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Abstract: In this paper, we some of their properties of semi-open, α -open, pre-open, α -open sets to induced topology,

we compare with the semi-open or ( b -open, pre-open, α -open ) set if for the topological space and the topological space

induced, finally we inntroduce a new properties for gb∗ -closed maps and gb∗ -open map in topological space induced.
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1. Introduction and preliminaries

Different types of closed and open were studied by various researchers. The notion of b-open sets was introduced

by D. Andrijevic [4] in the year 1968. A. A. Omari et al [1] made an analytical study and result the concepts

of generalized b-closed sets in topological spaces. The idea of introduced regular generalized b-closed map in

topological space by S. Sekar and K. Mariappa [13] in 2013. A new class of generalised b star- closed map in

Topological Spaces was introduced in 2017 by S. Sekar et al [14].

The aim of this paper is to continue the study of new properties of b star-closed maps in topological

spaces ome of its properties are based on the induced topology and compares the state of a set with respect

to the topological subspace and the total topological space in the following positions. Throughout the present

paper, (E , T ) and (F ,Σ) will denote topological spaces with no separation properties assumed. For a subset Ω

of a topological space (E , T ), cl (Ω) and int (Ω) will denote the closure and interior of Ω in (E , T ), respectively.

We recall the following definitions which are useful in the sequel.

Definition 1.1. Let a subset Ω of a topological space (E , T ) is called

(1) a pre-open set [2], if Ω ⊆ int (cl (Ω)).

(2) a semi-open set [10], if Ω ⊆ cl (int (Ω)).

(3) a α -open set [2], if Ω ⊆ int (cl (int (Ω))).

(4) a b-open set [4], if Ω ⊆ cl (int (Ω)) ∪ int (cl (Ω)).
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Remark 1.1. The b-closed (resp. semi-closed, pre-closed, α-closed) of a subset Ω of a space (E , T ) is the

intersection of all b-closure (resp. semi-closed, pre-closed, α-closed) sets that contain Ω and is denoted by

bcl (Ω) (resp. scl (Ω) , pcl (Ω) , αcl (Ω)).

Remark 1.2. The b-open (resp. semi-open, pre-open, α-open) of a contained in Ω of a space (E , T ) is the

union of all b-interior (resp. semi-interior, pre-interior, α-interior) sets that Contained in Ω and is denoted

by b-int (Ω) (resp. s-int (Ω) , p-int (Ω) , α-int (Ω)).

Definition 1.2. Let a subset Ω of a topological space (E , T ) is called

(1) a generalized closed set (briefly g -closed) [9], if cl (Ω) ⊆ θ whenever Ω ⊆ θ and θ is open in E .

(2) a generalized b-closed set (briefly gb-closed) [1], if bcl (Ω) ⊆ θ whenever Ω ⊆ θ and θ is open in E .

(3) a α generalized ∗-closed set (briefly αg∗ -closed) [8], if cl (Ω) ⊆ int (θ) whenever Ω ⊆ θ and θ is α -open in E .

(4) a g ∗ s-closed set (briefly g ∗ s-closed) [3], if scl (Ω) ⊆ θ whenever Ω ⊆ θ and θ is gs-open in E .

(5) a regular generalized b−closed set (briefly rgb-closed) [5] if scl (Ω) ⊆ θ whenever Ω ⊆ θ and θ is regular open

in E .

Definition 1.3. [14] Let E and F be topological spaces. A map φ : (E , T ) → (F , T ) is called generalized b

star-closed (briefly, gb∗ - closed map) if the image of every closed set in E is gb∗ -closed in F .

Definition 1.4. [14]Let E and F be topological spaces. A map φ : (E , T ) → (F , T ) is called generalized b

star open (briefly, gb∗ -open) if the image of every open set in E is gb∗ -open in F .

2. Main Results

In this section, we study the behavior of pre-open sets, b-open sets, α -open sets and b-closed sets and g -closed

sets in a sub-space. For simplification, we introduce the following Remark and Notation.

Notation 2.1. Let E0 be a nonempty set endowed with the induced topology of (E , T ) , we denote (E0, T0) .

Notation 2.2. Let a subset Ω of a topological space (E0, T0) , we give the following set clE0 (Ω) , intE0 (Ω) ,

bclE0 (Ω) , b-intE0 (Ω) and sclE0 (Ω) according to their definitions but in relation to the induced topology.

Remark 2.1. Let a subset Ω of a topological space (E0, T0) , we have

clE0 (Ω) = cl (Ω) ∩ E0, int (Ω) ⊆ intE0 (Ω) . (1)

The principle of the following theorem, we study the behavior of pre-open sets a sub-space.

Theorem 2.1. Let a subset Ω of a topological space E0 , such as cl (Ω) ⊂ E0 ⊂ E and Ω is pre-open in (E , T ) .

Then Ω is pre-open in (E0, T0) , but not conversely.

Proof. Let Ω is pre-open in (E , T ), by (1), we get that Ω ⊆ int (cl (Ω)) ⊆ intE0 (cl (Ω)), since clE0 (Ω) =

cl (Ω) ∩ E0 = cl (Ω), then Ω ⊆ intE0 (cl (Ω) ∩ E0) = intE0 (clE0 (Ω)). Hence Ω is pre-open in (E0, T0).

Remark 2.2. If (R, Tu) endowed with the usual topology, then (N,P (N)) is the induced topology.
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Example 2.1. Let E = R , E0 = N and Ω = {1, 2} , we have cl (Ω) = Ω , int (cl (Ω)) = ∅ and intE0 (clE0 (Ω)) =

Ω . Hence Ω is pre-open in the topology for N and Ω is not pre-open in R .

The following result is a direct consequence of Theorem 2.1.

Corollary 2.1. Let a subset Ω of a topological space E0 , such as cl (Ω) ⊂ E0 ⊂ E , then p-int (Ω) ⊆ pintE0 (Ω) .

Proof. Let a subset Ω of a topological space E0 , we note Υ0 = {θ ⊂ Ω : θ is pre-open in (E0, T0)} and Υ =

{θ ⊂ Ω : θ is pre-open in (E , T )} . By Theorem 2.1, we get Υ ⊂ Υ0, which implies that

p-int (Ω) = ∪
θ∈Υ

θ ⊆ ∪
θ∈Υ0

θ = p-intE0 (Ω) .

The principle of the following theorem, we study the behavior of b-open sets a sub-space.

Theorem 2.2. Let a subset Ω of a topological space E0 , such as cl (Ω) ⊂ E0 ⊂ E and Ω is b-open in (E0, T0) .

Then Ω is b-open in (E , T ) , but not conversely.

Proof. Let a subset Ω of a topological space E0 , by (1), we have

Ω ⊆ clE0 (intE0 (Ω)) ∪ intE0 (clE0 (Ω)) ⊆ (cl (intE0 (Ω)) ∩ E0) ∪ intE0 (cl (Ω) ∩ E0)

⊆ (cl (int (Ω)) ∩ E0) ∪ int (cl (Ω) ∩ E0) ⊆ (cl (int (Ω)) ∩ E0) ∪ int (cl (Ω) ∩ E0) .

Hence, cl (int (Ω)) ∩ E0 ⊂ cl (int (Ω)) and int (cl (Ω) ∩ E0) ⊂ int (cl (Ω)), which implies that Ω ⊆ cl (int (Ω)) ∪
int (cl (Ω)), then Ω is semi-open in (E , T ).

Example 2.2. Let E = R , E0 = N and Ω = {1, 2} , then int (cl (Ω)) = cl (int (Ω)) = ∅ and clE0 (intE0 (Ω)) =

intE0 (clE0 (Ω)) = Ω . Hence Ω is b-open in (N,P (N)) and Ω is not b-open in (R, Tu) .

Corollary 2.2. Let a subset Ω of a topological space E0 , such as cl (Ω) ⊂ E0 ⊂ E , then b-intE0 (Ω) ⊆ b-int (Ω) .

Proof. Let Ω be set in E0, we note Θ0 = {θ ⊂ Ω : θ is b-open in (E0, T0)} and Θ = {θ ⊂ Ω : θ is b-open in (E , T )} .

By Theorem 2.2, we get Θ0 ⊂ Θ, which implies that

b-intE0 (Ω) = ∪
θ∈Θ0

θ ⊆ ∪
θ∈Θ

θ = b-int (Ω) .

The principle of the following theorem, we study the behavior of α -open sets a sub-space.

Theorem 2.3. Let a subset Ω of a topological space E0 , such as cl (Ω) ⊂ E0 ⊂ E and Ω is α-open in (E , T ) .

Then Ω is α-open in (E0, T0) , but not conversely.

Proof. By remark 2.1, we have

cl (int (Ω)) ⊆ cl (intE0 (Ω)) ⊆ cl (intE0 (Ω)) ∩ E0 = clE0 (intE0 (Ω)) .

Then,

int (cl (int (Ω))) ⊆ int (clE0 (intE0 (Ω))) ⊆ intE0 (clE0 (intE0 (Ω))) .

Since Ω is α -open in (E , T ), then Ω ⊆ intE0 (clE0 (intE0 (Ω))). Hence Ω is α -open in (E0, T0).
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Example 2.3. Let E = R , E0 = N and Ω = {1, 2} , then int (cl (int (Ω))) = ∅ and intE0 (clE0 (intE0 (Ω))) =

Ω.Hence Ω is α-open in the topology for N and Ω is not α-open in the topology for R .

Corollary 2.3. Let a subset Ω of a topological space E0 , such as cl (Ω) ⊂ E0 ⊂ E , then α-int (Ω) ⊆ α-

intE0 (Ω) .

Proof. Let Ω be set in E0, we note Ξ0 = {θ ⊂ Ω : θ is α-open in (E0, T0)} and Ξ = {θ ⊂ Ω : θ is α-open in (E , T )} .

By Theorem 2.3, we get Ξ ⊂ Ξ0 , which implies that

α-int (Ω) = ∪
θ∈Ξ

θ ⊆ ∪
θ∈Ξ0

θ = α-intE0 (Ω) .

The principle of the following theorem, we study the behavior of g -closed sets a sub-space.

Theorem 2.4. Let a subset Ω of a topological space E0 , such as Ω ⊂ E0 ⊂ E . If Ω is g -closed in (E0, T0) ,

then Ω is g -closed in (E , T ) .

Proof. Assume Ω is g -closed in (E0, T0). Let θ is open in (E , T ) and Ω ⊆ θ , with Ω ⊆ θ ∩ E0 , since θ ∩ E0 is

open in (E0, T0), then cl (Ω) ⊆ θ ∩ E0 ⊆ θ . Hence Ω is g -closed in E .

Theorem 2.5. Let a subset Ω of a topological space E0 , such as E0 is open in (E , T ) , then Ω is g -closed in

(E , T ) , if and only if Ω is g -closed in (E0, T0) .

Proof. By Theorem 2.4, just show that, Ω is g -closed in (E , T ) implies that Ω is g -closed in (E0, T0). Indeed,

let θ0 is open in E0 , there is an open θ in E , such that θ0 = θ ∩ E0 , if Ω ⊆ θ0 = θ ∩ E0 , since θ ∩ E0 is open in

(E , T ), give us cl (Ω) ⊆ θ0 and clE0 (Ω) ⊆ cl (Ω), then Ω is g -closed in (E0, T0).

The following result is some properties of gb∗ -closed maps.

Theorem 2.6. Let E0 be a closed set and let φ : (E , T )→ (F ,Σ) is gb∗ -closed map, then φ : (E0, T0)→ (F ,Σ)

is gb∗ - closed map, but not conversely.

Proof. Let φ : (E , T ) → (F ,Σ) is gb∗ -closed map and ϑ0 be an closed set in (E0, T0). So, it exists is a closed

set ϑ in (E , T ), such that ϑ0 = ϑ ∩ E0 . As E0 is closed in (E , T ). Hence φ (ϑ0) is gb∗ -closed in (F ,Σ). Then

φ : (E0, T0)→ (F ,Σ) is gb∗ -closed.

Example 2.4. Let φ : (E , T )→ (E ,Σ) be a map, such that φ (x) = x , φ (y) = x , φ (z) = y , φ (t) = z , where

E = {x, y, z, t} ,T = {E , ∅, {x} , {y, z, t}} , Σ = {E , ∅, {y} , {x, y, z}} and E0 = {x} . Then φ : (E0, T0) → (E ,Σ)

is gb∗ -closed map, but φ : (E , T )→ (E ,Σ) is not gb∗ -closed map.

Lemma 2.1. Let Ω1 and Ω2 are gb∗ -closed in (E , T ) , then Ω1 ∪ Ω2 is gb∗ -closed in (E , T ) .

Proof. Let Ω1 and Ω2 are gb∗ -closed in (E , T ), if bcl (Ω1 ∪ Ω2) ⊆ θ , with θ is g∗ open in (E , T ), we have

bcl (Ω1) ⊂ bcl (Ω1 ∪ Ω2) ⊆ θ , then Ω1 ⊆ θ , the same way we find Ω2 ⊆ θ . Hence Ω1 ∪ Ω2 ⊆ θ .

Theorem 2.7. Let E1 and E2 sets in E and let φ : (E , T ) → (F ,Σ) is map, such as E1 ∪ E2 = E . If

φE1 : (E1, T1)→ (F ,Σ) and φE2 : (E2, T2)→ (F ,Σ) are gb∗ -closed map, then φ : (E , T )→ (F ,Σ) is gb∗ -closed
map.
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Proof. Let φE1 : (E1, T1) → (F ,Σ), φE2 : (E2, T2) → (F ,Σ) are gb∗ -closed map and ϑ be an closed set in E ,

then

φ (ϑ) = φ (ϑ ∩ E) = φ (ϑ ∩ (E1 ∪ E2)) = φ ((ϑ ∩ E1) ∪ (ϑ ∩ E2))

= φ (ϑ ∩ E1) ∪ φ (ϑ ∩ E2) .

We have ϑ ∩ E1 and ϑ ∩ E2 are a closed in (E1, T1) and (E2, T2), respectively, then φ (ϑ ∩ E1) and φ (ϑ ∩ E2)

are gb∗ -closed in (F ,Σ). By lemma 2.1, we get that φ (ϑ ∩ E1) and φ (ϑ ∩ E2) are gb∗ -closed in (F ,Σ). Hence

φ (ϑ) is gb∗ -closed in (F ,Σ). Then φ : (E , T )→ (F ,Σ) is gb∗ -closed.

The following corollary is a new generalization of the Theorem 2.7.

Corollary 2.4. Let E1, E2, ..., En be sets, such as E =
⋃i=n
i=1 Ei , if φEi : (Ei, Ti)→ (F ,Σ) is gb∗ -closed map, for

i ∈ [1, n] ∩ N , then φ : (E , T )→ (F ,Σ) is gb∗ -closed map.

The following result is some properties of gb∗ -open map.

Theorem 2.8. Let E0 be a open set in (E , T ) and let φ : (E , T )→ (F ,Σ) is gb∗ -open map, then φ : (E0, T0)→
(F ,Σ) is gb∗ -open map, but not conversely.

Proof. Let φ : (E , T ) → (F ,Σ) is gb∗ -closed map and θ0 be an open set in (E0, T0). So, it exists is a open

set θ in (E , T ), such that θ0 = θ ∩ E0 . As E0 is open in (E , T ). Hence φ (θ0) is gb∗ -open in (F ,Σ). Then

φ : (E0, T0)→ (F ,Σ) is gb∗ -open.

Example 2.5. Let φ : (E , T ) → (E ,Σ) be a map such that φ (x) = x , φ (y) = x , φ (c) = y , φ (d) = c , where

E = {x, y, c, d} , T = {E , ∅, {x} , {y, c, d}} , Σ = {E , ∅, {y} , {x, y, c}} and E0 = {x} . Then φ : (E0, T ) → (E ,Σ)

is gb∗ -open map, but φ : (E0, T )→ (E ,Σ) is not gb∗ -open map.

Lemma 2.2. Let Ω1 and Ω2 are gb∗ -open in (E , T ) , such as Ω1∩Ω2 6= ∅ , then Ω1∪Ω2 is gb∗ -open in (E , T ) .

Proof. Let Ω1 and Ω2 are gb∗ -open in (E , T ), such as Ω1 ∩ Ω2 6= ∅ , we have ∅ is gb∗ -closed, then (Ω1 ∪ Ω2)
c

is gb∗ -closed in (E , T ), thus Ω1 ∪ Ω2 is gb∗ -open in (E , T ).

Theorem 2.9. Let E1, E2 be sets disjoint, such as E1 ∪E2 = E . If φE1 : (E1, T1)→ (F ,Σ) and φE2 : (E2, T2)→
(F ,Σ) are gb∗ -open map, φ : E → F is an injective map, then φ : (E , T )→ (F ,Σ) is gb∗ -open map.

Proof. Let φE1 : (E1, T1)→ (F ,Σ) and φE2 : (E2, T2)→ (F ,Σ) are gb∗ -open map, θ be an open set in (E , T ),

then
φ (θ) = φ (θ ∩ E) = φ (θ ∩ E1) ∪ φ (θ ∩ E2) .

We have θ ∩ E1 and θ ∩ E2 are a open in (E1, T1) and (E2, T2), respectively, then φ (θ ∩ E1) and φ (θ ∩ E2) are

gb∗ -open in (F ,Σ), now we show that φ (θ ∩ E1) ∩ φ (θ ∩ E2) = ∅ . Suppose that φ (θ ∩ E1) ∩ φ (θ ∩ E2) 6= ∅ , let

y ∈ φ (θ ∩ E1)∩φ (θ ∩ E2), there exists x1 ∈ E1 and x2 ∈ E2 , such that, x1 6= x2 and y = φ (x1) = φ (x2), which

contradicts, by φ is injective map. By lemma 2.2, we get φ (θ) is gb∗ -open in (F ,Σ). Then φ : (E , T )→ (F ,Σ)

is gb∗ -open.

The following results are consequences of Theorem 2.9.

Corollary 2.5. Let E1, E2, ..., En be sets, such as E =
⋃i=n
i=1 Ei and for i 6= j , E1∩E2 = ∅ . If, for i ∈ [1, n]∩N ,

φEi is gb∗ -open map, then φ : (E , T )→ (F ,Σ) is gb∗ -open map.
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