\Omega) \subseteq \theta$ whenever $\Omega \subseteq \theta$ and θ is regular open in \mathcal{E}.

Definition 1.3. [14] Let \mathcal{E} and \mathcal{F} be topological spaces. A map $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \mathcal{T})$ is called generalized b-star-closed (briefly, gb^\ast-closed map) if the image of every closed set in \mathcal{E} is gb^\ast-closed in \mathcal{F}.

Definition 1.4. [14] Let \mathcal{E} and \mathcal{F} be topological spaces. A map $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \mathcal{T})$ is called generalized b-star open (briefly, gb^\ast-open) if the image of every open set in \mathcal{E} is gb^\ast-open in \mathcal{F}.

2. Main Results

In this section, we study the behavior of pre-open sets, b-open sets, α-open sets and b-closed sets and g-closed sets in a sub-space. For simplification, we introduce the following Remark and Notation.

Notation 2.1. Let \mathcal{E}_0 be a nonempty set endowed with the induced topology of $(\mathcal{E}, \mathcal{T})$, we denote $(\mathcal{E}_0, \mathcal{T}_0)$.

Notation 2.2. Let a subset Ω of a topological space $(\mathcal{E}_0, \mathcal{T}_0)$, we give the following set $\text{cl}_{\mathcal{E}_0}(\Omega)$, $\text{int}_{\mathcal{E}_0}(\Omega)$, $\text{bcl}_{\mathcal{E}_0}(\Omega)$, $\text{b-int}_{\mathcal{E}_0}(\Omega)$ and $\text{scl}_{\mathcal{E}_0}(\Omega)$ according to their definitions but in relation to the induced topology.

Remark 2.1. Let a subset Ω of a topological space $(\mathcal{E}_0, \mathcal{T}_0)$, we have

$$\text{cl}_{\mathcal{E}_0}(\Omega) = \text{cl}(\Omega) \cap \mathcal{E}_0, \quad \text{int}(\Omega) \subseteq \text{int}_{\mathcal{E}_0}(\Omega). \quad (1)$$

The principle of the following theorem, we study the behavior of pre-open sets a sub-space.

Theorem 2.1. Let a subset Ω of a topological space \mathcal{E}_0, such as $\text{cl}(\Omega) \subset \mathcal{E}_0 \subset \mathcal{E}$ and Ω is pre-open in $(\mathcal{E}, \mathcal{T})$. Then Ω is pre-open in $(\mathcal{E}_0, \mathcal{T}_0)$, but not conversely.

Proof. Let Ω is pre-open in $(\mathcal{E}, \mathcal{T})$, by (1), we get that $\Omega \subseteq \text{int}(\text{cl}(\Omega)) \subseteq \text{int}_{\mathcal{E}_0}(\text{cl}(\Omega))$, since $\text{cl}_{\mathcal{E}_0}(\Omega) = \text{cl}(\Omega) \cap \mathcal{E}_0 = \text{cl}(\Omega)$, then $\Omega \subseteq \text{int}_{\mathcal{E}_0}(\text{cl}(\Omega) \cap \mathcal{E}_0) = \text{int}_{\mathcal{E}_0}(\text{cl}_{\mathcal{E}_0}(\Omega))$. Hence Ω is pre-open in $(\mathcal{E}_0, \mathcal{T}_0)$.

Remark 2.2. If $(\mathbb{R}, \mathcal{T}_u)$ endowed with the usual topology, then $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ is the induced topology.
Example 2.1. Let \(E = \mathbb{R} \), \(E_0 = \mathbb{N} \) and \(\Omega = \{1, 2\} \), we have \(\text{cl} (\Omega) = \Omega \), \(\text{int} (\text{cl} (\Omega)) = \emptyset \) and \(\text{int}_{E_0} (\text{cl}_{E_0} (\Omega)) = \Omega \). Hence \(\Omega \) is pre-open in the topology for \(\mathbb{N} \) and \(\Omega \) is not pre-open in \(\mathbb{R} \).

The following result is a direct consequence of Theorem 2.1.

Corollary 2.1. Let a subset \(\Omega \) of a topological space \(E_0 \), such as \(\text{cl} (\Omega) \subset E_0 \subset E \), then \(p \text{-int} (\Omega) \subset \text{pint}_{E_0} (\Omega) \).

Proof. Let a subset \(\Omega \) of a topological space \(E_0 \), we note \(T_0 = \{ \theta \subset \Omega : \theta \text{ is pre-open in } (E_0, T_0) \} \) and \(\Upsilon = \{ \theta \subset \Omega : \theta \text{ is pre-open in } (E, T) \} \). By Theorem 2.1, we get \(\Upsilon \subset T_0 \), which implies that
\[
\text{p-int} (\Omega) = \bigcup_{\theta \in \Upsilon} \theta \subset \bigcup_{\theta \in T_0} \theta = \text{p-int}_{E_0} (\Omega).
\]

The principle of the following theorem, we study the behavior of \(b \)-open sets a sub-space.

Theorem 2.2. Let a subset \(\Omega \) of a topological space \(E_0 \), such as \(\text{cl} (\Omega) \subset E_0 \subset E \) and \(\Omega \) is \(b \)-open in \((E_0, T_0) \). Then \(\Omega \) is \(b \)-open in \((E, T) \), but not conversely.

Proof. Let a subset \(\Omega \) of a topological space \(E_0 \), by (1), we have
\[
\Omega \subset \text{cl}_{E_0} (\text{int}_{E_0} (\Omega)) \cup \text{int}_{E_0} (\text{cl}_{E_0} (\Omega)) \subset (\text{cl} (\text{int}_{E_0} (\Omega)) \cap E_0) \cup \text{int}_{E_0} (\text{cl} (\Omega) \cap E_0)
\]
\[
\subset (\text{cl} (\text{int} (\Omega)) \cap E_0) \cup \text{int} (\text{cl} (\Omega) \cap E_0) \subset (\text{cl} (\text{int} (\Omega)) \cap E_0) \cup \text{int} (\text{cl} (\Omega) \cap E_0).
\]
Hence, \(\text{cl} (\text{int} (\Omega)) \cap E_0 \subset \text{cl} (\text{int} (\Omega)) \) and \(\text{int} (\text{cl} (\Omega) \cap E_0) \subset \text{int} (\text{cl} (\Omega)) \), which implies that \(\Omega \subset \text{cl} (\text{int} (\Omega)) \cup \text{int} (\text{cl} (\Omega)) \), then \(\Omega \) is semi-open in \((E, T) \).

Example 2.2. Let \(E = \mathbb{R} \), \(E_0 = \mathbb{N} \) and \(\Omega = \{1, 2\} \), then \(\text{int} (\text{cl} (\Omega)) = \text{cl} (\text{int} (\Omega)) = \emptyset \) and \(\text{cl}_{E_0} (\text{int}_{E_0} (\Omega)) = \text{int}_{E_0} (\text{cl}_{E_0} (\Omega)) = \Omega \). Hence \(\Omega \) is \(b \)-open in \((\mathbb{N}, \mathcal{P} (\mathbb{N})) \) and \(\Omega \) is not \(b \)-open in \((\mathbb{R}, T_0) \).

Corollary 2.2. Let a subset \(\Omega \) of a topological space \(E_0 \), such as \(\text{cl} (\Omega) \subset E_0 \subset E \), then \(b \text{-int}_{E_0} (\Omega) \subset b \text{-int} (\Omega) \).

Proof. Let \(\Omega \) be set in \(E_0 \), we note \(\Theta_0 = \{ \theta \subset \Omega : \theta \text{ is } b \text{-open in } (E_0, T_0) \} \) and \(\Theta = \{ \theta \subset \Omega : \theta \text{ is } b \text{-open in } (E, T) \} \). By Theorem 2.2, we get \(\Theta_0 \subset \Theta \), which implies that
\[
b \text{-int}_{E_0} (\Omega) = \bigcup_{\theta \in \Theta_0} \theta \subset \bigcup_{\theta \in \Theta} \theta = b \text{-int} (\Omega).
\]

The principle of the following theorem, we study the behavior of \(a \)-open sets a sub-space.

Theorem 2.3. Let a subset \(\Omega \) of a topological space \(E_0 \), such as \(\text{cl} (\Omega) \subset E_0 \subset E \) and \(\Omega \) is \(a \)-open in \((E, T) \). Then \(\Omega \) is \(a \)-open in \((E_0, T_0) \), but not conversely.

Proof. By remark 2.1, we have
\[
\text{cl} (\text{int} (\Omega)) \subset \text{cl} (\text{int}_{E_0} (\Omega)) \subset \text{cl} (\text{int}_{E_0} (\Omega)) \cap E_0 = \text{cl}_{E_0} (\text{int}_{E_0} (\Omega)).
\]
Then,
\[
\text{int} (\text{cl} (\text{int} (\Omega))) \subset \text{int} (\text{cl}_{E_0} (\text{int}_{E_0} (\Omega))) \subset \text{int}_{E_0} (\text{cl}_{E_0} (\text{int}_{E_0} (\Omega))).
\]
Since \(\Omega \) is \(a \)-open in \((E, T) \), then \(\Omega \subset \text{int}_{E_0} (\text{cl}_{E_0} (\text{int}_{E_0} (\Omega))) \). Hence \(\Omega \) is \(a \)-open in \((E_0, T_0) \).
Example 2.3. Let $\mathcal{E} = \mathbb{R}$, $\mathcal{E}_0 = \mathbb{N}$ and $\Omega = \{1, 2\}$, then $\text{int} (\text{cl} (\text{int} (\Omega))) = \emptyset$ and $\text{int}_{\mathcal{E}_0} (\text{cl}_{\mathcal{E}_0} (\text{int}_{\mathcal{E}_0} (\Omega))) = \Omega$. Hence Ω is α-open in the topology for \mathbb{N} and Ω is not α-open in the topology for \mathbb{R}.

Corollary 2.3. Let a subset Ω of a topological space \mathcal{E}_0, such as $cl (\Omega) \subset \mathcal{E}_0 \subset \mathcal{E}$, then $\alpha\text{-int} (\Omega) \subseteq \alpha\text{-int}_{\mathcal{E}_0} (\Omega)$.

Proof. Let Ω be in \mathcal{E}_0, we note $\Xi_0 = \{\theta \subset \Omega : \theta$ is α-open in $(\mathcal{E}_0, \mathcal{T}_0)$ and $\Xi = \{\theta \subset \Omega : \theta$ is α-open in $(\mathcal{E}, \mathcal{T})\}$. By Theorem 2.3, we get $\Xi \subset \Xi_0$, which implies that

$$\alpha\text{-int} (\Omega) = \bigcup_{\theta \in \Xi} \theta \subseteq \bigcup_{\theta \in \Xi_0} \theta = \alpha\text{-int}_{\mathcal{E}_0} (\Omega).$$

The principle of the following theorem, we study the behavior of g-closed sets a sub-space.

Theorem 2.4. Let a subset Ω of a topological space \mathcal{E}_0, such as $\Omega \subset \mathcal{E}_0 \subset \mathcal{E}$. If Ω is g-closed in $(\mathcal{E}_0, \mathcal{T}_0)$, then Ω is g-closed in $(\mathcal{E}, \mathcal{T})$.

Proof. Assume Ω is g-closed in $(\mathcal{E}_0, \mathcal{T}_0)$. Let θ be open in $(\mathcal{E}, \mathcal{T})$ and $\Omega \subseteq \theta$, with $\Omega \subseteq \theta \cap \mathcal{E}_0$, since $\theta \cap \mathcal{E}_0$ is open in $(\mathcal{E}_0, \mathcal{T}_0)$, then $cl (\Omega) \subseteq \theta \cap \mathcal{E}_0 \subseteq \theta$. Hence Ω is g-closed in \mathcal{E}.

Theorem 2.5. Let a subset Ω of a topological space \mathcal{E}_0, such as \mathcal{E}_0 is open in $(\mathcal{E}, \mathcal{T})$, then Ω is g-closed in $(\mathcal{E}, \mathcal{T})$, if and only if Ω is g-closed in $(\mathcal{E}_0, \mathcal{T}_0)$.

Proof. By Theorem 2.4, just show that, Ω is g-closed in $(\mathcal{E}, \mathcal{T})$ implies that Ω is g-closed in $(\mathcal{E}_0, \mathcal{T}_0)$. Indeed, let θ_0 be open in \mathcal{E}_0, there is an open θ in \mathcal{E}, such that $\theta_0 = \theta \cap \mathcal{E}_0$, if $\Omega \subseteq \theta_0 = \theta \cap \mathcal{E}_0$, since $\theta \cap \mathcal{E}_0$ is open in $(\mathcal{E}, \mathcal{T})$, give us $cl (\Omega) \subseteq \theta_0$ and $cl_{\mathcal{E}_0} (\Omega) \subseteq cl_{\mathcal{E}_0} (\Omega)$, then Ω is g-closed in $(\mathcal{E}_0, \mathcal{T}_0)$.

The following result is some properties of gbr^*-closed maps.

Theorem 2.6. Let \mathcal{E}_0 be a closed set and let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gbr^*-closed map, then $\phi : (\mathcal{E}_0, \mathcal{T}_0) \to (\mathcal{F}, \Sigma)$ is gbr^*-closed map, but not conversely.

Proof. Let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gbr^*-closed map and ϑ_0 be an closed set in $(\mathcal{E}_0, \mathcal{T}_0)$. So, it exists is a closed set ϑ in $(\mathcal{E}, \mathcal{T})$, such that $\vartheta_0 = \vartheta \cap \mathcal{E}_0$. As \mathcal{E}_0 is closed in $(\mathcal{E}, \mathcal{T})$. Hence $\phi (\vartheta_0)$ is gbr^*-closed in (\mathcal{F}, Σ). Then $\phi : (\mathcal{E}_0, \mathcal{T}_0) \to (\mathcal{F}, \Sigma)$ is gbr^*-closed.

Example 2.4. Let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{E}, \Sigma)$ be a map, such that $\phi (x) = x$, $\phi (y) = x$, $\phi (z) = y$, $\phi (t) = z$, where $\mathcal{E} = \{x, y, z, t\}$, $\mathcal{T} = \{\mathcal{E}, \emptyset, \{x\}, \{y, z, t\}\}$, $\mathcal{E} = \{x, y, \emptyset, \{y, z, t\}\}$. Then $\phi : (\mathcal{E}_0, \mathcal{T}_0) \to (\mathcal{E}, \Sigma)$ is gbr^*-closed map, but $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{E}, \Sigma)$ is not gbr^*-closed map.

Lemma 2.1. Let Ω_1 and Ω_2 are gbr^*-closed in $(\mathcal{E}, \mathcal{T})$, then $\Omega_1 \cup \Omega_2$ is gbr^*-closed in $(\mathcal{E}, \mathcal{T})$.

Proof. Let Ω_1 and Ω_2 are gbr^*-closed in $(\mathcal{E}, \mathcal{T})$, if $bcl (\Omega_1 \cup \Omega_2) \subseteq \theta$, with θ is g^* open in $(\mathcal{E}, \mathcal{T})$, we have $bcl (\Omega_1) \subseteq bcl (\Omega_1 \cup \Omega_2) \subseteq \theta$, then $\Omega_1 \subseteq \theta$, the same way we find $\Omega_2 \subseteq \theta$. Hence $\Omega_1 \cup \Omega_2 \subseteq \theta$.

Theorem 2.7. Let \mathcal{E}_1 and \mathcal{E}_2 sets in \mathcal{E} and let $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is map, such as $\mathcal{E}_1 \cup \mathcal{E}_2 = \mathcal{E}$. If $\phi_{\mathcal{E}_1} : (\mathcal{E}_1, \mathcal{T}_1) \to (\mathcal{F}, \Sigma)$ and $\phi_{\mathcal{E}_2} : (\mathcal{E}_2, \mathcal{T}_2) \to (\mathcal{F}, \Sigma)$ are gbr^*-closed map, then $\phi : (\mathcal{E}, \mathcal{T}) \to (\mathcal{F}, \Sigma)$ is gbr^*-closed map.
Proof. Let \(\phi_{\mathcal{E}_1} : (\mathcal{E}_1, T_1) \rightarrow (\mathcal{F}, \Sigma) \), \(\phi_{\mathcal{E}_2} : (\mathcal{E}_2, T_2) \rightarrow (\mathcal{F}, \Sigma) \) are \(gb^* \)-closed map and \(\vartheta \) be an closed set in \(\mathcal{E} \), then

\[
\phi(\vartheta) = \phi(\vartheta \cap \mathcal{E}) = \phi(\vartheta \cap (\mathcal{E}_1 \cup \mathcal{E}_2)) = \phi((\vartheta \cap \mathcal{E}_1) \cup (\vartheta \cap \mathcal{E}_2))
\]

We have \(\vartheta \cap \mathcal{E}_1 \) and \(\vartheta \cap \mathcal{E}_2 \) are a closed in \((\mathcal{E}_1, T_1) \) and \((\mathcal{E}_2, T_2) \), respectively, then \(\phi(\vartheta \cap \mathcal{E}_1) \) and \(\phi(\vartheta \cap \mathcal{E}_2) \) are \(gb^* \)-closed in \((\mathcal{F}, \Sigma) \). By lemma 2.1, we get that \(\phi(\vartheta \cap \mathcal{E}_1) \) and \(\phi(\vartheta \cap \mathcal{E}_2) \) are \(gb^* \)-closed in \((\mathcal{F}, \Sigma) \). Hence \(\phi(\vartheta) \) is \(gb^* \)-closed in \((\mathcal{F}, \Sigma) \). Then \(\phi : (\mathcal{E}, T) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-closed.

The following corollary is a new generalization of the Theorem 2.7.

Corollary 2.4. Let \(\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n \) be sets, such as \(\mathcal{E} = \bigcup_{i=1}^{n} \mathcal{E}_i \), if \(\phi_{\mathcal{E}_i} : (\mathcal{E}_i, T_i) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-closed map, for \(i \in [1, n] \cap \mathbb{N} \), then \(\phi : (\mathcal{E}, T) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-closed map.

The following result is some properties of \(gb^* \)-open map.

Theorem 2.8. Let \(\mathcal{E}_0 \) be a open set in \((\mathcal{E}, T) \) and let \(\phi : (\mathcal{E}, T) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-open map, then \(\phi : (\mathcal{E}_0, T_0) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-open map, but not conversely.

Proof. Let \(\phi : (\mathcal{E}, T) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-closed map and \(\theta_0 \) be an open set in \((\mathcal{E}_0, T_0) \). So, it exists is a open set \(\theta \) in \((\mathcal{E}, T) \), such that \(\theta_0 = \theta \cap \mathcal{E}_0 \). As \(\mathcal{E}_0 \) is open in \((\mathcal{E}, T) \). Hence \(\phi(\theta_0) \) is \(gb^* \)-open in \((\mathcal{F}, \Sigma) \). Then \(\phi : (\mathcal{E}_0, T_0) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-open.

Example 2.5. Let \(\phi : (\mathcal{E}, T) \rightarrow (\mathcal{F}, \Sigma) \) be a map such that \(\phi(x) = x \), \(\phi(y) = x \), \(\phi(c) = y \), \(\phi(d) = c \), where \(\mathcal{E} = \{x, y, c, d\}, T = \{\mathcal{E}, \emptyset, \{x\}, \{y, c, d\}\}, \Sigma = \{\mathcal{E}, \emptyset, \{y\}, \{x, y, c\}\} \) and \(\mathcal{E}_0 = \{x\} \). Then \(\phi : (\mathcal{E}_0, T) \rightarrow (\mathcal{E}, \Sigma) \) is \(gb^* \)-open map, but \(\phi : (\mathcal{E}_0, T) \rightarrow (\mathcal{E}, \Sigma) \) is not \(gb^* \)-open map.

Lemma 2.2. Let \(\Omega_1 \) and \(\Omega_2 \) are \(gb^* \)-open in \((\mathcal{E}, T) \), such as \(\Omega_1 \cap \Omega_2 \neq \emptyset \), then \(\Omega_1 \cup \Omega_2 \) is \(gb^* \)-open in \((\mathcal{E}, T) \).

Proof. Let \(\Omega_1 \) and \(\Omega_2 \) are \(gb^* \)-open in \((\mathcal{E}, T) \), such as \(\Omega_1 \cap \Omega_2 \neq \emptyset \), we have \(\emptyset \) is \(gb^* \)-closed, then \((\Omega_1 \cup \Omega_2)^c \) is \(gb^* \)-closed in \((\mathcal{E}, T) \), thus \(\Omega_1 \cup \Omega_2 \) is \(gb^* \)-open in \((\mathcal{E}, T) \).

Theorem 2.9. Let \(\mathcal{E}_1, \mathcal{E}_2 \) be sets disjoint, such as \(\mathcal{E}_1 \cup \mathcal{E}_2 = \mathcal{E} \). If \(\phi_{\mathcal{E}_1} : (\mathcal{E}_1, T_1) \rightarrow (\mathcal{F}, \Sigma) \) and \(\phi_{\mathcal{E}_2} : (\mathcal{E}_2, T_2) \rightarrow (\mathcal{F}, \Sigma) \) are \(gb^* \)-open map, \(\phi : \mathcal{E} \rightarrow \mathcal{F} \) is an injective map, then \(\phi : (\mathcal{E}, T) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-open map.

Proof. Let \(\phi_{\mathcal{E}_1} : (\mathcal{E}_1, T_1) \rightarrow (\mathcal{F}, \Sigma) \) and \(\phi_{\mathcal{E}_2} : (\mathcal{E}_2, T_2) \rightarrow (\mathcal{F}, \Sigma) \) are \(gb^* \)-open map, \(\theta \) be an open set in \((\mathcal{E}, T) \), then

\[
\phi(\theta) = \phi(\theta \cap \mathcal{E}) = \phi(\theta \cap \mathcal{E}_1) \cup \phi(\theta \cap \mathcal{E}_2).
\]

We have \(\theta \cap \mathcal{E}_1 \) and \(\theta \cap \mathcal{E}_2 \) are a open in \((\mathcal{E}_1, T_1) \) and \((\mathcal{E}_2, T_2) \), respectively, then \(\phi(\theta \cap \mathcal{E}_1) \) and \(\phi(\theta \cap \mathcal{E}_2) \) are \(gb^* \)-open in \((\mathcal{F}, \Sigma) \), now we show that \(\phi(\theta \cap \mathcal{E}_1) \cap \phi(\theta \cap \mathcal{E}_2) = \emptyset \). Suppose that \(\phi(\theta \cap \mathcal{E}_1) \cap \phi(\theta \cap \mathcal{E}_2) \neq \emptyset \), let \(y \in \phi(\theta \cap \mathcal{E}_1) \cap \phi(\theta \cap \mathcal{E}_2) \), there exists \(x_1 \in \mathcal{E}_1 \) and \(x_2 \in \mathcal{E}_2 \), such that \(x_1 \neq x_2 \) and \(y = \phi(x_1) = \phi(x_2) \), which contradicts, by \(\phi \) is injective map. By lemma 2.2, we get \(\phi(\theta) \) is \(gb^* \)-open in \((\mathcal{F}, \Sigma) \). Then \(\phi : (\mathcal{E}, T) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-open.

The following results are consequences of Theorem 2.9.

Corollary 2.5. Let \(\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n \) be sets, such as \(\mathcal{E} = \bigcup_{i=1}^{n} \mathcal{E}_i \) and for \(i \neq j \), \(\mathcal{E}_i \cap \mathcal{E}_j = \emptyset \). If, for \(i \in [1, n] \cap \mathbb{N} \), \(\phi_{\mathcal{E}_i} \) is \(gb^* \)-open map, then \(\phi : (\mathcal{E}, T) \rightarrow (\mathcal{F}, \Sigma) \) is \(gb^* \)-open map.
Acknowledgment
The author express their sincere gratitude to the editors and referee for careful reading of the original manuscript and useful comments.

References