On N_m-semi-open sets in neutrosophic minimal structure spaces

S. Ganesan1, S. Jafari2, F. Smarandache3 and R. Karthikeyan4

1 Assistant Professor, PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). ORCID iD: 0000-0002-7728-8941

2 College of Vestsjaelland South & Mathematical and Physical Science Foundation, 4200 Slagelse, Denmark. ORCID iD: 0000-0001-5744-7354

3 Mathematics & Science Department, University of New Mexico, 705 Gurley Ave, Gallup, NM 87301, USA. ORCID iD: 0000-0002-5560-5926

4 Scholar, PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). ORCID iD: 0000-0001-5277-5201

Received: 23 Jun 2022 • Accepted: 02 Aug 2022 • Published Online: 31 Aug 2022

Abstract: The focuses of this article, we study the notions of N_m-semi-open sets, N_m-semi-interior, N_m-semi-closure, N_m-semi-continuous maps in neutrosophic minimal structures & some basic concepts.

Key words: Neutrosophic minimal structure spaces (in short, nms), N_m-semi-closed, N_m-semi-open and N_m-semi-continuous

1. Introduction

L. A. Zadeh’s [16] Fuzzy set concepts laid the foundation of many theories such as neutrosophic sets, soft sets, etc. K. T. Atanassov’s [4] intuitionistic fuzzy set theory in many areas such as topology, computer science and so on. F. Smarandache [14, 15] found that some objects have indeterminacy or neutral other than membership and non-membership. A. A. Salama & S. A. Albloowi [13], introduced and studied some fundamental properties of neutrosophic set (in short., ns) & neutrosophic topological spaces (in short., nt). V. Popa & T. Noiri [12] introduced the notions of of minimal structure spaces. M. Karthika et al [11] introduced and studied nms. (ie., N_m-closed, N_m-open, N_m-closure, N_m-interior, union property, intersection property, N_m- maps and so on,...). We analysis of N_m-semi-closed sets, N_m-semi-open sets, N_m-semi-closure and N_m-semi-interior operators in nms. Finally, we introduce N_m-semi-continuous map and investigate some properties of such concepts.

2. Preliminaries

Definition 2.1. [13] A nt in Salama’s sense on a nonempty set X is a family τ of ns in X satisfying three axioms:

1. Empty set (0_\sim) and universal set (1_\sim) are members of τ.

2. $K_1 \cap K_2 \in \tau$ where $K_1, K_2 \in \tau$.

© Asia Mathematika, DOI: 10.5281/zenodo.7120644
*Correspondence: sgsgsgsgsg77@gmail.com
3. $\cup K_\delta \in \tau$ for every $\{K_\delta : \delta \in \Delta\} \leq \tau$.

Definition 2.2. [11] Let nms over a universal set Ω be denoted by N_m. N_m is said to be nms over Ω if it satisfies following the axiom: $0 \sim, 1 \sim \in N_m$. A family of nms is denoted by (Ω, N_m).

3. N_m-semi-open

Definition 3.1. Let (Ω, N_m) be a nms. A subset W of Ω is said to be N_m-semi-open set (in short, N_m-sos) if $W \leq N_m \text{cl}(N_m \text{int}(W))$. The complement of an N_m-sos is called an N_m-scs.

Remark 3.1. Let (Ω, T) be a nt & $W \leq \Omega$. W is called an N_m-semi-open set (in short, N_m-sos) [10] if $W \leq N_m \text{cl}(N_m \text{int}(W))$. If the nms N_m is a topology, clearly an N_m-sos is N_m-sos.

Lemma 3.1. Let (Ω, N_m) be a nms. Then

1. Every N_m-os is N_m-sos.
2. W is an N_m-sos iff $W \leq N_m \text{cl}(N_m \text{int}(W))$.
3. Every N_m-cs is N_m-scs.
4. W is an N_m-scs iff $N_m \text{int}(N_m \text{cl}(W)) \leq W$.

Theorem 3.1. Let (Ω, N_m) be a nms. The arbitrary union of N_m-sos is a N_m-sos.

Proof. Let W_δ be an N_m-sos for $\delta \in \Delta$. From Definition 3.1 and Proposition 3.8 (vi) [11], it follows $W_\delta \leq N_m \text{cl}(N_m \text{int}(W_\delta)) \leq N_m \text{cl}(N_m \text{int}(\bigcup W_\delta))$. This implies $\bigcup W_\delta \leq N_m \text{cl}(N_m \text{int}(\bigcup W_\delta))$. Hence $\bigcup W_\delta$ is an N_m-sos.

Remark 3.2. Let (Ω, N_m) be a nms. The intersection of any two N_m-sos may not be N_m-sos.

Example 3.1. Let $\Omega = \{\omega\}$ with $N_m = \{0_\sim, P_1, Q_1, R_1, S_1, 1_\sim\}$ and $N_m^C = \{1_\sim, I_1, J_1, K_1, L_1, 0_\sim\}$ where $P_1 = \prec (1, 0.5, 0.6)\succ; Q_1 = \prec (0, 0.9, 0.2)\succ; R_1 = \prec (1, 0.9, 0.2)\succ; S_1 = \prec (0.8, 0.5, 0.6)\succ; I_1 = \prec (0.6, 0.5, 1)\succ; J_1 = \prec (0.2, 0.1, 0)\succ; K_1 = \prec (0.2, 0.1, 1)\succ; L_1 = \prec (0.6, 0.5, 0)\succ$.

Now we define the two N_m-sos as follows:

$A = \prec (1, 0.5, 0.6)\succ; B = \prec (0.8, 0.5, 0.2)\succ$.

Here $N_m \text{int}(A) = P_1$, $N_m \text{cl}(N_m \text{int}(A)) = N_m \text{cl}(P_1) = 0_\sim^C$ and $N_m \text{int}(B) = S_1$, $N_m \text{cl}(N_m \text{int}(B)) = N_m \text{cl}(S_1) = 0_\sim^C$. But $A \cap B = \prec (0.8, 0.5, 0.6)\succ$ is not a N_m-sos in Ω.

Definition 3.2. Let (Ω, N_m) be a nms. For a subset W of Ω. Then,

1. N_m-semi-closure of $W = \text{min}\{I : I \text{ is } N_m \text{-scs and } I \geq W\}$, it is denoted by $N_m - \text{sc}(W)$.
2. N_m-semi-interior of $W = \text{max}\{G : G \text{ is } N_m \text{-sos and } G \leq W\}$, it is denoted by $N_m - \text{sint}(W)$.

Theorem 3.2. Let (Ω, N_m) be a nms and $W \leq \Omega$. Then
1. \(N_m \)-sint(W) \(\leq \) W.

2. If \(W \leq Z \), then \(N_m \)-sint(W) \(\leq \) \(N_m \)-sint(Z).

3. \(W \) is \(N_m \)-sos iff \(N_m \)-sint(W) = W.

4. \(N_m \)-sint\((N_m \)-sint(W)) = \(N_m \)-sint(W).

5. \(N_m \)-scl(\(\Omega - W \)) = \(\Omega - N_m \)-sint(W) and \(N_m \)-sint(\(\Omega - W \)) = \(\Omega - N_m \)-scl(W).

\textbf{Proof.} (1), (2) Obvious.

(3) by theorem 3.1.

(4) by (3).

(5) \(W \leq \Omega, \Omega - N_m - \text{sint}(W) = \Omega - \max\{U : U \leq W, U \text{ is } N_m - \text{sos}\} = \min\{\Omega - U : U \leq W; U \text{ is } N_m - \text{sos}\} = N_m - \text{scl}(\Omega - W). \)

Similarly, we have \(N_m \)-sint(\(\Omega - W \)) = \(\Omega - N_m \)-scl(W). \(\square \)

\textbf{Theorem 3.3.} Let \((\Omega, N_{m\Omega}) \) be a nms and \(W \leq \Omega \). Then

1. \(W \leq N_m \)-scl(W).

2. If \(W \leq Z \), then \(N_m \)-scl(W) \(\leq \) \(N_m \)-scl(Z).

3. \(F \) is \(N_m \)-scs iff \(N_m \)-scl(F) = F.

4. \(N_m \)-scl\((N_m \)-scl(W)) = \(N_m \)-scl(W).

\textbf{Proof.} Similar to by theorem 3.2. \(\square \)

\textbf{Theorem 3.4.} Let \((\Omega, N_{m\Omega}) \) be a nms \& \(W \leq \Omega \). Then

1. \(\omega \in N_m \)-scl(W) iff if \(W \cap M \neq \emptyset \) for every \(N_m \)-sos M containing \(\omega \).

2. \(\omega \in N_m \)-sint(W) iff there exists an \(N_m \)-sos K such that \(K \leq W \).

\textbf{Proof.} (1) \(\exists \) there is an \(N_m \)-sos M containing \(\omega \) such that \(W \cap M = \emptyset \). \(\Omega - M \) is an \(N_m \)-scs such that \(W \leq \Omega - M, \omega \notin \Omega - M. \) This implies \(\omega \notin N_m \)-scl(W).

The reverse relation is true.

(2) Obvious. \(\square \)

\textbf{Lemma 3.2.} \((\Omega, N_{m\Omega}) \) be a nms \& \(W \leq \Omega \).

1. \(N_m \)-int\((N_m \)-cl(W)) \(\leq \) \(N_m \)-int\((N_m \)-cl(N_m \)-scl(W))) \(\leq \) \(N_m \)-scl(W).

2. \(N_m \)-sint(W) \(\leq \) \(N_m \)-cl\((N_m \)-int\((N_m \)-sint(W))) \(\leq \) \(N_m \)-cl\((N_m \)-int(W)).

\textbf{Proof.} (1) For \(W \leq \Omega \), by Theorem 3.3, \(N_m \)-scl(W) is an \(N_m \)-scs. Hence from Lemma 3.1, we have \(N_m \)-int\((N_m \)-cl(W)) \(\leq \) \(N_m \)-int\((N_m \)-cl(N_m \)-scl(W))) \(\leq \) \(N_m \)-scl(W).

(2) similar by the proof of (1). \(\square \)
Definition 3.3. Let \(l : (\Omega, N_m \Omega) \rightarrow (\Lambda, N_m \Lambda) \) is called \(N_m \)-semi-continuous map (in short, \(N_m \)-sc) iff \(l^{-1}(V) \subseteq N_m \)-sos whenever \(V \subseteq N_m \Lambda \).

Theorem 3.5. Every neutrosophic minimal continuous is \(N_m \)-sc but not conversely.

Proof. By Lemma 3.1 (1).

Theorem 3.6. Let \(l : \Omega \rightarrow \Lambda \) be a map on two nms \((\Omega, N_m \Omega)\) and \((\Lambda, N_m \Lambda)\).

1. \(l \) is \(N_m \)-sc.
2. \(l^{-1}(M) \) is an \(N_m \)-sos for each \(N_m \)-os \(M \) in \(\Lambda \).
3. \(l^{-1}(Z) \) is an \(N_m \)-scs for each \(N_m \)-cs \(Z \) in \(\Lambda \).
4. \(l(N_m \text{-scl}(W)) \leq l(N_m \text{-cl}(W)) \) for \(W \subseteq \Omega \).
5. \(N_m \text{-scl}(l^{-1}(Z)) \leq l^{-1}(N_m \text{-cl}(Z)) \) for \(Z \subseteq \Lambda \).
6. \(l^{-1}(N_m \text{-int}(Z)) \leq N_m \text{-sint}(l^{-1}(Z)) \) for \(Z \subseteq \Lambda \).

Proof. (1) \(\Rightarrow \) (2) Let \(M \) be an \(N_m \)-os in \(\Lambda \) \& \(\omega \in l^{-1}(M) \). By hypothesis, there exists an \(N_m \)-sos \(U_{\omega} \), containing \(\omega \) such that \(l(U) \subseteq M \). This implies \(\omega \in U_{\omega} \subseteq l^{-1}(M) \) for all \(\omega \in l^{-1}(M) \). Hence by Theorem 3.1, \(l^{-1}(M) \) is \(N_m \)-sos.

(2) \(\Rightarrow \) (3) Obvious.

(3) \(\Rightarrow \) (4) For \(W \subseteq \Omega \), \(l(N_m \text{-cl}(l(W))) = l^{-1}(\min\{S \subseteq \Lambda : l(W) \subseteq S \text{ and } S \text{ is } N_m \text{-closed}\}) = \min\{l^{-1}(S) \subseteq \Omega : S \subseteq \Lambda \text{ and } S \text{ is } N_m \text{-sos}\} \geq \min\{R \subseteq \Omega : W \subseteq R \text{ and } R \text{ is } N_m \text{-cs}\} = N_m \text{-scl}(W) \). Hence \(l(N_m \text{-scl}(W)) \leq l(N_m \text{-cl}(W)) \).

(4) \(\Rightarrow \) (5) For \(W \subseteq \Omega \), from (4), it follows \(l(N_m \text{-scl}(l^{-1}(W))) \leq l(N_m \text{-cl}(l^{-1}(W))) \leq l(N_m \text{-cl}(W)) \). Hence we get (5).

(5) \(\Rightarrow \) (6) For \(Z \subseteq \Lambda \), from \(N_m \text{-int}(Z) = \Lambda - N_m \text{-cl}(\Lambda - Z) \) and (5), it follows: \(l^{-1}(N_m \text{-int}(Z)) = l^{-1}(\Lambda - N_m \text{-cl}(\Lambda - Z)) = \Omega - l^{-1}(N_m \text{-cl}(\Lambda - Z)) = \Omega - N_m \text{-scl}(l^{-1}(\Lambda - Z)) = N_m \text{-sint}(l^{-1}(Z)) \). Hence (6) is obtained.

(6) \(\Rightarrow \) (1) Let \(\omega \in \Omega \) and \(M \) an \(N_m \)-os containing \(l(\omega) \). From (6) \& Proposition 3.8 [11], it follows \(Z \in l^{-1}(M) = l^{-1}(N_m \text{-int}(M)) \leq N_m \text{-sint}(l^{-1}(M)) \). Theorem 3.4, \(\exists N_m \)-sos \(U \) containing \(\omega \) such that \(\omega \in U \subseteq l^{-1}(M) \). Hence \(l \) is \(N_m \)-sc. \(\square \)

Theorem 3.7. \(l : \Omega \rightarrow \Lambda \) be a map on two nms \((\Omega, N_m \Omega)\) and \((\Lambda, N_m \Lambda)\).

1. \(l \) is \(N_m \)-sc.
2. \(l^{-1}(M) \subseteq N_m \text{-cl}(N_m \text{-int}(l^{-1}(M))) \) for each \(N_m \)-os \(M \) in \(\Lambda \).
3. \(N_m \text{-int}(N_m \text{-cl}(l^{-1}(R))) \subseteq l^{-1}(R) \) for each \(N_m \)-cs \(R \) in \(\Lambda \).
4. \(l(N_m \text{-int}(N_m \text{-cl}(W))) \subseteq N_m \text{-cl}(l(A)) \) for \(W \subseteq \Omega \).
5. \(N_m \text{-int}(N_m \text{-cl}(l^{-1}(Z))) \subseteq l^{-1}(N_m \text{-cl}(Z)) \) for \(Z \subseteq \Lambda \).
6. \(l^{-1}(N_m \text{-int}(Z)) \subseteq N_m \text{-cl}(N_m \text{-int}(l^{-1}(Z))) \) for \(Z \subseteq \Lambda \).
Proof. (1) ⇔ (2) By theorem 3.6 and definition of N_m-sos.
(1) ⇔ (3) By theorem 3.6 and lemma 3.1.
(3) ⇒ (4) Let $W \leq \Omega$. Then from Theorem 3.6(4) and Lemma 3.2, it follows $N_m \text{int}(N_m \text{cl}(W)) \leq N_m \text{scl}(W)$, hence $l(N_m \text{int}(N_m \text{cl}(W))) \leq N_m \text{cl}(l(W))$.
(4) ⇒ (5) Obvious.
(5) ⇒ (6) From (5) and Proposition 3.8 [11], it follows: $1^{-1}(N_m \text{int}(Z)) = 1^{-1}(\Lambda - N_m \text{cl}(\Lambda - Z)) = \Omega$
$-1^{-1}(N_m \text{cl}(\Lambda - Z)) \leq \Omega - N_m \text{int}(N_m \text{cl}(1^{-1}(\Lambda - Z)))$
$= N_m \text{cl}(N_m \text{int}(1^{-1}(Z)))$. Hence, (6) is obtained.
(6) ⇒ (1) Let M be an N_m os in Λ. Then by (6) and Proposition 3.8 [11], we have $1^{-1}(M) = 1^{-1}(N_m \text{int}(M)) \leq N_m \text{cl}(N_m \text{int}(1^{-1}(M)))$. This implies $1^{-1}(M)$ is an N_m-sos. Hence by (2), l is N_m-semi-continuous.

Conclusion
We presented several new notions and related properties by utilizing the concept of N_m-sos in nms.

Acknowledgment
We thank to referees for giving their useful suggestions and help to improve this paper.

References

