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Abstract: Let p be a prime number (p > 3) and G a finite permutation group of degree 3p, generated via Wreath

products of pairs of permutation groups. We, in this paper discuss the solubility of G using numerical approach. We

applied the computational group theory (GAP) to enhance and validate our work.
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1. Introduction

The Wreath product of two permutation groups C and D denoted by W = CwrD is the semi-direct product

of P (a derived group of prime power order) by D , so that, W = ((f, d)|f ∈ P, d ∈ D) , with composition in

W := (f1, d1) (f2, d2) =
((
f1, f2d

−1
1

)
(d1, d2)

)
∀ f1, f2 ∈ P and d1, d2 ∈ D is a special form of permutation

group. When the nature of the Wreath products groups is well understood it facilitates comprehension of certain

types of subgroups of the symmetric groups.

According to Cameron(2013)[2], a group G is soluble or solvable if it has a series of subgroups,

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e}

With each subgroup Hi normal in Hi+1 and the factor groups Hi+1/Hi abelian. Solvable groups are

significant as they allow us to differentiate between categories of groups.

In this work, we obtained more detailed description of the unique structure of Wreath product (permuta-

tion) groups of degree 3p that are not p-groups and investigate their solubility using numerical approach. This

work is significant as it will form part of a growing database that will eventually be used in the needed review

of the classification of finite simple group (CFSG).

There are some recent results on the solubility of permutations groups including the following:

Thanos (2006)[11] proved that If |G| = pk where p is a prime number then G is solvable. In other words

every p-group where p is a prime number is solvable.

Bello et al. (2017)[1] used the concept of p -groups to construct locally solvable groups using two

permutation groups by wreath product.

Gandi et al. (2019)[4] investigated solvable and Nilpotent concepts on dihedral groups of an even degree

regular polygon.
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The results from the above papers and other findings on group concepts from the works of Kimura and

Nakagawa, (1973)[8], Ito and Wada, (1972)[6] and Cai and Zhang, (2015)[3] will be used as valuable references

towards achieving our desired objectives.

This work is organized in five sections. Section2 gives some preliminaries required for the work. In

Section3 we state the main result of this paper with some illustrating examples. We also use the groups, algo-

rithms and programming (GAP) to validate the solubility of permutation groups of degree 3p(p = 5, 7, 11, · · · ).

Section4 contains conclusion and recommendation while Section4.2 is the list of references.

2. Materials and Methods

2.1. p-Group (Sylow, 1872)

If a group G has number of elements, |G| = pn where p is prime, it is called a p -group.

2.2. p-Subgroup (Sylow, 1872)

A subgroup H of a group G(H ≤ G) is called a p -subgroup G if H itself is a p -group, this is, |H| = pr , for

some r ≥ 0 for all H ∈ G .

2.3. Sylow p-Subgroup (Sylow, 1872)

Let G be a group. If G is finite and |G| = prm, r ≥ 1 where p and m are co-prime and H ≤ G such that

|H| = pr , we refer to H as a Sylow p -subgroup of G .

2.4. Sylow Theorems (Sylow, 1872)

Let G be a finite group of order n .

1. If p is a prime such that pk is a divisor of |G| for some k ≥ 0, then G contains a subgroup of order

pk .

2. All Sylow p-subgroups of G are conjugate, and any p-subgroup of G is contained in a Sylow p-

subgroup.

3. Let n = mpk , with (m, p) = 1, and let np be the number of Sylow p-subgroups of G . Then np | m
and np ≡ 1(modp).

2.5. Wreath product (Joseph and Audu, 1991)

The wreath product of two permutation groups C by D denoted by W = CwrD is the semidirect product of

P by D , so that,

W = {(f, d)|f ∈ P, d ∈ D}

with multiplication in W defined as

(f1, d1) (f2, d2) =
((
f1, f2d

−1
1

)
(d1, d2)

)
∀f1, f2 ∈ P ∧ d1, d2 ∈ D

Henceforth, we write fd instead of (f, d) for elements of W .
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2.6. Theorem (Joseph and Audu, 1991)

Let D act on P as fd
(
δ) = f

(
δd−1

)
where f ∈ P, d ∈ D and δ ∈ ∆. Let W be group of all juxtaposed

symbols f d, with f ∈ P, d ∈ D and multiplication given by (f1, d1) (f2, d2) =
(
f1f2d

−1
1 )(d1, d2) Then W is a

group referred to as the semi-direct product of P by D with the action as defined

2.7. Theorem (Cameron, 2013)

If |G| = pq where p and q are distinct prime numbers (p < q) then, G is solvable.

2.8. Theorem (Thanos, 2006)

If |G| = pk where p is a prime number then G is solvable. In other words every p-group where p is a prime is

solvable.

Proof. By induction on k .

1st step. For k = 1 our group is a cyclic group of prime order thus it is solvable by definition.

2nd step. Let the statement hold for all n ≤ k .

3rd step. We will prove that it holds for k = n + 1. By corollary 3 since G is a p-group, the center of

G denoted Z(G) 6= {e} . Also Z(G) is a normal subgroup of G and Z(G) is abelian. Thus Z(G) is solvable.

Now G/Z(G) is again a p-group or trivial. If it is trivial then G = Z(G) thus G is abelian hence it is solvable.

If it is not trivial then |G/Z(G)| ≤ pn . So by the inductive step it is solvable. Hence G is also solvable.

2.9. Corollary (Thonas, 2006)

If G has only one p-Sylow subgroup H then H is normal.

2.10. Corollary (Thonas, 2006)

If H E G and
∣∣G
H

∣∣ = p or p2 then G
H is abelian

2.11. Corollary (Thonas, 2006)

Let G be a finite group and H a Sylow p-subgroup of G . Then H is the only Sylow p-subgroup of G if and

only if H is normal in G .

Proof

By Sylow theorem, the Sylow p-subgroups of G are the elements of the sets
{
g−1Hg| g ∈ G

}
and this reduces

to a singleton set if and only if g−1Hg = H for all g ∈ G ; that is precisely when H is normal in G .

2.12. Proposition (Thonas, 2006)

Suppose G is a solvable group and H is a subgroup of G that is, H ≤ G. Then

1. H is solvable.

2. If H / G , then G/H is solvable.

Proof

Start from a series with abelian slices. G: G0.Gl .. . ..Gn = (l) Then H = H∩G0.H∩ G1.. . ..H∩Gn = {1} .

When H is normal, we use the canonical projection π : G→ G/H to get G/H = π (G0) . . . . π (Gn) = {1} ; the

quotients are abelian as well, so G/H is still solvable.
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2.13. Theorem (Cameron, 2013)

If G is a group and H is a normal subgroup of G such that H is solvable and G/H is solvable then G is

solvable.

3. Wreath product group of degree 3p

3.1. Main Theorem

Let G be the Wreath product of two permutation groups C and D of degree 3p(p > 3) and H the Sylow

p-subgroup of G . Then (i) H is normal in G and is soluble (ii) G/H is soluble and (iii) G is soluble.

Proof

Now, the order of W that is, |W | = 3p3 or 3pp

Case 1: |W | = 3p3

Let Np(W ) be the number of Sylow p -subgroups of the group W .

By Sylow theorem 2.8, we have

Np ≡ 1 modulo p and Np divides 3.

It follows from these constraints that Np = 1.

Let H = p-Sylow subgroup of W . Then H is normal in W by corollary 2.11 proving (i).

Since |H| = p3 , we have that H is a p-Group and by theorem 2.8 is Solvable proving (ii).

Also |W : H| = 3 implies that W/H is a p-Group hence Solvable by theorem 2.8.

Hence G is a solvable group by theorem 2.13 proving (iii).

Case 2: |W | = 3pp

By Sylow theorem 3.2.3, the number of Sylow p-subgroup of W, Np of order p is congruent to 1 modulo

p and it divides 3p .

As Np divides |G| and 3p ≡| 1 mod p , it follows that Np = 1.

Let K be the unique Sylow p-subgroup of W . Then the subgroup K is a normal subgroup of W by

Corollary 2.11. Since |K| = p , we have that K is a p-Group and by theorem 2.8 is Solvable. Also |W : K| = 3p

implies that G/K is a p-Group hence Solvable by theorem 2.8.

By theorem 2.13, G is solvable as required.

3.2. Illustrating Example (1)

Let

C1 = {(1), (12345), (13524), (14253), (15432)} and

D1 = {(1), (6, 7)}

acting on the sets Ω1 = {1, 2, 3, 4, 5} and ∆1 = {6, 7} respectively.

Let P1 = C∆1
1 = {f : ∆1 → C1} . Then |P1| = |C1||∆1|

= 52 = 25

The mappings in P1 are as list below.

f1 : 6→ (1), 7→ (1)

f2 : 6→ (12345), 7→ (12345)

4



B. O. Johnson, S. Hamma and M. S. Adamu

f3 : 6→ (13524), 7→ (13524),

f4 : 6→ (14253), 7→ (14253)

f5 : 6→ (15432), 7→ (15432)

f6 : 6→ (1), 7→ (12345)

f7 : 6→ (1), 7→ (13524)

f8 : 6→ (1), 7→ (14253)

f9 : 6→ (1), 7→ (15432)

f10 : 6→ (12345), 7→ (1)

f11 : 6→ (12345), 7→ (13524)

f12 : 6→ (12345), 7→ (14253)

f13 : 6→ (12345), 7→ (15432)

f14 : 6→ (13524), 7→ (1)

f15 : 6→ (13524), 7→ (12345)

f16 : 6→ (13524), 7→ (14253)

f17 : 6→ (13524), 7→ (15432)

f18 : 6→ (14253), 7→ (1)

f19 : 6→ (14253), 7→ (12345)

f20 : 6→ (14253), 7→ (13524)

f21 : 6→ (14253), 7→ (15432)

f22 : 6→ (15432), 7→ (1)

f23 : 6→ (15432), 7→ (12345)

f24 : 6→ (15432), 7→ (13524)

f25 : 6→ (15432), 7→ (14253)

We can easily verify that P is a group with respect to the operations (f1, f2) (δ) = f1 (δ1) f1 (δ1), where

δ1 ∈ ∆1

We recall the definition of the action of D1 on P as fd (δ1) = f
(
δ1d
−1

)
where f ∈ P, d ∈ D1 and

δ1ε∆1 , then D1 acts on P as a groups.

We also recall the definition W = C1wrD1 , the semi-direct product of P by D1 in that order; i.e.

W = {(f, d) | fεP, δ1ε∆1}
Now, W is a group with respect to the operation;

(f1, d1) (f2, d2) = (f1, f
d−1
1

2 )(d1, d2), and accordingly, d1 = (1), d2 = (6, 7).

Then the elements of W1 are

(f1, d1) , (f2, d1) , (f3, d1) , (f4, d1) , (f5, d1) , (f6, d1) , (f7, d1) , (f8d1) , (f9, d1) , (f10, d1) , (f11, d1) , (f12, d1) ,

(f13, d1) , (f14, d1) , (f15, d1) , (f16,d1) , (f17, d1) , (f18,d1) , (f19, d1) , (f20, d1) , (f21, d1) , (f22, d1) , (f23, d1) (f24, d1) ,

(f25, d1) , (f1, d2) , (f2, d2) , (f3, d2) , (f4, d2) , (f5, d2) , (f6, d2) , (f7, d2) , (f8, d2) , (f9, d2) , (f10, d2) , (f11, d2) ,

(f12, d2) , (f13, d2) , (f14, d2) , (f15, d2) , (f16, d2) , (f17, d2) , (f18,d2) , (f19, d2) , (f20, d2) , (f21, d2) , (f22, d2) ,

(f23, d2) , (f24, d2) , (f25, d2) .

Now, define action of W1 on Ω1 ×∆1 as

(β, δ1) fd = (βf(δ), dδ) where β ∈ Ω1 and δ1 ∈ ∆1
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Further, Ω1 ×∆1 = {(1, 6), (1, 7), (2, 6), (2, 7), (3, 6), (3, 7), (4, 6), (4, 7), (5, 6), (5, 7)}
We obtain the following permutation by action of W1 on Ω1 x ∆1

(1, 6)f1d1 = (1f1(6), d1) = (1(1), 6(1)) = (1, 6)

(1, 7)f1d1 = (1f1(7), d1) = (1(1), 7(1)) = (1, 7)

(2, 6)f1d1 = (2f1(6), d1) = (2(1), 6(1)) = (2, 6)

(2, 7)f1d1 = (2f1(7), d1) = (2(1), 7(1)) = (2, 7)

(3, 6)f1d1 = (3f1(6), d1) = (3(1), 6(1)) = (3, 6)

(3, 7)f1d1 = (3f1(7), d1) = (3(1), 7(1)) = (3, 7)

(4, 6)f1d1 = (4f1(6), d1) = (4(1), 6(1)) = (4, 6)

(4, 7)f1d1 = (4f1(7), d1) = (4(1), 7(1)) = (4, 7)

(5, 6)f1d1 = (5f1(6), d1) = (5(1), 6(1)) = (5, 6)

(5, 7)f1d1 = (5f1(7), d1) = (5(1), 7(1)) = (5, 7)

And in summary,

(Ω1 ×∆1) f1d1 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)

)

(Ω1 ×∆1) f2d1 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)(1, 6)(1, 7)

)

(Ω1 ×∆1) f3d1 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)(1, 6)(1, 7)(2, 6)(2, 7)

)

(Ω1 ×∆1) f4d1 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(4, 6)(4, 7)(5, 6)(5, 7)(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)

)

(Ω1 ×∆1) f5d1 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(5, 6)(5, 7)(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)

)

(Ω1 ×∆1) f7d1 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(1, 6)(3, 7)(2, 6)(4, 7)(3, 6)(5, 7)(4, 6)(1, 7)(5, 6)(2, 7)

)

(Ω1 ×∆1) f4d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(4, 7)(4, 6)(5, 7)(5, 6)(1, 7)(1, 6)(2, 7)(2, 6)(3, 7)(3, 6)

)

(Ω1 ×∆1) f5d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(5, 7)(5, 6)(1, 7)(1, 6)(2, 7)(2, 6)(3, 7)(3, 6)(4, 7)(4, 6)

)

(Ω1 ×∆1) f6d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)

)
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(Ω1 ×∆1) f7d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(1, 7)(3, 6)(2, 7)(4, 6)(3, 7)(5, 6)(4, 7)(1, 6)(5, 7)(2, 6)

)

(Ω1 ×∆1) f8d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(1, 7)(4, 6)(2, 7)(5, 6)(3, 7)(1, 6)(4, 7)(2, 6)(5, 7)(3, 6)

)

(Ω1 ×∆1) f9d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(1, 7)(5, 6)(2, 7)(1, 6)(3, 7)(2, 6)(4, 7)(3, 6)(5, 7)(4, 6)

)

(Ω1 ×∆1) f10d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(2, 7)(1, 6)(3, 7)(2, 6)(4, 7)(3, 6)(5, 7)(4, 6)(1, 7)(5, 6)

)

(Ω1 ×∆1) f11d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)(1, 6)(1, 7)(2, 6)

)

(Ω1 ×∆1) f12d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(2, 7)(4, 6)(3, 7)(5, 6)(4, 7)(1, 6)(5, 7)(2, 6)(1, 7)(3, 6)

)

(Ω1 ×∆1) f13d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(2, 7)(5, 6)(3, 7)(1, 6)(4, 7)(2, 6)(5, 7)(3, 6)(1, 7)(4, 6)

)

(Ω1 ×∆1) f14d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(3, 7)(1, 6)(4, 7)(2, 6)(5, 7)(3, 6)(1, 7)(4, 6)(2, 7)(5, 6)

)

(Ω1 ×∆1) f15d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(3, 7)(2, 6)(4, 7)(3, 6)(5, 7)(4, 6)(1, 7)(5, 6)(2, 7)(1, 6)

)

(Ω1 ×∆1) f16d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)

)

(Ω1 ×∆1) f17d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(3, 7)(5, 6)(4, 7)(1, 6)(5, 7)(2, 6)(1, 7)(3, 6)(2, 7)(4, 6)

)

(Ω1 ×∆1) f18d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(4, 7)(1, 6)(5, 7)(2, 6)(1, 7)(3, 6)(2, 7)(4, 6)(3, 7)(5, 6)

)

(Ω1 ×∆1) f19d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(4, 7)(2, 6)(5, 7)(3, 6)(1, 7)(4, 6)(2, 7)(5, 6)(3, 7)(1, 6)

)

(Ω1 ×∆1) f20d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(4, 7)(3, 6)(5, 7)(4, 6)(1, 7)(5, 6)(2, 7)(1, 6)(3, 7)(2, 6)

)

(Ω1 ×∆1) f21d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(4, 7)(5, 6)(5, 7)(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)

)
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(Ω1 ×∆1) f22d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(5, 7)(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)

)

(Ω1 ×∆1) f23d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(5, 7)(2, 6)(1, 7)(3, 6)(2, 7)(4, 6)(3, 7)(5, 6)(4, 7)(1, 6)

)

(Ω1 ×∆1) f24d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(5, 7)(3, 6)(1, 7)(4, 6)(2, 7)(5, 6)(3, 7)(1, 6)(4, 7)(2, 6)

)

(Ω1 ×∆1) f25d2 =

(
(1, 6)(1, 7)(2, 6)(2, 7)(3, 6)(3, 7)(4, 6)(4, 7)(5, 6)(5, 7)
(5, 7)(4, 6)(1, 7)(5, 6)(2, 7)(1, 6)(3, 7)(2, 6)(4, 7)(3, 6)

)
Renaming the symbols as

(1, 6)→ 1, (1, 7)→ 2, (2, 6)→ 3, (2, 7)→ 4, (3, 6)→ 5, (3, 7)→ 6, (4, 6)→ 7, (4, 7)→ 8, (5, 6)→ 9, (5, 7)

→ 10,

The permutations in cyclic form are as follows.

W1 = {(1), (6, 7, 8, 9, 10), (6, 8, 10, 7, 9), (6, 9, 7, 10, 8), (6, 10, 9, 8, 7), (1, 2, 3, 4, 5), (1, 2, 3, 4, 5)(6, 7, 8, 9, 10),

(1, 2, 3, 4, 5)(6, 8, 10, 7, 9), (1, 2, 3, 4, 5)(6, 9, 7, 10, 8), (1, 2, 3, 4, 5)(6, 10, 9, 8, 7), (1, 3, 5, 2, 4),

(1, 3, 5, 2, 4)(6, 7, 8, 9, 10), (1, 3, 5, 2, 4)(6, 8, 10, 7, 9), (1, 3, 5, 2, 4)(6, 9, 7, 10, 8), (1, 3, 5, 2, 4)(6, 10, 9, 8, 7),

(1, 4, 2, 5, 3), (1, 4, 2, 5, 3)(6, 7, 8, 9, 10), (1, 4, 2, 5, 3)(6, 8, 10, 7, 9), (1, 4, 2, 5, 3)(6, 9, 7, 10, 8), (1, 4, 2, 5, 3)(6, 10, 9, 8, 7),

(1, 5, 4, 3, 2), (1, 5, 4, 3, 2)(6, 7, 8, 9, 10), (1, 5, 4, 3, 2)(6, 8, 10, 7, 9), (1, 5, 4, 3, 2)(6, 9, 7, 10, 8),

(1, 5, 4, 3, 2)(6, 10, 9, 8, 7), (1, 6)(2, 7)(3, 8)(4, 9)(5, 10), (1, 6, 2, 7, 3, 8, 4, 9, 5, 10), (1, 6, 3, 8, 5, 10, 2, 7, 4, 9),

(1, 6, 4, 9, 2, 7, 5, 10, 3, 8), (1, 6, 5, 10, 4, 9, 3, 8, 2, 7), (1, 7, 2, 8, 3, 9, 4, 10, 5, 6), (1, 7, 3, 9, 5, 6, 2, 8, 4, 10),

(1, 7, 4, 10, 2, 8, 5, 6, 3, 9), (1, 7, 5, 6, 4, 10, 3, 9, 2, 8), (1, 7)(2, 8)(3, 9)(4, 10)(5, 6), (1, 8, 3, 10, 5, 7, 2, 9, 4, 6),

(1, 8, 4, 6, 2, 9, 5, 7, 3, 10), (1, 8, 5, 7, 4, 6, 3, 10, 2, 9), (1, 8)(2, 9)(3, 10)(4, 6)(5, 7), (1, 8, 2, 9, 3, 10, 4, 6, 5, 7),

(1, 9, 4, 7, 2, 10, 5, 8, 3, 6), (1, 9, 5, 8, 4, 7, 3, 6, 2, 10), (1, 9)(2, 10)(3, 6)(4, 7)(5, 8), (1, 9, 2, 10, 3, 6, 4, 7, 5, 8),

(1, 9, 3, 6, 5, 8, 2, 10, 4, 7), (1, 10, 5, 9, 4, 8, 3, 7, 2, 6), (1, 10)(2, 6)(3, 7)(4, 8)(5, 9),

(1, 10, 2, 6, 3, 7, 4, 8, 5, 9), (1, 10, 3, 7, 5, 9, 2, 6, 4, 8), (1, 10, 4, 8, 2, 6, 5, 9, 3, 7)} .

Then the Wreath product W1 = C1wrD1 with degree |C1| × |D1| = 10 and order given by

|W1| = |C1||∆1| × |D1| = 52 × 2 = 50 is soluble.

Proof

Let H2 = Syl2 (W1) and H5 = Syl5 (W1) be the Sylow 2-subgroups and Sylow 5-subgroups of W1 respectively.

Routine calculation shows that W1 has:

H2 = {(1), (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)} ≤W1 with |Syl2 (W1)| = 2,

and H5 = {(1), (6, 7, 8, 9, 10), (6, 8, 10, 7, 9), (6, 9, 7, 10, 8), (6, 10, 9, 8, 7), (1, 2, 3, 4, 5), (1, 2, 3, 4, 5)(6, 7, 8, 9, 10),

(1, 2, 3, 4, 5)(6, 8, 10, 7, 9), (1, 2, 3, 4, 5)(6, 9, 7, 10, 8), (1, 2, 3, 4, 5)(6, 10, 9, 8, 7), (1, 3, 5, 2, 4), (1, 3, 5, 2, 4)(6, 7, 8, 9, 10),

(1, 3, 5, 2, 4)(6, 8, 10, 7, 9), (1, 3, 5, 2, 4)(6, 9, 7, 10, 8), (1, 3, 5, 2, 4)(6, 10, 9, 8, 7), (1, 4, 2, 5, 3), (1, 4, 2, 5, 3)(6, 7, 8, 9, 10),

(1, 4, 2, 5, 3)(6, 8, 10, 7, 9), (1, 4, 2, 5, 3)(6, 9, 7, 10, 8), (1, 4, 2, 5, 3)(6, 10, 9, 8, 7), (1, 5, 4, 3, 2), (1, 5, 4, 3, 2)(6, 7, 8, 9, 10),

(1, 5, 4, 3, 2)(6, 8, 10, 7, 9), (1, 5, 4, 3, 2)(6, 9, 7, 10, 8), (1, 5, 4, 3, 2)(6, 10, 9, 8, 7)} ≤W1 with |Syl5(W1)| = 25
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Going by theorem 2.4, the number of Sylow 2-subgroups of W1 denoted N2 is given by n2 = 1 +2k ≡ 1( mod 2)

and N2 | 25 (where k = {0, 1, 2, . . . .}). Therefore N2 = 1 or 5 or 25 implying that H2 is not unique and hence

not normal in W1 .

Also the number of Sylow 5-subgroups of W1 denoted n5 is given by n5 = 1 + 5k ≡ 1 (mod 5) and N5 | 2

(where k = {0, 1, 2, . . .} ).

It follows from the constraints that N5 = 1.

Let K = Syl5 (W1) be the Sylow 5-subgroup of W1 . Then K ≤W1 with |K| = 52 . K is unique and it’s normal

in W1 by corollary 2.11. Since |K| = 52,K is a p-Group and by theorem 2.8 is Solvable. Also |W1 : K| = 3

implies that W1/K is also a p-Group hence Solvable by theorem 2.8. By theorem 2.13, we have that W1 is

solvable as required.

3.3. Illustrating Example (2)

Let C2 be a group of degree 5 and D2 a group of degree 3 acting on the sets Ω2 = {1, 2, 3, 4, 5} and ∆2 = {6, 7, 8}
respectively. Then the Wreath product W2 = C2wD2 with degree |C2| × |D2| = 15 and order given by

|W2| = |C2||∆2| × |D2| = 375 = 53 × 3 is soluble.

Proof:

Let H3 = Syl3 (W2) and H5 = Syl5 (W2) be the Sylow 3-subgroups and Sylow 5-subgroups of W2 respectively.

Routine calculation shows that W2 has:

H3 = {(1), (1, 6, 11)(2, 7, 12)(3, 8, 13)(4, 9, 14)(5, 10, 15), (1, 11, 6)(2, 12, 7)(3, 13, 8)(4, 14, 9)(5, 15, 10)} ≤W2 with

|Syl3 (W2)| = 3,

and H5 ≤W2 with |Syl5 (W2)| = 125

Going by theorem 2.4, the number of Sylow 3 -subgroups of W2 denoted N3 is given by N3 = 1+3k ≡ 1( mod 3)

and N3 | 125 (where k = {0, 1, 2, . . .} ). Therefore N2 = 1 or 25 implying that H2 is not unique and hence not

normal in W2 .

Also the number of Sylow 5-subgroups of W2 denoted N5 is given by N5 = 1 + 5k ≡ 1(mod5) and N5 | 3(

where k = {0, 1, 2, . . .} ).

It follows from the constraints that N5 = 1

Let K = Syl5 (W2) be the Sylow 5-subgroup of W2 . Then K ≤W2 with |K| = 53 . K is unique and it’s normal

in W2 by corollary 2.11. Since |K| = 53,K is a p-Group and by theorem 2.8 is Solvable. Also | W2 : K |= 3

implies that W2/K is also a p-Group hence Solvable by theorem 2.8. By theorem 2.13, we have that W2 is

solvable as required.

3.4. Illustrating Example (3)

Let C3 be a group of degree 7 and D3 a group of degree 3 acting on the sets Ω3 = {1, 2, 3, 4, 5, 6, 7} and ∆4 =

{8, 9, 10} respectively. Let P3 = C∆3
3 = {f : ∆3 → C3} . Then |P3| = |C3||

|3|| = 73 = 343. Then the Wreath

product W3 = C3wD3 with degree |C3|x |D3| = 21 and order given by |W3| = |C3||∆3| × |D3| = 1029 = 73 × 3

is soluble.

Proof. Let H3 = Syl3 (W3) and H7 = Syl7 (W3) be the Sylow 3-subgroups and Sylow 7-subgroups of W3

respectively. Routine calculation shows that W3 has:
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H3 = {(1), (1, 8, 15)(2, 9, 16)(3, 10, 17)(4, 11, 18)(5, 12, 19)(6, 13, 20)(7, 14, 21),

(1, 15, 8)(2, 16, 9) (3, 17, 10)(4, 18, 11)(5, 19, 12)(6, 20, 13)(7, 21, 14)} ≤ W3 with |Syl3 (W3)| = 3, and H7 ≤ W3

with |Syl7 (W3)| = 343

Going by theorem 2.4, the number of Sylow 3-subgroups of W3 denoted N3 is given by N3 = 1+3k ≡ 1 (mod3

) and N3 | 343 (where k = {0, 1, 2, . . .} ). Therefore N2 = 1 or 343 implying that H2 is not unique and hence

not normal in W3 .

Also the number of Sylow 7 -subgroups of W3 denoted N7 is given by N7 = 1 + 7k ≡ 1 (mod7) and N7 | 3(

where k = {0, 1, 2, . . .} ).

It follows from the constraints that N7 = 1

Let K = Syl7 (W3) be the Sylow 5-subgroup of W3 . Then K ≤W3 with |K| = 73 . K is unique and it’s normal

in W3 by corollary 2.11. Since |K| = 73,K is a p-Group and by theorem 2.8 is Solvable. Also |W3 : K| = 3

implies that W3/K is also a p-Group hence Solvable by theorem 2.8. By theorem 2.13, we have that W3 is

solvable as required.

3.5. GAP Result-Validation

gap>

gap> C1 := Group((1,2,3,4,5));

Group([ (1,2,3,4,5) ])

gap> D1 := Group((6,7));

Group([ (6,7) ])

gap> W1 := WreathProduct(C1,D1);

Group([ (1,2,3,4,5), (6,7,8,9,10), (1,6)(2,7)(3,8)(4,9)(5,10) ])

gap> Order(W1);

50

gap> Elements(W1);;

gap>

gap> IsSolvable(W1);

true

gap> S2 := SylowSubgroup(W1,2);

Group([ (1,6)(2,7)(3,8)(4,9)(5,10) ])

gap> Elements(S2);

[ (), (1,6)(2,7)(3,8)(4,9)(5,10) ]

gap> Order(S2);

2

gap> IsNormal(W1,S2);

false

gap> S5 := SylowSubgroup(W1,5);

Group([ (1,4,2,5,3)(6,9,7,10,8), (1,2,3,4,5)(6,10,9,8,7) ])

gap> Elements(S5);;

gap> Order(S5);

10
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25

gap> IsNormal(W1,S5);

true

gap>

gap> C2 := Group((1,2,3,4,5));

Group([ (1,2,3,4,5) ])

gap> D2 := Group((6,7,8));

Group([ (6,7,8) ])

gap> W2 := WreathProduct(C2,D2);

Group([ (1,2,3,4,5), (6,7,8,9,10), (11,12,13,14,15), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)])

gap> Order(W2);

375

gap> Elements(W2);;

gap>

gap> IsSolvable(W2);

true

gap> S3 := SylowSubgroup(W2,3);

Group([ (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15) ])

gap> Elements(S3);

[ (), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10) ]

gap> Order(S3);

3

gap> IsNormal(W2,S3);

false

gap> S5 := SylowSubgroup(W2,5);

Group([ (1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14), (1,2,3,4,5)(11,15,14,13,12), (1,5,4,3,2)(6,7,8,9,10) ])

gap> Elements(S5);;

gap> Order(S5);

125

gap> IsNormal(W2,S5);

true

gap>

gap> C3 := Group((1,2,3,4,5,6,7));

Group([ (1,2,3,4,5,6,7) ])

gap> D3 := Group((7,8,9));

Group([ (7,8,9) ])

gap> W3 := WreathProduct(C3,D3);

Group([(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21), (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)

(6,13,20)(7,14,21) ])

gap> Order(W3);

1029
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gap> Elements(W3);;

gap>

gap> IsSolvable(W3);

true

gap> S3 := SylowSubgroup(W3,3);

Group([ (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21) ])

gap> Elements(S3);

[ (), (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21), (1,15,8)(2,16,9)(3,17,10)(4,18,11)

(5,19,12)(6,20,13)(7,21,14) ]

gap> Order(S3);

3

gap> IsNormal(W3,S3);

false

gap> S7 := SylowSubgroup(W3,7);

Group([ (1,6,4,2,7,5,3)(8,13,11,9,14,12,10)(15,20,18,16,21,19,17), (1,2,3,4,5,6,7) (15,21,20,19,18,17,16),

(1,7,6,5,4,3,2)(8,9,10,11,12,13,14) ])

gap> Elements(S7);:

gap> Order(S7);

343

gap> IsNormal(W3,S7);

true

gap>

4. Conclusion and Recommendation

4.1. Conclusion

We have shown that the Wreath products group of degree 3p is soluble as required.

4.2. Recommendation

This study can be extended by considering for further research, one or a combination of two or more of other

theoretic properties such as simplicity, nilpotency, regularity, etc of same algebraic structures.
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