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Abstract: In this paper, we study to solve the Hyers-Ulam-Rassias stability of generalized homomorphisms in quasi-

Banach algebras, associated to Jensen type additive functional equation with 2k-variables. furthermore we investigated

the generalized Hyers-Ulam-Rassias stability and superstability of generalized homomorphisms in quasi-Banach algebras.
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1. Introduction

Let X and Y are two linear spaces on the same field K, and f : X → Y be a linear mapping. We use the

notation
∥∥ ·

∥∥
X

(
∥∥ ·

∥∥
Y

) for corresponding the norms on X and Y. In this paper, we investigate the stability

of generalized homomorphisms when X is a quasi-algebras with quasi-norm
∥∥ · ∥∥

X
and that Y is a p- Banach

algebras with p-norm
∥∥ ·

∥∥
Y
.

In fact, when X is a quasi-Banach algebras with quasi-norm
∥∥ ·

∥∥
X

and that Y is a p- Banach algebras with

p-norm
∥∥ ·

∥∥
Y

we solve and prove the Hyers-Ulam-Rassias type stability of generalized Homomorphisms in

quasi-Banach algebras, associated to the Jensen type additive functional equation.

mf
(∑k

j=1 xj +
∑k

j=1 xk+j

m

)
=

k∑
j=1

f
(
xj

)
+

k∑
j=1

f
(
xk+j

)
(1)

The study the stability of generalized homomorphisms in quasi-Banach algebras originated from a question of

S.M. Ulam [22], concerning the stability of group homomorphisms.

Let
(
G, ∗

)
be a group and let

(
G′, ◦, d

)
be a metric group with metric d

(
·, ·

)
. Geven ϵ > 0, does there exist

a δ > 0 such that if f : G → G′ satisfies

d
(
f
(
x ∗ y

)
, f

(
x
)
◦ f

(
y
))

< δ, ∀x ∈ G

then there is a homomorphism h : G → G′ with

d
(
f
(
x
)
, h

(
x
))

< ϵ,∀x ∈ G
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Hyers gave a first affirmative answes the question of Ulam as follows:

D. H. Hyers [8] Let ϵ ≥ 0 and let f : E1 → E2 be a mapping between Banach space and f satisfty Hyers

inequality

∥∥f(x+ y
)
− f

(
x
)
− f

(
y
)∥∥ ≤ ϵ,

for all x, y ∈ E1 and some ϵ ≥ 0. It was shown that the limit

T
(
x
)
= lim

n→∞

f
(
2nx

)
2n

exists for all x ∈ E1 and that T : E1 → E2 is that unique additive mapping satisfying∥∥f(x)− T
(
x
)∥∥ ≤ ϵ,∀x ∈ E1.

If f(tx) is continuous in the real variable t for each fixed x ∈ E1 , then T is linear and if f is continuous

at a single point of E1 then T : E1 → E2 is also continuous.

Next
Result was proved by J.M. Rassias [15]. J.M. Rassias assumed the following weaker inequality

∥∥f(x+ y
)
− f

(
x
)
− f

(
y
)∥∥ ≤

∥∥x∥∥p∥∥y∥∥p,∀x, y ∈ E1

where θ > 0 and real p, q such that r = p+ q ̸= 1, and retained the condition of continuity f
(
tx
)
in t

for fixed x .
And J.M. Rassias [16,17] investigated that it is possible to replace in the above Hyers inequality by a non-

negative real-valued function such that the pertinent series converges and other conditions hold and still obtain

stability results. The stability phenomenon that was introduced and proved by J.M. Rassias is called the

Hyers-Ulam-Rassias stability.

The stability problems for several functional equations have been extensively investigated by a number

of authors and and there are many interesting results concerning this probem. Such as in in 2008 Choonkil

Park [10] have established the and investigateed the Hyers− Ulam−Rassias stability of homomorphisms in

quasi-Banach algebras the following Jensen functional equation

2f
(x+ y

2

)
= f

(
x
)
+ f

(
y
)

and

next in 2009 M. Éhaghi Gordji and M. Bavand Savadkouhi [9] have established the and investigateed the ap-

proximation of generalized stability of homomorphisms in quasi-Banach algebras the following Jensen functional

equation

rf
(x+ y

r

)
= f

(
x
)
+ f

(
y
)

. Recently, in [3,9,10] the authors studied the on Hyers-Ulam-Rassias type stability of generalized

homomorphisms in quasi-Banach algebras, associated to following Jensen type additive functional equation.
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mf
(∑k

j=1 xj +
∑k

j=1 xk+j

m

)
=

k∑
j=1

f
(
xj

)
+

k∑
j=1

f
(
xk+j

)
ie the functional equation with 2k -variables. Under suitable assumptions on spaces X and Y , we will

prove that the mappings satisfying the functional (1). Thus, the results in this paper are generalization of those

in [3,9,10] for functional equation with 2k -variables.

The paper is organized as followns:

In section preliminarie we remind some basic notations in [6,10,11,12,13,14,15,17] such as quasi-Banach

algebras, p-Banach algebras, the important lemma of linear space and solutions of the Jensen function equation.

Section 3 is devoted to prove the Hyers-Ulam-Rassias type stabilityof generalized homomorphims in quasi-

Banach algebras of the Jensen type additive functional equation (1) when X is a quasi-Banach algebras with

quasi-norm
∥∥ ·

∥∥
X

and that Y is a p−Banach algebras with p-norm
∥∥ ·

∥∥
Y
.

2. preliminaries

2.1. Quasi-normed space - Quasi-Banach algebras.

Definition 2.1. Let X be a real linear space. A quasi-norm is a real-valued function on X satisfying the

following :

1.
∥∥x∥∥ ≥ 0 for all x ∈ X and

∥∥x∥∥ = 0 if and only if x = 0.

2.
∥∥λx∥∥ =

∣∣λ∣∣∥∥x∥∥ for all λ ∈ R and all x ∈ X.

3. There is a constant K ≥ 1 such that∥∥x+ y
∥∥ ≤ K

(∥∥x∥∥+
∥∥y∥∥),∀x, y ∈ X.

The pair
(
X,

∥∥ ·
∥∥) is called a quasi-normed space if

∥∥ ·
∥∥ is a quasi-norm on X.

The smallest possible K is called the modulus of concavity of
∥∥ ·

∥∥.
A quasi-Banach space is a complete quasi-normed space.

A quasi-norm
∥∥ ·

∥∥ is called a p− norm
(
0 < p ≤ 1

)
if

∥∥x+ y
∥∥p ≤

∥∥x∥∥p + ∥∥y∥∥p∀x, y ∈ X.

In this case, a quasi-Banach space is called a p−Banach space

Note1 : Given a p -norm, the formula d
(
x, y

)
:=

∥∥x − y
∥∥p gives us a translation invariant metric on X.

By the Aoki-Rolewicz Theorem [18] (see also [6]), each quasi-norm is equivalent to some p -norm. Since it is

much easier to work with p-norms, henceforth we restrict our attention mainly to p -norms.

Note2 : every homomorphism is a generalized homomorphism, but the converse is false, in general. For

instance, let X be an algebra over C and let f : X → X be a non-zero homomorphism on X . Then, we have

if
(
xy)

¯
= if

(
x
)
f
(
y
)
. This means that i is a generalized homomorphism.

9



LY VAN AN

Definition 2.2. Let
(
X,

∥∥ ·
∥∥) be a quasi-normed space. The quasi-normed space(

X,
∥∥ ·

∥∥) is called a quasi-normed algebras if X is an algebras and there is a constan K > 0 such that∥∥x.y∥∥ ≤ K
∥∥x∥∥∥∥y∥∥

Definition 2.3. A quasi-Banach algebras is a complete quasi-normed algebras.

If the quasi-norm
∥∥ ·

∥∥ is a p-norm then quasi-Banach is called a p-Banach algebras.

2.2. Some concepts of generalized homomorphism

Definition 2.4. A C -linear mapping ϕ : X → Y is called a homomorphism in quasi-Banach algebras if

ϕ : X → Y such that ϕ
(
xy

)
= ϕ

(
x
)
ϕ
(
y
)
for all x, y ∈ X .

Definition 2.5. A C-linear mapping ϕ : X → Y is called a generalized homomorphism in quasi-Banach

algebras if there exists a homomorphism ϕ′ : X → Y such that ϕ
(
xy

)
= ϕ

(
x
)
ϕ′(y) for all x, y ∈ X .

Lemma 2.1. Let X and Y be linear spaces and let f : X → Y be an additive mapping such that f
(
αx) =

αf
(
x
)
for all x, y ∈ X and all α ∈ L1 :=

{
α ∈ C;

∣∣α∣∣ = 1
}

Then the mapping f is C-linear.

2.3. Solutions of the equation.

The functional equation

2f
(x+ y

2

)
= f

(
x
)
+ f

(
y
)

is called the Jensen equation. In particular, every solution of the Jensen equation is said to be an Jensen −
additive mapping .

3. Stability of generalized homomorphisms quasi-Banach algebras

Now, we study the generalized homomorphisms related to equation of (1). Note that for (1), when X is a

quasi-Banach algebras with quasi-norm
∥∥ ·∥∥

X
and that Y is a p−Banach algebras with p -norm

∥∥ ·∥∥
Y
. Under

this setting, we can show that the generalized homomorphisms mapping relate to (1). These results are give in

the following.

Here we assume that m is a positive integer and β ∈ L1

Theorem 3.1. Let f : X → Y is a mapping with f
(
0
)
= 0 for which there exist a mapping g : X → Y with

g
(
0
)
= 0 , g

(
1
)
= 1 and a function

φ : X4k → R+

such that ∥∥∥∥∥mf
( β

m

k∑
j=1

xj +
β

m

k∑
j=1

xk+j +
1

m

k∏
j=1

x2k+jx3k+j

)

− β

k∑
j=1

f
(
xj

)
− β

k∑
j=1

f
(
xk+j

)
−

k∏
j=1

f
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ φ
(
x1, ..., xk, ..., x2k, ..., x3k, ..., x4k

)
(2)
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∥∥∥∥∥g(β
k∏

j=1

xjxk+j + β

k∏
j=1

x2k+jx3k+j

)
− β

k∏
j=1

g
(
xj

)
g
(
xk+j

)
− β

k∏
j=1

g
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ φ
(
x1, ..., xk, ..., x2k, ..., x3k, ..., x4k

)
(3)

and

φ̃
(
x1, ..., xk, ...,x2k, ..., x3k, ..., x4k

)
=

∞∑
i=1

φ
((
2k

)i
x1, ...,

(
2k

)i
xk, ...,

(
2k

)i
x2k, ...,

(
2k

)i
x3k, ...,

(
2k

)i
x4k

)(
2k

)i < ∞ (4)

for all xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k . Then there exists a unique generalized homomorphism

H : X → Y such that ∥∥∥f(x)−H
(
x
)∥∥∥

Y
≤ 1

2k
φ̃
(
x, ..., x, ..., x, ..., 0, ..., 0

)
,∀x ∈ X. (5)

Proof. Case I: Putting m = β = 1.

Letting xj = xk+j = x and x2k+1 = x3k+j = 0 for all j = 1 → k by the hypothesis (2), we have∥∥∥∥∥f(2kx)− 2kf
(
x
)∥∥∥∥∥

Y

≤ φ
(
x, ..., x, ..., x, 0, ..., 0, ..., 0

)
. (6)

for all x ∈ X. So

∥∥∥∥∥f
(
2kx

)
2k

− f
(
x
)∥∥∥∥∥

Y

≤ 1

2k
φ
(
x, ..., x, ..., x, 0, ..., 0, ..., 0

)
. (7)

for all x ∈ X. Sence Y is a p−Banach algebra,∥∥∥∥∥ 1(
2k

)l f((2k)lx)− 1(
2k

)m f
((

2k
)m

x
))∥∥∥∥∥

p

Y

≤
m−1∑
j=l

∥∥∥∥∥ 1(
2k

)j f((2k)jx)− 1(
2k

)j+1
f
((

2k
)j+1

x
))∥∥∥∥∥

p

Y

≤ 1(
2k

)p k∑
m=1

φp
((
2k

)j
x, ...,

(
2k

)j
x, ...,

(
2k

)j
x, 0, ..., 0, ..., 0

)(
2k

)pj . (8)

for all x ∈ X. Sence Y is a p−Banach algebras

for all nonnegative integers m and l with m > l and ∀x ∈ X . It follows from (8) that the sequence{
1(

2k
)n f

((
2k

)n
x
)}

is a cauchy sequence for all x ∈ X . Since Y is complete, the sequence
{

1(
2k
)n f

((
2k

)n
x
)}

coverges.

So one can define the mapping H : X → Y by

H
(
x
)
:= lim

n→∞

1(
2k

)n f((2k)nx)
11
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for all x ∈ X .

Case II: Putting x2k+j = x3k+j = 0, m = 1. and replacing xj , xk+j by (2k)nxj , (2k)
nxk+j respectively,

in (2) and multiply both sides of (2) by 1(
2k
)n

∥∥∥∥∥f
(
(2k)n

(
β
∑k

j=1 xj + β
∑k

j=1 xk+j

))
(2k)n

− β

k∑
j=1

f
(
(2k)nxj

)
(2k)n

− β

k∑
j=1

f
(
(2k)nxk+j

)
(2k)n

∥∥∥∥∥
Y

≤
φ
(
(2k)nx1, ..., (2k)

nxk, ..., (2k)
nx2k, 0, ..., 0, ..., 0

)
(2k)n

(9)

for all β ∈ L1 , xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k . Pass the limit as n → ∞ in (9) we have

H
(
β

k∑
j=1

xj + β

k∑
j=1

xk+j

)
= β

k∑
j=1

H
(
xj

)
+ β

k∑
j=1

H
(
xk+j

)
(10)

for all β ∈ L1 , xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k . By lemma 2.6 the mapping H is C -linear

Now we prove the uniqueness of H . Assume that H1 : X → Y is an additive mapping satisfing (5).

Then we have

∥∥∥H(
x
)
−H1

(
x
)∥∥∥

Y

=
1(

2k
)n ∥∥∥H((

2k
)n

x
)
+H1

((
2k

)n
x
)∥∥∥

Y

≤ 1(
2k

)n(∥∥∥H((
2k

)n
x
)
− f

((
2k

)n
x
)∥∥∥

Y
+
∥∥∥f((2k)nx)−H1

((
2k

)n
x
)∥∥∥

Y

)
≤ 2(

2k
)n+1 φ̃

((
2k

)n
x, ...,

(
2k

)n
x, ...,

(
2k

)n
x, 0, ..., 0, ..., 0

)
(11)

.

which tends to zero as n → ∞ for all x ∈ X . So we can conclude that H
(
x
)
= H1

(
x
)
for all x ∈ X.

This proves the uniqueness of H . Thus the mapping H1 : X → Y is a unique homomorphism satisfying (5).

Case III:

Putting xj = xk+j = 0, β = m = 1. and replacing x2k+j , x3k+j by (2k)knx2k+j ,

(2k)knx3k+j respectively, in (2) and multiply both sides of (2) by 1(
2k
)2kn we get

∥∥∥∥∥f
(
(2k)2kn

(∏k
j=1 x2k+jx3k+j

))
(2k)2kn

−
k∏

j=1

f
(
(2k)nx2k+j

)
(2k)kn

g
(
(2k)nx3k+j

)
(2k)kn

∥∥∥∥∥
Y

≤
φ
(
0, ..., 0, ..., 0, (2k)knx2k+1, ..., (2k)

knx3k+1, ..., (2k)
knx4k

)
(2k)2kn

(12)

for all x2k+j , x3k+j ∈ X for all j = 1 → k . Pass the limit as n → ∞ in (12) we have

12
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H
( k∏

j=1

x2k+jx3k+j

)
=

k∏
j=1

H
(
x2k+j

) k∏
j=1

H1

(
x3k+j

)
(13)

for all β ∈ L1 , xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k .

Next we claim that H1 is homomorphism.

Case IV:

Putting xk+j = x3k+j = 1 for all j = 1 → k , and replacing xj , x2k+j by (2k)knxj , (2k)
knx2k+j respectively,

in (3) and multiply both sides of (3) by 1(
2k
)kn

∥∥∥∥∥g
(
(2k)kn

(
β
∏k

j=1 xjxk+j + β
∏k

j=1 x2k+jx3k+j

))
(2k)kn

− β

∏k
j=1 g

(
(2k)knxj

)
(2k)kn

− β

∏k
j=1 g

(
(2k)knxj+3k

)
(2k)kn

∥∥∥∥∥
Y

≤ φ
(
x1, ..., xk, ..., x2k, ..., x3k, ..., x4k

)
(14)

for all xj , x2k+j ∈ X for all j = 1 → k and β ∈ L1 . Pass the limit as n → ∞ in (17) we have

H1

(
β

k∏
j=1

xj + β

k∏
j=1

x2k+j

)
= β

k∏
j=1

H1

(
xj

)
+ β

k∏
j=1

H1

(
xj+2k

)
(15)

By lemma 2.6 the mapping H is C-linear

Case V:
Putting x2k+j = x3k+j = 0 for all j = 1 → k, β = 1 in (3)

∥∥∥∥∥g(
k∏

j=1

xjxk+j

)
−

k∏
j=1

g
(
xj

)
g
(
xk+j

)∥∥∥∥∥
Y

≤ φ
(
x1, ..., xk, xk+1, ..., x2k, 0..., 0, ..., 0, ..., 0

)
(16)

for all xj , xk+j ∈ X for all j = 1 → k

and replacing xj , xk+j by (2k)knxj , (2k)
knxk+j respectively, in (3) and multiply both sides of (3) by

1(
2k
)2kn

∥∥∥∥∥g
(
(2k)2kn

(∏k
j=1 xjxk+j

))
(2k)2kn

−
∏k

j=1 g
(
(2k)knxj

)
(2k)kn

∏k
j=1 g

(
(2k)knxj+k

)
(2k)kn

∥∥∥∥∥
Y

≤
φ
(
(2k)nx1, ..., (2k)

nxk, ..., (2k)
nx2k, 0, ..., 0, ..., 0

)
(2k)2kn

(17)

for all xj , xk+j ∈ X for all j = 1 → k . Pass the limit as n → ∞ in (17) we have

13
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H1

( k∏
j=1

xj

k∏
j=1

xk+j

)
=

k∏
j=1

H1

(
xj

) k∏
j=1

H1

(
xj+k

)
(18)

for all xj , xk+j ∈ X for all j = 1 → k . It then follows from (13) that H is a generalized homomorphism.

Corollary 3.1. Suppose f : X → Y is a mapping with f
(
0
)
= 0 for which there exist constant ϵ > 0, p ̸= 0

and a mappig g : X → Y with g
(
0
)
= 0 , g

(
1
)
= 1 and a fuction

φ : X4k → R+

such that ∥∥∥∥∥mf
( β

m

k∑
j=1

xj +
β

m

k∑
j=1

xk+j +
1

m

k∏
j=1

x2k+jx3k+j

)

− β

k∑
j=1

f
(
xj

)
− β

k∑
j=1

f
(
xk+j

)
−

k∏
j=1

f
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ ϵ
( k∑

j=1

∥∥∥xj

∥∥∥p
X
+

k∑
j=1

∥∥∥xk+j

∥∥∥p
X

k∑
j=1

∥∥∥x2k+j

∥∥∥p
X
+

k∑
j=1

∥∥∥x3k+j

∥∥∥p
X

)
(19)

∥∥∥∥∥g(β
k∏

j=1

xjxk+j + β

k∏
j=1

x2k+jx3k+j

)
− β

k∏
j=1

g
(
xj

)
g
(
xk+j

)
− β

k∏
j=1

g
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ ϵ
( k∑

j=1

∥∥∥xj

∥∥∥p
X
+

k∑
j=1

∥∥∥xk+j

∥∥∥p
X

k∑
j=1

∥∥∥x2k+j

∥∥∥p
X
+

k∑
j=1

∥∥∥x3k+j

∥∥∥p
X

)
(20)

for all xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k and β ∈ T 1 . Then there exists a unique generalized

homomorphism H : X → Y such that∥∥∥f(x)−H
(
x
)∥∥∥

Y
≤ 2kϵ∣∣(2k)p − 2k

∣∣∥∥∥x∥∥∥pX (21)

for all x ∈ X

Corollary 3.2. Suppose f : X → Y is a mapping with f
(
0
)
= 0 for which there exist constant λ > 0, p ̸= 0

and a mappig g : X → Y with g
(
0
)
= 0 , g

(
1
)
= 1 and a function

φ : X4k → R+

such that ∥∥∥∥∥mf
( β

m

k∑
j=1

xj +
β

m

k∑
j=1

xk+j +
1

m

k∏
j=1

x2k+jx3k+j

)

− β

k∑
j=1

f
(
xj

)
− β

k∑
j=1

f
(
xk+j

)
−

k∏
j=1

f
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ λ (22)

14



LY VAN AN

∥∥∥∥∥g(β
k∏

j=1

xjxk+j + β

k∏
j=1

x2k+jx3k+j

)
− β

k∏
j=1

g
(
xj

)
g
(
xk+j

)

− β

k∏
j=1

g
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ λ (23)

for all xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k and β ∈ T 1 . Then there exists a unique generalized

homomorphism H : X → Y such that ∥∥∥f(x)−H
(
x
)∥∥∥

Y
≤ λ

2
(24)

for all x ∈ X

Theorem 3.2. Suppose f : X → Y is a mapping with f
(
0
)
= 0 for which there exist a mapping g : X → Y

with g
(
0
)
= 0 , g

(
1
)
= 1 and a function

φ : X4k → R+

such that ∥∥∥∥∥mf
( β

m

k∑
j=1

xj +
β

m

k∑
j=1

xk+j +
1

m

k∏
j=1

x2k+jx3k+j

)

− β

k∑
j=1

f
(
xj

)
− β

k∑
j=1

f
(
xk+j

)
−

k∏
j=1

f
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ φ
(
x1, ..., xk, ..., x2k, ..., x3k, ..., x4k

)
(25)

∥∥∥∥∥g(β
k∏

j=1

xjxk+j + β

k∏
j=1

x2k+jx3k+j

)
− β

k∏
j=1

g
(
xj

)
g
(
xk+j

)
− β

k∏
j=1

g
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ φ
(
x1, ..., xk, ..., x2k, ..., x3k, ..., x4k

)
(26)

and

φ̃
(
x1, ..., xk, ...,x2k, ..., x3k, ..., x4k

)
=

∞∑
i=1

(2k)iφ
( x1(

2k
)i , ..., xk(

2k
)i , ..., x2k(

2k
)i , ..., x3k(

2k
)i , ..., x4k(

2k
)i ) < ∞ (27)

for all xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k and β ∈ T 1 . Then there exists a unique generalized

homomorphism H : X → Y

Proof. The proof is similar to the proof of theorem 3.1.
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Theorem 3.3. Suppose p ̸= 1, ϵ > 0 and f : X → Y is a mapping with f
(
0
)
= 0 for which there exist a

mapping g : X → Y with g
(
0
)
= 0 , g

(
1
)
= 1 such that∥∥∥∥∥mf

( β

m

k∑
j=1

xj +
β

m

k∑
j=1

xk+j +
1

m

k∏
j=1

x2k+jx3k+j

)

− β

k∑
j=1

f
(
xj

)
− β

k∑
j=1

f
(
xk+j

)
−

k∏
j=1

f
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ ϵ

k∑
j=1

∥∥f(x2k+j

)∥∥∥
Y

(28)

∥∥∥∥∥g(β
k∏

j=1

xjxk+j + β

k∏
j=1

x2k+jx3k+j

)
− β

k∏
j=1

g
(
xj

)
g
(
xk+j

)
− β

k∏
j=1

g
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ ϵ
( k∑

j=1

∥∥xj

∥∥p
X
+

k∑
j=1

∥∥xk+j

∥∥p
X
+

k∑
j=1

∥∥x2k+j

∥∥p
X
+

k∑
j=1

∥∥x3k+j

∥∥p
X

)
(29)

for all xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k and all β ∈ L1 . Then there exists a unique generalized

homomorphism H : X → Y

Proof. In this theorem I only prove the case p < 1 and the case p > 1 the proof is similar.

Case I: Putting x2k+j = x3k+j = 0, m = 1. in (28)

∥∥∥f(β k∑
j=1

xj + β

k∑
j=1

xk+j

)
− β

k∑
j=1

f
(
xj

)
− β

k∑
j=1

f
(
xk+j

)∥∥∥
Y

≤ ϵ

k∑
j=1

∥∥∥f(0)∥∥∥
Y

= 0 (30)

for all β ∈ L1 , xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k . Thus we have

f
(
β

k∑
j=1

xj + β

k∑
j=1

xk+j

)
= β

k∑
j=1

f
(
xj

)
+ β

k∑
j=1

f
(
xk+j

)
(31)

for all β ∈ L1 , xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k . By lemma 2.6 the mapping f is C-linear

.

Case II:
Putting xj = xk+j = 0, β = m = 1. in (28)

∥∥∥∥∥f(
k∏

j=1

x2k+jx3k+j

)
− β

k∏
j=1

f
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ ϵ

k∑
j=1

∥∥∥f(x2k+i

)∥∥∥
Y

(32)
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and replacing x2k+j , x3k+j by (2k)knx2k+j ,

(2k)knx3k+j respectively, in (28) and multiply both sides of (28) by 1(
2k
)2kn we get

∥∥∥∥∥f
(
(2k)2kn

(∏k
j=1 x2k+jx3k+j

))
(2k)2kn

− β

k∏
j=1

f
(
(2k)nx2k+j

)
(2k)kn

g
(
(2k)nx3k+j

)
(2k)kn

∥∥∥∥∥
Y

≤ ϵ

(2k)2kn

k∑
j=1

∥∥∥f((2k)nkx2k+i

)∥∥∥
Y

(33)

for all x2k+j , x3k+j ∈ X for all j = 1 → k . Pass the limit as n → ∞ in (34) we have

∥∥∥∥∥f(
k∏

j=1

x2k+jx3k+j

)
−

k∏
j=1

f
(
x2k+j

)g((2k)nx3k+j

)
(2k)kn

∥∥∥∥∥
Y

≤ ϵ

(2k)kn

k∑
j=1

∥∥∥f(x2k+i

)∥∥∥
Y

(34)

for all x2k+j , x3k+j ∈ X for all j = 1 → k . Pass the limit as n → ∞ in (34) we have

f
( k∏

j=1

x2k+jx3k+j

)
=

k∏
j=1

f
(
x2k+j

) k∏
j=1

f1
(
x3k+j

)
(35)

for all β ∈ L1 , xj , xk+j , x2k+j , x3k+j ∈ X for all j = 1 → k .

Next we claim that H1 is homomorphism.

Case III.

Putting xk+j = x3k+j = 1 for all j = 1 → k , and replacing xj , x2k+j by (2k)knxj , (2k)
knx2k+j respectively,

in (29) and multiply both sides of (29) by 1(
2k
)kn

∥∥∥∥∥g
(
(2k)kn

(
β
∏k

j=1 xjxk+j + β
∏k

j=1 x2k+jx3k+j

))
(2k)kn

− β

∏k
j=1 g

(
(2k)knxj

)
(2k)kn

− β

∏k
j=1 g

(
(2k)knxj+3k

)
(2k)kn

∥∥∥∥∥
Y

≤ 1(
2k

)kn( k∑
j=1

∥∥(2k)knxj

∥∥p
X
+

k∑
j=1

∥∥(2k)kn∥∥p
X

+

k∑
j=1

∥∥(2k)knx2k+j

∥∥p
X
+

k∑
j=1

∥∥(2k)kn∥∥p
X

)
(36)

for all xj , x2k+j ∈ X for all j = 1 → k and β ∈ L1 . Pass the limit as n → ∞ in (36) we have

H1

(
β

k∏
j=1

xj + β

k∏
j=1

x2k+j

)
= β

k∏
j=1

H1

(
xj

)
+ β

k∏
j=1

H1

(
xj+2k

)
(37)

By lemma 2.6 the mapping H is C-linear
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Case IV.
Putting xj = xk+j = 0 for all j = 1 → k, β = 1 in (29)

∥∥∥∥∥g(
k∏

j=1

x2k+jx3k+j

)
−

k∏
j=1

g
(
x2k+j

)
g
(
x3k+j

)∥∥∥∥∥
Y

≤ ϵ
( k∑

j=1

∥∥x2k+j

∥∥p
X
+

k∑
j=1

∥∥x3k+j

∥∥p
X

)
(38)

for all x2k+j , x3k+j ∈ X for all j = 1 → k

and replacing x2k+j , x3k+j by (2k)knx2k+j , (2k)
knx3k+j respectively, in (29) and multiply both sides of

(29) by 1(
2k
)2kn

∥∥∥∥∥g
(
(2k)2kn

(∏k
j=1 x2k+jx3k+j

))
(2k)2kn

−
∏k

j=1 g
(
(2k)knx2k+j

)
(2k)kn

∏k
j=1 g

(
(2k)knx3k+j

)
(2k)kn

∥∥∥∥∥
Y

≤ ϵ

(2k)2kn

( k∑
j=1

∥∥(2k)knx2k+j

∥∥p
X
+

k∑
j=1

∥∥(2k)knx3k+j

∥∥p
X

)
(39)

for all x2k+j , x3k+j ∈ X for all j = 1 → k . Pass the limit as n → ∞ in (36) we have

H1

( k∏
j=1

xj

k∏
j=1

xk+j

)
=

k∏
j=1

H1

(
xj

) k∏
j=1

H1

(
xj+k

)
(40)

from (3.4) that f is a generalized homomorphism. Similarly, one can show the result for the case p > 1.
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