Exterior set in Neutrosophic biminimal structure spaces

S. Ganesan\textsuperscript{1}, S. Jafari\textsuperscript{2} and R. Karthikeyan\textsuperscript{3}

\textsuperscript{1} PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). ORCID iD: 0000-0002-7728-8941
\textsuperscript{2} College of Vestsjaelland South & Mathematical and Physical Science Foundation, 4200 Slagelse, Denmark. ORCID iD: 0000-0001-5744-7354
\textsuperscript{3} Scholar, PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). ORCID iD: 0000-0001-5277-5201

Abstract: We start with studying the concept of some fundamental properties of exterior set in neutrosophic biminimal structure space.

Key words: minimal structure spaces, neutrosophic biminimal structure spaces, exterior set in neutrosophic biminimal structure space

1. Introduction

The contribution of mathematics to the present-day technology in reaching to a fast trend cannot be ignored. The theories presented differently from classical methods in studies such as fuzzy set [24], intuitionistic fuzzy sets[4], intuitionistic set [6], neutrosophic set [23], etc., have great importance in this contribution of mathematics in recent years. Many works have been done on these sets by mathematicians in many areas of mathematics [1–3, 5, 7–16, 18]. The idea of minimal structure (in short, m-structure) was introduced by V. Popa and T. Noiri [19] in 2000. The notion of neutrosophic biminimal structure space (in short, nbiss) was introduced by S. Ganesan and C. Alexander [17] in 2021. Also they introduced and studied \(N_{1,H}^1\) and \(N_{1,H}^2\) closed sets and \(N_{2,H}^1\) and \(N_{2,H}^2\) open sets in nbiss and, also the application of index number (Statistical theory) is inspired from the concept of nbiss in real world. In this work, we introduced the concept of exterior set in nbiss and studied some of their basic properties.

2. Preliminaries

Definition 2.1. [17] Let \(H\) be a nonempty set & \(N_{1,H}^1\), \(N_{1,H}^2\) be nms on \(H\). A triple \((H, N_{1,H}^1, N_{1,H}^2)\) is said to be nbiss.

Definition 2.2. [17] Let \((H, N_{1,H}^1, N_{1,H}^2)\) be any neutrosophic set. Then

1. Every \(E \in N_{1,H}^j\) is open & its complement is closed, respectively, for \(j = 1, 2\).
2. \(N_{m,H}^j\)-closure of \(E = \text{minimum} \{U : U \in N_{m,H}^j\text{-closed set and } U \supseteq E\}\), respectively, for \(j = 1, 2\) and it is denoted by \(N_{m,H}^j(E)\).
3. \( N_{m} \text{int}_{j} \)-interior of \( E = \text{maximum} \{ W : W \text{ is } N_{m}j \text{-open set and } W \subseteq E \} \), respectively, for \( j = 1, 2 \) and it is denoted by \( N_{m} \text{int}_{j} (E) \).

**Definition 2.3.** [17] A subset \( E \) of a nbiss \( (H, N_{m}^{1}, N_{m}^{2}) \) is said to be \( N_{m}^{1}N_{m}^{2} \)-closed if \( N_{m} \text{cl}_{1} (N_{m} \text{cl}_{2} (E)) = E \).

**Definition 2.4.** [17] Let \( (H, N_{m}^{1}, N_{m}^{2}) \) be a nbiss and \( E \) be a subset of \( H \). Then \( E \) is \( N_{m}^{1}N_{m}^{2} \)-closed iff \( N_{m} \text{cl}_{1} (E) = E \) and \( N_{m} \text{cl}_{2} (E) = E \).

**Proposition 2.1.** [17] Let \( (H, N_{m}^{1}, N_{m}^{2}) \) be a nbiss. If \( E \) and \( F \) are \( N_{m}^{1}N_{m}^{2} \)-closed subsets of \( (H, N_{m}^{1}, N_{m}^{2}) \), then \( E \cap F \) is \( N_{m}^{1}N_{m}^{2} \)-closed.

**Proposition 2.2.** [17] Let \( (H, N_{m}^{1}, N_{m}^{2}) \) be a nbiss. Then \( E \) is a \( N_{m}^{1}N_{m}^{2} \)-open subset of \( (H, N_{m}^{1}, N_{m}^{2}) \) if and only if \( E = N_{m} \text{int}_{1} (N_{m} \text{int}_{2} (E)) \).

3. \( N_{m}^{i}N_{m}^{j} \)-EXTERIOR

**Definition 3.1.** Let \( (H, N_{m}^{1}, N_{m}^{2}) \) be a nbiss, \( E \) a subset of \( H \) and \( h \in H \). We called \( h \) to be the \( N_{m}^{i}N_{m}^{j} \)-exterior point of \( E \) if \( h \in N_{m} \text{int}_{i} (N_{m} \text{int}_{j} (H \setminus E)) \). We denote the set of all \( N_{m}^{i}N_{m}^{j} \)-exterior points of \( E \) by \( N_{m} \text{Ext}_{ij} (E) \) where \( i, j = 1, 2 \) and \( i \neq j \).

From definition we have \( N_{m} \text{Ext}_{ij} (E) = H \setminus N_{m} \text{cl}_{i} (N_{m} \text{cl}_{j} (E)) \).

**Example 3.1.** Let \( H = \{ h \} \) with \( N_{m}^{1}N_{m}^{2} = \{ 0_{\sim}, A, 1_{\sim} \} ; (N_{m}^{1})^{C} = \{ 1_{\sim}, B, 0_{\sim} \} \) and \( N_{m}^{2} = \{ 0_{\sim}, U, 1_{\sim} \} ; (N_{m}^{2})^{C} = \{ 1_{\sim}, V, 0_{\sim} \} \) where

- \( A = \prec (0.9, 0.3, 0.8) \succ \Rightarrow B = \prec (0.8, 0.7, 0.9) \succ \)
- \( U = \prec (0.5, 0.5, 0.7) \succ \Rightarrow V = \prec (0.7, 0.5, 0.5) \succ \)

Then \( N_{m} \text{Ext}_{ij} (\prec (0.3, 0.4, 0.5) \succ) = H \setminus N_{m} \text{cl}_{i} (N_{m} \text{cl}_{j} (\prec (0.3, 0.4, 0.5) \succ)) \). Hence \( N_{m} \text{Ext}_{12} (\prec (0.3, 0.4, 0.5) \succ) = H \setminus N_{m} \text{cl}_{1} (N_{m} \text{cl}_{2} (\prec (0.3, 0.4, 0.5) \succ)) = 0_{\sim} \).

**Lemma 3.1.** Let \( (H, N_{m}^{1}, N_{m}^{2}) \) be a nbiss and \( E \) be a subset of \( H \). Then for each \( i, j = 1, 2 \) & \( i \neq j \), we have:

1. \( N_{m} \text{Ext}_{ij} (E) \cap E = 0_{\sim} \).
2. \( N_{m} \text{Ext}_{ij} (0_{\sim}) = 1_{\sim} \).
3. \( N_{m} \text{Ext}_{ij} (1_{\sim}) = 0_{\sim} \).

**Proof.** (1) Since \( N_{m} \text{Ext}_{ij} (E) = H \setminus N_{m} \text{cl}_{i} (N_{m} \text{cl}_{j} (E)) \) and \( E \subseteq N_{m} \text{cl}_{i} (N_{m} \text{cl}_{j} (E)) \), \( H \setminus N_{m} \text{cl}_{i} (N_{m} \text{cl}_{j} (E)) \cap E = 0_{\sim} \). Therefore \( H \setminus N_{m} \text{cl}_{i} (N_{m} \text{cl}_{j} (E)) \cap E = 0_{\sim} \). Hence \( N_{m} \text{Ext}_{ij} (E) \cap E = 0_{\sim} \).

(2) \( N_{m} \text{Ext}_{ij} (0_{\sim}) = 1_{\sim} \setminus N_{m} \text{cl}_{i} (N_{m} \text{cl}_{j} (0_{\sim})) = 1_{\sim} \setminus 0_{\sim} = 1_{\sim} \).

(3) \( N_{m} \text{Ext}_{ij} (H) = 1_{\sim} \setminus N_{m} \text{cl}_{i} (N_{m} \text{cl}_{j} (1_{\sim})) = 1_{\sim} \setminus 1_{\sim} = 0_{\sim} \).
Theorem 3.1. Let \((H, N^1_{mH}, N^2_{mH})\) be a nbiss and \(E, F\) be a subset of \(H\). If \(E \subseteq F\), then \(N_{mH} Ext_{ij}(F) \subseteq N_{mH} Ext_{ij}(E)\) where \(i, j = 1, 2\) and \(i \neq j\).

Proof. Assume that \((H, N^1_{mH}, N^2_{mH})\) is a nbiss, \(E, F\) are subset of \(H\) and \(E \subseteq F\). Thus \(N m cl_i(N m cl_j(E)) \subseteq N m cl_i(N m cl_j(F)) \subseteq H \setminus N m cl_i(N m cl_j(E))\). Hence \(N_{mX} Ext_{ij}(F) \subseteq N_{mH} Ext_{ij}(E)\) for each \(i, j = 1, 2\) and \(i \neq j\).

Theorem 3.2. Let \((H, N^1_{mH}, N^2_{mH})\) be a nbiss and \(E\) a subset of \(H\). Then for each \(i, j = 1, 2\) and \(i \neq j\), \(E\) is \(N^i_{mH} N^j_{mH}\)-closed if and only if \(N_{mH} Ext_{ij}(E) = H \setminus E\).

Proof. (1) \(\Rightarrow\) (2) Let \(E\) be a subset of \(H\). Assume that \(E\) is \(N^i_{mH} N^j_{mH}\)-closed. Thus \(E = mcl_i(N m cl_j(E))\). Therefore \(N_{mH} Ext_{ij}(E) = H \setminus mcl_i(N m cl_j(E)) = H \setminus E\).

(2) \(\Rightarrow\) (1) Assume that \(N_{mH} Ext_{ij}(E) = H \setminus E\). Thus \(H \setminus mcl_i(N m cl_j(E)) = H \setminus E\). Consequently \(mcl_i(N m cl_j(E)) = E\) and \(E\) is \(N^i_{mH} N^j_{mH}\)-closed.

Corollary 3.1. Let \((H, N^1_{mH}, N^2_{mH})\) be a nbiss and \(E\) a subset of \(H\). Then for each \(i, j = 1, 2\) and \(i \neq j\), \(E\) is \(N^i_{mH} N^j_{mH}\)-open if and only if \(N_{mH} Ext_{ij}(H \setminus E) = E\).

Proof. (1) \(\Rightarrow\) (2) Let \(E\) be a subset of \(H\). Assume that \(E\) is \(N^i_{mH} N^j_{mH}\)-open. Thus \(H \setminus E\) is \(N^i_{mH} N^j_{mH}\)-closed. Therefore \(N_{mH} Ext_{ij}(H \setminus E) = H \setminus (H \setminus E) = E\).

(2) \(\Rightarrow\) (1) Assume that \(N_{mH} Ext_{ij}(H \setminus E) = E\). Thus \(E = N_{mH} Ext_{ij}(H \setminus E) = H \setminus mcl_i(N m cl_j(H \setminus E)) = N m int_i(N m int_j(E))\). Hence \(E\) is \(N^i_{mH} N^j_{mH}\)-open.

Theorem 3.3. Let \((H, N^1_{mH}, N^2_{mH})\) be a nbiss and \(E\) a subset of \(H\). If \(E\) is \(N^i_{mH} N^j_{mH}\)-closed, then \(N_{mH} Ext_{ij}(H \setminus N_{mH} Ext_{ij}(E)) = N_{mH} Ext_{ij}(E)\) where \(i, j = 1, 2\) and \(i \neq j\).

Proof. Assume that \(E\) is \(N^i_{mH} N^j_{mH}\)-closed. Thus \(N_{mH} Ext_{ij}(E) = H \setminus E\). Hence \(N_{mH} Ext_{ij}(H \setminus N_{mH} Ext_{ij}(E)) = N_{mH} Ext_{ij}(H \setminus (H \setminus E)) = N_{mH} Ext_{ij}(E)\).

Theorem 3.4. Let \((H, N^1_{mH}, N^2_{mH})\) be a nbiss and \(E, F\) be subsets of \(H\). Then for each \(i, j = 1, 2\) and \(i \neq j\), we have:

1. \(N_{mH} Ext_{ij}(E) \cup N_{mH} Ext_{ij}(F) \subseteq N_{mH} Ext_{ij}(E \cap F)\).
2. If \(E\) and \(F\) are \(N^i_{mH} N^j_{mH}\)-closed, then \(N_{mH} Ext_{ij}(E) \cup N_{mH} Ext_{ij}(F) = N_{mH} Ext_{ij}(E \cap F)\).

Proof. Assume that \((H, N^1_{mH}, N^2_{mH})\) is a nbiss, \(E, F\) are subsets of \(H\). (1) Since \(E \cap F \subseteq E\) and \(E \cap F \subseteq F\), we have \(N_{mH} Ext_{ij}(E) \subseteq N_{mH} Ext_{ij}(E \cap F)\) and \(N_{mH} Ext_{ij}(F) \subseteq N_{mH} Ext_{ij}(E \cap F)\). It follows that \(N_{mH} Ext_{ij}(E) \cup N_{mH} Ext_{ij}(F) \subseteq N_{mH} Ext_{ij}(E \cap F)\).

(2) Assume that \(E\) and \(F\) are \(N^i_{mH} N^j_{mH}\)-closed. Then \(E \cap F\) is \(N^i_{mH} N^j_{mH}\)-closed. Thus \(N_{mH} Ext_{ij}(E \cap F) = H \setminus (E \cap F) = (H \setminus E) \cup (H \setminus F) = N_{mH} Ext_{ij}(E) \cup N_{mH} Ext_{ij}(F)\).

Theorem 3.5. Let \((H, N^1_{mH}, N^2_{mH})\) be a nbiss and \(E, F\) be subsets of \(H\). Then for each \(i, j = 1, 2\) and \(i \neq j\), we have:
1. \( N_{mH} Ext_{ij} (E \cup F) \subseteq N_{mH} Ext_{ij} (E) \cap N_{mH} Ext_{ij} (F) \).

2. If \( E \) and \( F \) are \( N_{i}^{mH} N_{j}^{mH} \)-open, then \( N_{mH} Ext_{ij} (E \cup F) = N_{mH} Ext_{ij} (E) \cap N_{mH} Ext_{ij} (F) \).

**Proof.** Assume that \((H, N_{1}^{mH}, N_{2}^{mH})\) is a nbiss, \( E \) and \( F \) are subsets of \( H \). (1). Since \( E \subseteq E \cup F \) and \( F \subseteq E \cup F \), we have \( N_{mH} Ext_{ij} (E \cup F) \subseteq N_{mH} Ext_{ij} (E) \) and \( N_{mH} Ext_{ij} (E \cup F) \subseteq N_{mH} Ext_{ij} (F) \). It follows that \( N_{mH} Ext_{ij} (E \cup F) \subseteq N_{mH} Ext_{ij} (E) \cap N_{mH} Ext_{ij} (F) \).

(2). Assume that \( E \) and \( F \) are \( N_{i}^{mH} N_{j}^{mH} \)-open. Then \( E \cup F \) is \( N_{i}^{mH} N_{j}^{mH} \)-open. It follows that \( H \setminus E, H \setminus F \) and \( H \setminus (E \cup F) \) are \( N_{i}^{mH} N_{j}^{mH} \)-closed. Thus by Theorem 3.4(2), we have \( N_{mH} Ext_{ij} (H \setminus E) \cup N_{mH} Ext_{ij} (H \setminus F) = N_{mH} Ext_{ij} ((H \setminus E) \cap (H \setminus F)) = N_{mH} Ext_{ij} (H \setminus (E \cup F)) = E \cup F \).

**Conclusion**
We presented several new notions and related properties by utilizing the concept of exterior set in nbiss.

**Acknowledgment**
We thank to referees for giving their useful suggestions and help to improve this paper.

**References**


