

On N_m -semi-open sets in neutrosophic minimal structure spaces

S. Ganesan^{1*}, S. Jafari², F. Smarandache³ and R. Karthikeyan⁴

Assistant Professor, PG & Research Department of Mathematics,
Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India.
(Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). ORCID iD: 0000-0002-7728-8941
College of Vestsjaelland South & Mathematical and Physical Science Foundation,

4200 Slagelse, Denmark. ORCID iD: 0000-0001-5744-7354

Mathematics & Science Department, University of New Maxico, 705 Gurley Ave,
Gallup, NM 87301, USA. ORCID iD: 0000-0002-5560-5926
Scholar, PG & Research Department of Mathematics,

Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). ORCID iD: 0000-0001-5277-5201

Received: 23 Jun 2022 • Accepted: 02 Aug 2022 • Published Online: 31 Aug 2022

Abstract: The focuses of this article, we study the notions of N_m -semi-open sets, N_m -semi-interior, N_m -semi-closure, N_m -semi-continuous maps in neutrosophic minimal structures & some basic concepts.

Key words: Neutrosophic minimal structure spaces (in short, nms), N_m -semi-closed, N_m -semi-open and N_m -semi-continuous

1. Introduction

L. A. Zadeh's [16] Fuzzy set concepts laid the foundation of many theories such as neutrosophic sets, soft sets, etc. K. T. Atanassov's [4] intuitionistic fuzzy set theory in many areas such as topology, computer science and so on. F. Smarandache [14, 15] found that some objects have indeterminacy or neutral other than membership and non-membership. A. A. Salama & S. A. Alblowi[13], introduced and studied some fundamendal properties of neutrosophic set (in short., ns) & neutrosophic topological spaces (in short., nt). V. Popa & T. Noiri [12] introduced the notions of of minimal structure spaces. M. Karthika et al [11] introduced and studied nms. (ie., N_m -closed, N_m -open, N_m -closure, N_m -interior, union property, intersection property , N_m - maps and so on,...). We analysis of N_m -semi-closed sets, N_m -semi-open sets, N_m -semi-closure and N_m -semi-interior operators in nms. Finally, we introduce N_m -semi-continuous map and investigate some properties of such concepts.

2. Preliminaries

Definition 2.1. [13] A nt in Salama's sense on a nonempty set X is a family τ of ns in X satisfying three axioms:

- 1. Empty set (0_{\sim}) and universal set (1_{\sim}) are members of τ .
- 2. $K_1 \cap K_2 \in \tau$ where $K_1, K_2 \in \tau$.

©Asia Mathematika, DOI: 10.5281/zenodo.7120644

*Correspondence: sgsgsgsgsg77@gmail.com

3. $\bigcup K_{\delta} \in \tau$ for every $\{K_{\delta} : \delta \in \Delta\} \leq \tau$.

Definition 2.2. [11] Let nms over a universal set Ω be denoted by N_m . N_m is said to be nms over Ω if it satisfies following the axiom: 0_{\sim} , $1_{\sim} \in N_m$. A family of nms is denoted by $(\Omega, N_{m\Omega})$.

3. N_m -semi-open

Definition 3.1. Let $(\Omega, N_{m\Omega})$ be a nms. A subset W of Ω is said to be N_m -semi-open set (in short, N_m -sos) if $W \leq N_m \operatorname{cl}(N_m \operatorname{int}(W))$. The complement of an N_m -sos is called an N_m -ses.

Remark 3.1. Let (Ω, \mathcal{T}) be a nt & $W \leq \Omega$. W is called an N_m -semi-open set(in short, N_m -sos) [10] if $W \leq \mathcal{N} cl(\mathcal{N}int(W))$. If the nms $N_{m\Omega}$ is a topology, clearly an N_m -sos is N_m -sos.

Lemma 3.1. Let $(\Omega, N_{m\Omega})$ be a nms. Then

- 1. Every N_m os is N_m -sos.
- 2. W is an N_m -sos iff $W \leq N_m \operatorname{cl}(N_m \operatorname{int}(W))$.
- 3. Every N_m -cs is N_m -scs.
- 4. W is an N_m -scs iff $N_m int(N_m cl(W)) \leq W$.

Theorem 3.1. Let $(\Omega, N_{m\Omega})$ be a nms. The arbitrary union of N_m -sos is a N_m -sos.

Proof. Let W_{δ} be an N_m -sos for $\delta \in \Delta$. From Definition 3.1 and Proposition 3.8 (vi) [11], it follows $W_{\delta} \leq N_m \operatorname{cl}(N_m \operatorname{int}(W_{\delta})) \leq N_m \operatorname{cl}(N_m \operatorname{int}(\bigcup W_{\delta}))$. This implies $\bigcup W_{\delta} \leq N_m \operatorname{clo}(N_m \operatorname{inte}(\bigcup W_{\delta}))$. Hence $\bigcup W_{\delta}$ is an N_m -sos.

Remark 3.2. Let $(\Omega, N_{m\Omega})$ be a nms. The intersection of any two N_m -sos may not be N_m -sos.

Example 3.1. Let $\Omega = \{\omega\}$ with $N_m = \{\theta_{\sim}, P_1, Q_1, R_1, S_1, I_{\sim}\}$ and $N_m^C = \{I_{\sim}, I_1, J_1, K_1, L_1, \theta_{\sim}\}$ where

Now we define the two N_m -sos as follows:

$$A = \langle (1, 0.5, 0.6) \rangle ; B = \langle (0.8, 0.5, 0.2) \rangle$$

Here $N_m int(A) = P_1$, $N_m cl(N_m int(A)) = N_m cl(P_1) = 0^C_{\sim}$ and

 $N_m \, int(B) = S_1 \,, \, N_m \, cl(N_m \, int(B)) = N_m \, cl(S_1) = 0_{\sim}^C \,. \, But \, A \, \wedge \, B = \, \prec \, (0.8, \, 0.5, \, 0.6) \succ \, is \, not \, a \, N_m \, -sos \, in \, \Omega \,.$

Definition 3.2. Let $(\Omega, N_{m\Omega})$ be a nms. For a subset W of Ω . Then,

- 1. N_m -semi-closure of $W = \min \{I : I \text{ is } N_m$ -scs and $I \geq W\}$, it is denoted by N_m -scl(W).
- 2. N_m -semi-interior of $W = \max \{G : G \text{ is } N_m$ -sos and $G \leq W\}$, it is denoted by N_m -sint(W).

Theorem 3.2. Let $(\Omega, N_{m\Omega})$ be a nms and $W \leq \Omega$. Then

- 1. N_m -sint $(W) \leq W$.
- 2. If $W \leq Z$, then N_m -sint $(W) \leq N_m$ -sint(Z).
- 3. W is N_m -sos iff N_m -sint(W) = W.
- 4. N_m -sint $(N_m$ -sint(W)) = N_m -sint(W).
- 5. $N_m scl(\Omega W) = \Omega N_m sint(W)$ and $N_m sint(\Omega W) = \Omega N_m scl(W)$.

Proof. (1), (2) Obvious.

- (3) by theorem 3.1.
- (4) by (3).

(5)
$$W \leq \Omega, \Omega - N_m - \sin t(W) = \Omega - \max\{U : U \leq W, U \text{ is } N_m - sos\} = \min\{\Omega - U : U \leq W, U \text{ is } N_m - sos\} = \min\{\Omega - U : \Omega - W \leq \Omega - U, U \text{ is } N_m - sos\} = N_m - scl(\Omega - W).$$

Similarly, we have N_m -sint $(\Omega - W) = \Omega - N_m$ -scl(W).

Theorem 3.3. Let $(\Omega, N_{m\Omega})$ be a nms and $W \leq \Omega$. Then

- 1. $W \leq N_m \operatorname{-scl}(W)$.
- 2. If $W \leq Z$, then $N_m \operatorname{-scl}(W) \leq N_m \operatorname{-scl}(Z)$.
- 3. F is N_m -scs iff N_m -scl(F) = F.
- 4. $N_m \operatorname{-scl}(N_m \operatorname{-scl}(W)) = N_m \operatorname{-scl}(W)$.

Proof. Similar to by theorem 3.2.

Theorem 3.4. Let $(\Omega, N_{m\Omega})$ be a nms & $W \leq \Omega$. Then

- 1. $\omega \in N_m$ -scl(W) iff if $W \cap M \neq \emptyset$ for every N_m -sos M containing ω .
- 2. $\omega \in N_m$ -sint(W) iff there exists an N_m -sos K such that $K \leq W$.

Proof. (1) \exists there is an N_m -sos M containing ω such that $W \cap M = \emptyset$. $\Omega - M$ is an N_m -scs such that $W \subseteq \Omega - M$, $\omega \notin \Omega - M$. This implies $\omega \notin N_m$ -scl(W).

The reverse relation is true.

(2) Obvious. \Box

Lemma 3.2. $(\Omega, N_{m\Omega})$ be a nms & $W \leq \Omega$.

- 1. $N_m int(N_m cl(W)) \le N_m int(N_m cl(N_m scl(W))) \le N_m scl(W)$.
- 2. N_m -sint(W) $\leq N_m \operatorname{cl}(N_m \operatorname{int}(N_m \operatorname{-sint}(W))) \leq N_m \operatorname{cl}(N_m \operatorname{int}(W))$.

Proof. (1) For W $\leq \Omega$, by Theorem 3.3, N_m-scl(W) is an N_m-scs. Hence from Lemma 3.1, we have $N_m \operatorname{int}(N_m \operatorname{cl}(W)) \leq N_m \operatorname{int}(N_m \operatorname{cl}(N_m \operatorname{-scl}(W))) \leq N_m \operatorname{-scl}(W)$.

(2) similar by the proof of (1). \Box

Definition 3.3. Let $l: (\Omega, N_{m\Omega}) \to (\Lambda, N_{m\Lambda})$ is called N_m -semi-continuous map (in short, N_m -sc) iff $l^{-1}(V) \in N_m$ -sos whenever $V \in N_{m\Lambda}$.

Theorem 3.5. Every neutrosophic minimal continuous is N_m -sc but not conversely.

Proof. By Lemma 3.1 (1). \Box

Theorem 3.6. Let $l: \Omega \to \Lambda$ be a map on two nms $(\Omega, N_{m\Omega})$ and $(\Lambda, N_{m\Lambda})$.

- 1. l is N_m -sc.
- 2. $l^{-1}(M)$ is an N_m -sos for each N_m os M in Λ .
- 3. $l^{-1}(Z)$ is an N_m -scs for each N_m -cs Z in Λ .
- 4. $l(N_m \operatorname{-scl}(W)) \leq N_m \operatorname{cl}(l(W))$ for $W \leq \Omega$.
- 5. $N_m scl(l^{-1}(Z)) \le l^{-1}(N_m cl(Z))$ for $Z \le \Lambda$.
- 6. $l^{-1}(N_m int(Z)) \leq N_m sint(l^{-1}(Z))$ for $Z \leq \Lambda$.

Proof. (1) \Rightarrow (2) Let M be an N_m os in Λ & $\omega \in l^{-1}(M)$. By hypothesis, there exists an N_m-sos U_{\omega} containing ω such that $l(U) \leq M$. This implies $\omega \in U_{\omega} \leq l^{-1}(M)$ for all $\omega \in l^{-1}(M)$. Hence by Theorem 3.1, $l^{-1}(M)$ is N_m-sos.

- $(2) \Rightarrow (3)$ Obvious.
- $(3) \Rightarrow (4) \text{ For } \mathbf{W} \leq \Omega, \mathbf{1}^{-1}(\mathbf{N}_m \operatorname{cl}(\mathbf{l}(\mathbf{W}))) = \mathbf{1}^{-1}(\min \{\mathbf{S} \leq \Lambda : \mathbf{l}(\mathbf{W}) \leq \mathbf{S} \text{ and } \mathbf{S} \text{ is } \mathbf{N}_m\text{-closed}\}) = \min \{\mathbf{1}^{-1}(\mathbf{S}) \leq \Omega : \mathbf{W} \leq \mathbf{1}^{-1}(\mathbf{S}) \text{ and } \mathbf{S} \text{ is } \mathbf{N}_m\text{-scs}\} \geq \min \{\mathbf{R} \leq \Omega : \mathbf{W} \leq \mathbf{R} \text{ and } \mathbf{R} \text{ is } \mathbf{N}_m\text{-scs}\} = \mathbf{N}_m\text{-scl}(\mathbf{W}). \text{ Hence } \mathbf{l}(\mathbf{N}_m\text{-scl}(\mathbf{W})) \leq \mathbf{N}_m \operatorname{cl}(\mathbf{l}(\mathbf{W})).$
- (4) \Rightarrow (5) For W $\leq \Omega$, from (4), it follows $l(N_m scl(l^{-1}(W))) \leq N_m cl(l(l^{-1}(W))) \leq N_m cl(W)$. Hence we get (5).
- (5) \Rightarrow (6) For Z $\leq \Lambda$, from $N_m \operatorname{int}(Z) = \Lambda N_m \operatorname{cl}(\Lambda Z)$ and (5), it follows: $l^{-1}(N_m \operatorname{int}(Z)) = l^{-1}(\Lambda N_m \operatorname{cl}(\Lambda Z)) = \Omega l^{-1}(N_m \operatorname{cl}(\Lambda Z)) \leq \Omega N_m \operatorname{-scl}(l^{-1}(\Lambda Z)) = N_m \operatorname{-sint}(l^{-1}(Z))$. Hence (6) is obtained.
- (6) \Rightarrow (1) Let $\omega \in \Omega$ and M an N_m os containing $l(\omega)$. From (6) & Proposition 3.8 [11], it follows $\omega \in l^{-1}(M) = l^{-1}(N_m \text{int}(M)) \leq N_m \text{-sint}(l^{-1}(M))$. Theorem 3.4, $\exists N_m \text{-sos U containing } \omega$ such that $\omega \in U \leq l^{-1}(M)$. Hence l is N_m -sc. \square

Theorem 3.7. $l: \Omega \to \Lambda$ be a map on two nms $(\Omega, N_{m\Omega})$ and $(\Lambda, N_{m\Lambda})$.

- 1. l is N_m -sc.
- 2. $l^{-1}(M) \leq N_m \operatorname{cl}(N_m \operatorname{int}(l^{-1}(M)))$ for each N_m os M in Λ .
- 3. $N_m \operatorname{int}(N_m \operatorname{cl}(l^{-1}(R))) \leq l^{-1}(R)$ for each N_m -cs R in Λ .
- 4. $l(N_m int(N_m cl(W))) \leq N_m cl(l(A))$ for $W \leq \Omega$.
- 5. $N_m int(N_m cl(l^{-1}(Z))) \leq l^{-1}(N_m cl(Z)) \text{ for } Z \leq \Lambda$.
- 6. $l^{-1}(N_m int(Z)) \leq N_m cl(N_m int(l^{-1}(Z)))$ for $Z \leq \Lambda$.

- *Proof.* (1) \Leftrightarrow (2) By theorem 3.6 and definition of N_m-sos.
- $(1) \Leftrightarrow (3)$ By theorem 3.6 and lemma 3.1.
- (3) \Rightarrow (4) Let W $\leq \Omega$. Then from Theorem 3.6(4) and Lemma 3.2, it follows $N_m \operatorname{int}(N_m \operatorname{cl}(W)) \leq N_m \operatorname{-scl}(W)$
- $\leq 1^{-1} (N_m \operatorname{cl}(l(W)))$. Hence $l(N_m \operatorname{int}(N_m \operatorname{cl}(W))) \leq N_m \operatorname{cl}(l(W))$.
- $(4) \Rightarrow (5)$ Obvious.
- (5) \Rightarrow (6) From (5) and Proposition 3.8 [11], it follows: $1^{-1}(N_m int(Z)) = 1^{-1}(\Lambda N_m cl(\Lambda Z)) = \Omega 1^{-1}(N_m cl(\Lambda Z)) \leq \Omega N_m int(N_m cl(1^{-1}(\Lambda Z)))$
- = $N_m \operatorname{cl}(N_m \operatorname{int}(l^{-1}(Z)))$. Hence, (6) is obtained.
- (6) \Rightarrow (1) Let M be an N_m os in Λ . Then by (6) and Proposition 3.8 [11], we have $l^{-1}(M) = l^{-1}(N_m \operatorname{int}(M))$ $\leq N_m \operatorname{cl}(N_m \operatorname{int}(l^{-1}(M)))$. This implies $l^{-1}(M)$ is an N_m-sos. Hence by (2), l is N_m-semi-continuous.

Conclusion

We presented several new notions and related properties by utilizing the concept of N_m -sos in nms.

Acknowledgment

We thank to referees for giving their useful suggestions and help to improve this paper.

References

- [1] M. Abdel-Basset, A. Gamal, L. H. Son, and F. Smarandache, A bipolar neutrosophic multi criteria decision Making frame work for professional selection, Appl. Sci.(2020), 10, 1202.
- [2] M. Abdel-Basset, R. Mohamed, A. E. N. H. Zaied, A. Gamal, A and F. Smarandache, Solving the supply chain problem using the best-worst method based on a novel plithogenic model, In Optimization Theory Based on Neutrosophic and Plithogenic Sets, (2020), (pp. 1-19). Academic Press.
- [3] I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala1, On some new notions and functions in neutrosophic topollogical spaces, Neutrosophic Sets and Systems, (2017), 16, 16-19.
- [4] K. T. Atanassov, Intuitionstic fuzzy sets. Fuzzy sets and systems, (1986), 20, 87-96.
- [5] S. Ganesan, C. Alexander, M. Sugapriya and A. N. Aishwarya, Decomposition of $n\alpha$ -continuity & $n*\mu_{\alpha}$ -continuity, Asia Mathematika, 4(2), (2020), 109-116.
- [6] S. Ganesan, P. Hema, S. Jeyashri and C. Alexander, contra $n\mathcal{I}_{\mu}$ -continuity, Asia Mathematika, 4(2), (2020), 127-133.
- [7] S. Ganesan and F. Smarandache, Some new classes of neutrosophic minimal open sets, Asia Mathematika, 5(1), (2021), 103-112. doi.org/10.5281/zenodo.4724804.
- [8] S. Ganesan, On decomposition of $n\ddot{g}$ -continuity in nano topological spaces, Asia Mathematika, 5(2), (2021), 01-07. doi.org/10.5281/zenodo.5253049
- [9] S. Ganesan, S. Jafari and R. Karthikeyan, Exterior set in neutrosophic biminimal structure spaces, Asia Mathematika, 6(1), (2022), 35-39. doi.org/10.5281/zenodo.6580242
- [10] P. Iswarya and K. Bageerathi, On neutrosophic semi-open sets in neutrosophic topological spaces, International Journal of Mathematics Trends and Technology(IJMTT), (2016), 37(3), 214-223.
- [11] M. Karthika1, M. Parimala1, and F. Smarandache, An introduction to neutrosophic minimal structure spaces, Neutrosophic Sets and Systems, (2020), 36, 378-388.

S. Ganesan, S. Jafari, F. Smarandache and R. Karthikeyan

- [12] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. Dunarea de Jos Galati. Ser. Mat. Fiz. Mec. Teor. Fasc, II, (2000), 18(23), 31-41.
- [13] A. A. Salama and S. A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces. IOSR J. Math, (2012), 3, 31-35.
- [14] F. Smarandache, Neutrosophy and Neutrosophic Logic. First International Conference on Neutrosophy, Neutrosophic Logic Set, Probability and Statistics, University of New Mexico, Gallup, NM, USA, (2002).
- [15] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutro-sophic Probability, American Research Press: Rehoboth, NM, USA, (1999).
- [16] L. A. Zadeh, Fuzzy Sets, Information and Control, (1965), 18, 338-353.