An Overview on μ_N Strongly Nowhere Dense Sets

N.Raksha Ben1 and G. Hari siva annam2

1Department of Mathematics, S.A.V.Sahaya Thai Arts and Science (Women) College, Vadakkankulam, Tirunelveli-627116, India. ORCID iD: 0000-0003-1208-8620

2PG and Research Department of Mathematics, Kamaraj college, Thoothukudi-628003, India. ORCID iD: 0000-0002-0561-1287

Received: 21 Jul 2022 • Accepted: 12 Aug 2022 • Published Online: 31 Aug 2022

Abstract: In this article we have introduced some new types of sets such as μ_N strongly dense, μ_N strongly nowhere dense, μ_N strongly first category sets, μ_N strongly nowhere residual sets and their attributes are explained briefly. Also by making use of these we have retrieved μ_N strongly Baire space and its properties are to be described.

Key words: μ_N strongly dense, μ_N strongly nowhere dense, μ_N strongly first category sets, μ_N strongly nowhere residual sets

1. Introduction

Zadeh’s concept of fuzziness has a huge impact on all fields of mathematics. C.L.Chang[3] later combined the ideas of fuzziness with topological spaces, laying the groundwork for the theory of fuzzy topological spaces. K.T.Attanasov[1] discovered intuitionistic fuzzy sets, and with his friend Stoeva[2], he expanded his research to reveal a generalisation to intuitionistic L-fuzzy sets. F.Smarandache[7] directed his attention to the degree of indeterminacy and proposed the neutrosophic sets. Following that, A.A.Salama and Albowi[13] discovered the neutrosophic topological spaces using neutrosophic sets. We[12] created Generalized topological spaces via neutrosophic sets using all of the works as inspiration and named it as TS. In μ_N TS the concept of Baire space was putforth by us and here we extended our research ideas into the strong natures of μ_N Baire space.

2. Necessities

Definition 2.1. [14] Let X be a non-empty fixed set. A Neutrosophic set [NS for short] A is an object having the form $A = \{ < x, \mu_A(x), \sigma_A(x), \gamma_A(x) > : x \in X \}$ where $\mu_A(x)$, $\sigma_A(x)$ and $\gamma_A(x)$ which represents the degree of membership function, the degree of indeterminacy and the degree of non-membership function respectively of each element $x \in X$ to the set A.

Remark 2.1. [14] Every intuitionistic fuzzy set A is a non empty set in X is obviously on Neutrosophic sets having the form $A = \{ < \mu_A(x), 1-(\mu_A(x)+\sigma_A(x)), \gamma_A(x) > : x \in X \}$. Since our main purpose is to construct the tools for developing Neutrosophic Set and Neutrosophic topology , we must introduce the neutrosophic sets 0_N and 1_N in X as follows: 0_N may be defined as follows

(0_1) $0_N = \{ < x, 0, 0, 1 > : x \in X \}$

©Asia Mathematika, DOI: 10.5281/zenodo.7120723
*Correspondence: rakshaarun218@gmail.com
1. \(N \) may be defined as follows
(1) \(N \) may be defined as follows
\[
1_N = \{< x, 1, 0, 0 > : x \in X \}
\]

Definition 2.2. [14] Let \(A = \{< \mu_A, \sigma_A, \gamma_A >\} \) be a NS on \(X \), then the complement of the set \(A \) [for short] may be defined as three kinds of complements:

\[
(C_1) C(A) = A = \{< x, 1 - \mu_A(x), 1 - \sigma_A(x), 1 - \gamma_A(x) > : x \in X \}
\]

Definition 2.3. [14] Let \(X \) be a non-empty set and neutrosophic sets \(A \) and \(B \) in the form \(A = \{< x, \mu_A(x), \sigma_A(x), \gamma_A(x) > : x \in X \} \) and \(B = \{< x, \mu_B(x), \sigma_B(x), \gamma_B(x) > : x \in X \} \). Then we may consider two possibilities for definitions for subsets \(A \subseteq B \).

\[
(A \subseteq B) \iff \mu_A(x) \leq \mu_B(x), \sigma_A(x) \leq \sigma_B(x), \gamma_A(x) \geq \gamma_B(x) \forall x \in X
\]

Proposition 2.1. [14] For any neutrosophic set \(A \), the following conditions holds:

0\(N \subseteq A \), 0\(N \subseteq 0_N \)

\(A \subseteq 1_N \), 1\(N \subseteq 1_N \)

Definition 2.4. [14] Let \(X \) be a non-empty set and \(A = \{< x, \mu_A(x), \sigma_A(x), \gamma_A(x) > : x \in X \} \) \(B = \{< x, \mu_B(x), \sigma_B(x), \gamma_B(x) > : x \in X \} \) are NSs. Then \(A \cap B \) may be defined as:

\[
(I_1) A \cap B = \{< x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > : x \in X \}
\]

\(A \cup B \) may be defined as:

\[
(I_1) A \cup B = \{< x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \gamma_A(x) \land \gamma_B(x) > : x \in X \}
\]

Definition 2.5. [12] A \(\mu_N \) topology is a non-empty set \(X \) is a family of neutrosophic subsets in \(X \) satisfying the following axioms:

\[
(\mu_N, \emptyset) \subseteq \mu_N
\]

(\(\mu_N \)) union of any number of \(\mu_N \) open sets is \(\mu_N \) open.

Remark 2.2. [12] The elements of \(\mu_N \) are \(\mu_N \)-open sets and their complement is called \(\mu_N \) closed sets.

Definition 2.6. [12] The \(\mu_N \)-Closure of \(A \) is the intersection of all \(\mu_N \) closed sets containing \(A \).

Definition 2.7. [12] The \(\mu_N \)-Interior of \(A \) is the union of all \(\mu_N \) open sets contained in \(A \).

Definition 2.8. [13] A neutrosophic set \(A \) in NTS is called neutrosophic dense if there exists no neutrosophic closed sets \(B \) in \((X, T) \) such that \(A \subseteq B \subseteq 1_N \).

Definition 2.9. [13] The \(\mu_N \) Topological spaces is said to be \(\mu_N \) Baire’s Space if \(\mu_N \text{Int}(\bigcup_{i=1}^{\infty} G_i) = 0_N \) where \(G_i \)’s are \(\mu_N \) nowhere dense set in \((X, \mu_N) \).

Proposition 2.2. [13] Let \((X, \mu_N) \) be a \(\mu_N \) TS. Then the following are equivalent.

1. \((X, \mu_N) \) is \(\mu_N \) Baire’s Space.
2. \(\mu_N \text{Int}(A) = 0_N \), for all \(\mu_N \) first category set in \((X, \mu_N) \).
3. \(\mu_N \text{Cl}(A) = 1_N \), for every \(\mu_N \) Residual set in \((X, \mu_N) \).
3. \(\mu_N \) Strongly Nowhere Dense sets:

Definition 3.1. Let \((X, \mu_N)\) be a \(\mu_N \) Topological Space. A neutrosophic sets \(\zeta \) defined on \((X, \mu_N)\) is called \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\) if \(\zeta \cap \bar{\zeta} \) is a \(\mu_N \) nowhere dense set in \((X, \mu_N)\). That is, \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\) if \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \bar{\zeta})) = 0_N \) in \((X, \mu_N)\).

Proposition 3.1. If \(\zeta \) is a \(\mu_N \) nowhere dense set in a \(\mu_N \) Topological Space \((X, \mu_N)\), then \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proof. Let \(\zeta \) be a \(\mu_N \) nowhere dense set in a \(\mu_N \) Topological Space in \((X, \mu_N)\), then \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta)) = 0_N \) in \((X, \mu_N)\). Since \(\zeta \cap \bar{\zeta} \subseteq \zeta \) in \((X, \mu_N)\). We obtain that \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \bar{\zeta})) \subseteq \mu_N \text{Int}(\mu_N \text{Cl}(\zeta)) \) and hence \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \bar{\zeta})) \subseteq 0_N \). That is, \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \bar{\zeta})) = 0_N \). Hence \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proposition 3.2. If \(\bar{\zeta} \) is a \(\mu_N \) nowhere dense set in a \(\mu_N \) Topological Space in \((X, \mu_N)\), then \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proof. Suppose that \(\bar{\zeta} \) is a \(\mu_N \) nowhere dense set in a \(\mu_N \) Topological Space in \((X, \mu_N)\), then \(\mu_N \text{Int}(\mu_N \text{Cl}(\bar{\zeta})) = 0_N \) in \((X, \mu_N)\). Since \(\zeta \cap \bar{\zeta} \subseteq \bar{\zeta} \), \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \bar{\zeta})) \subseteq \mu_N \text{Int}(\mu_N \text{Cl}(\bar{\zeta})) \) and hence \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \bar{\zeta})) \subseteq 0_N \) that implies us \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \bar{\zeta})) = 0_N \). Hence \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proposition 3.3. If \(\mu_N \text{Cl}(\mu_N \text{Int}\bar{\zeta}) = 1_N \), for a neutrosophic set \(\zeta \) defined on \((X, \mu_N)\), then \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proof. Suppose that \(\mu_N \text{Cl}(\mu_N \text{Int}\bar{\zeta}) = 1_N \) in \((X, \mu_N)\). Then we deduce that \(\mu_N \text{Cl}(\mu_N \text{Int}\bar{\zeta}) = 0_N \) which implies us \(\mu_N \text{Int}(\mu_N \text{Cl} \bar{\zeta}) = 0_N \). We obtain \(\mu_N \text{Int}(\mu_N \text{Cl} \bar{\zeta}) = 0_N \). Thus, \(\zeta \) is a \(\mu_N \) nowhere dense set in \((X, \mu_N)\). By using proposition 3.2, \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proposition 3.4. If \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\), then \(\bar{\zeta} \) is also a \(\mu_N \) strongly nowhere dense set.

Proof. Let \(\zeta \) be a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\) which entails us that \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \bar{\zeta})) = 0_N \) in \((X, \mu_N)\). Now \(\mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \bar{\zeta})) = \mu_N \text{Int}(\mu_N \text{Cl}(\bar{\zeta} \cap \zeta)) = 0_N \). This implies us \(\bar{\zeta} \) is also a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proposition 3.5. If \(\zeta \) is a \(\mu_N \) nowhere dense set in \(\mu_N \) Topological space then \(\bar{\zeta} \) is \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proof. Let \(\zeta \) be a \(\mu_N \) nowhere dense set in \((X, \mu_N)\). Now by using Proposition 3.2 we get \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\) and by proposition 3.4 we obtain that \(\bar{\zeta} \) is \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proposition 3.6. If \(\zeta \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\), then \(\mu_N \text{Cl}(\zeta \cup \bar{\zeta}) = 1_N \).
Proof. Let ζ be a μ_N strongly nowhere dense set in (X, μ_N) then we obtain that $\mu_N Cl(\zeta \cup \zeta) = 0_N \Rightarrow \mu_N Cl(\mu_N Int(\zeta \cap \zeta)) = 1_N \Rightarrow \mu_N Cl(\mu_N Int(\zeta \cap \zeta)) = 1_N$. But $\mu_N Cl(\mu_N Int(\zeta \cup \zeta)) \subseteq \mu_N Cl(\zeta \cup \zeta)$ implies us that $\mu_N Cl(\zeta \cup \zeta) = 1_N$. Hence we get $\mu_N Cl(\zeta \cup \zeta) = 1_N$.

Proposition 3.7. If $\mu_N Int P$ is a μ_N dense set, for a neutrosophic set P defined on a μ_N TS (X, μ_N) then P is μ_N strongly nowhere dense set in (X, μ_N).

Proof. Suppose that $\mu_N Int P$ is a μ_N dense set in (X, μ_N), then $\mu_N Cl(\mu_N Int P) = 1_N$ in (X, μ_N). Then $\mu_N Cl(\mu_N Int P) = 0_N$. This implies us $\mu_N Int(\mu_N Cl P) = 0_N$ in (X, μ_N). Since $P \cap \bar{P} \subseteq \bar{P}$ we deduce that $\mu_N Int(\mu_N Cl(P \cap \bar{P})) \subseteq \mu_N Int(\mu_N Cl P)$ and hence $\mu_N Int(\mu_N Cl(P \cap \bar{P})) \subseteq 0_N$. That is $\mu_N Int(\mu_N Cl(P \cap \bar{P})) = 0_N$ which implies us that P is μ_N strongly nowhere dense set in (X, μ_N).

Proposition 3.8. If P is a neutrosophic set defined on (X, μ_N) such that $\mu_N Int(\mu_N Fr(P)) = 0_N$ in a μ_N Topological space then P is a μ_N strongly nowhere dense set in (X, μ_N).

Proof. Let P be a neutrosophic set defined on (X, μ_N) such that $\mu_N Int(\mu_N Fr(P)) = 0_N$. Since $\mu_N Fr(P) = \mu_N Cl(\mu_N Cl(P)) = 0_N$. Now $\mu_N Cl(\mu_N Cl(P)) = 0_N$. Hence we get $\mu_N Int(\mu_N Fr(P)) = 0_N$ that implies us P is a μ_N strongly nowhere dense set in (X, μ_N).

Definition 3.2. A neutrosophic set in a μ_N Topological space is called μ_N simply open set in (X, μ_N) if $\mu_N Fr(P)$ is μ_N nowhere dense set in (X, μ_N). In otherwords, P is μ_N simply open set iff $\mu_N Int(\mu_N Cl(\mu_N Fr(P))) = 0_N$ in (X, μ_N).

Proposition 3.9. If P is a μ_N simply open set in a μ_N Topological space (X, μ_N), then P is a μ_N strongly nowhere dense set in (X, μ_N).

Proof. Let P be a simply open set in (X, μ_N). Then $\mu_N Int(\mu_N Cl(\mu_N Fr(P))) = 0_N$ in (X, μ_N). But $\mu_N Int(\mu_N Fr(P)) \subseteq \mu_N Int(\mu_N Cl(\mu_N Fr(P)))$. From this we obtain that $\mu_N Int(\mu_N Fr(P)) = 0_N$ in (X, μ_N). Then by using proposition 3.8 we obtain that P is a μ_N strongly nowhere dense set in (X, μ_N).

Remark 3.1. The converse of the above proposition need not be true. This can be illustrated in the example given below.

Example 3.1. Let (X, μ_N) be a μ_N TS where $X = \{a, b\}$ and we define neutrosophic sets $\delta_1 = \{< 0.6, 0.4, 0.8 >, < 0.8, 0.6, 0.9 >\}, \delta_2 = \{< 0.6, 0.3, 0.8 >, < 0.9, 0.2, 0.7 >\}, \delta_3 = \{< 0.5, 0.4, 0.9 >, < 0.7, 0.8, 0.9 >\}, \delta_4 = \{< 0.4, 0.6, 0.9 >, < 0.6, 0.8, 0.9 >\}, \delta_5 = \{< 0.3, 0.7, 0.9 >, < 0.5, 0.9, 0.9 >\}$ and $\mu_N = \{0_N, \delta_1, \delta_2, \delta_3, \delta_4\}$ be a μ_N TS here the μ_N simply open sets are $\{0_N, \delta_2, \delta_5, 1_N\}$ and the μ_N strongly nowhere dense sets are $\{0_N, \delta_2, \delta_3, \delta_5, 1_N\}$. Here δ_5 is μ_N strongly nowhere dense set in (X, μ_N) but not μ_N simply open set in (X, μ_N).

Proposition 3.10. If P is a μ_N closed set with $\mu_N Int(P) = 0_N$ in a μ_N TS (X, μ_N), then P is a μ_N strongly nowhere dense set in (X, μ_N).
Proof. Let \(P \) be a \(\mu_N \) closed set with \(\mu_N \text{Int}(P) = 0_N \) in \((X, \mu_N)\). Then \(\mu_N \text{Int} \mu_N \text{Cl}(\mu_N \text{Cl}(P \cap \mu_N \text{Cl}(P))) = \mu_N \text{Int} \mu_N \text{Cl}(P \cap \mu_N \text{Cl}(P)) = \mu_N \text{Int} \mu_N \text{Cl}(P \cap 0_N) = \mu_N \text{Int}(\mu_N \text{Cl}(P)) = \mu_N \text{Int} \mu_N \text{Cl}(P) = 0_N \). Hence, we get \(P \) is a \(\mu_N \) simply open set in \((X, \mu_N)\). By proposition 3.9 deduce that \(P \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\). \(\square \)

Proposition 3.11. If \(P \) is a \(\mu_N \) open set and \(\mu_N \) dense set in a \(\mu_N \) Topological space \((X, \mu_N)\), then \(P \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\).

Proof. Let \(P \) be a \(\mu_N \) open and \(\mu_N \) dense set in \((X, \mu_N)\). Then \(\overline{P} \) is a \(\mu_N \) closed set with \(\mu_N \text{Int} \overline{P} = \mu_N \text{Int} \mu_N \text{Cl}(\eta \cap \mu_N \text{Cl}(\eta)) = 0_N \) in \((X, \mu_N)\). Then by using proposition 3.10 we retrieve that \(\overline{P} \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\) and by using the proposition 3.4 we obtain that \(\overline{P} \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\) which implies us that \(P \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\). \(\square \)

Proposition 3.12. Every subset of \(\mu_N \) strongly nowhere dense set is \(\mu_N \) strongly nowhere dense set.

Proof. Let \(P \) be a \(\mu_N \) strongly nowhere dense set, then \(\mu_N \text{Int}(\mu_N \text{Cl}(P \cap P)) = 0_N \). If \(\zeta \subseteq P \) we have \(\zeta \cap P \subseteq \zeta \cap \overline{P} \Rightarrow \mu_N \text{Int}(\mu_N \text{Cl}(\zeta \cap \overline{P})) = 0_N \). Therefore \(\zeta \) is a \(\mu_N \) strongly nowhere dense set. Hence, subset of \(\mu_N \) strongly nowhere dense set is \(\mu_N \) strongly nowhere dense set. \(\square \)

Proposition 3.13. A neutrosophic set is \(\mu_N \) strongly nowhere dense set if and only \(\mu_N \text{Cl}(\mu_N \text{Int}(\overline{P} \cap \overline{P})) = 1_N \).

Proof. Suppose \(P \) is \(\mu_N \) strongly nowhere dense then \(\mu_N \text{Int}(\mu_N \text{Cl}(P \cap P)) = 0_N \). Now, \(\mu_N \text{Cl}(\mu_N \text{Int}(\overline{P} \cap \overline{P})) = \mu_N \text{Cl}(\mu_N \text{Cl}(P \cap P)) = 0_N \). Conversely we assume that \(\mu_N \text{Cl}(\mu_N \text{Int}(\overline{P} \cap \overline{P})) = 1_N \). On considering, \(\mu_N \text{Int}(\mu_N \text{Cl}(P \cap P)) = 0_N \). Hence it is \(\mu_N \) strongly nowhere dense set. \(\square \)

Proposition 3.14. If \(P \) is \(\mu_N \) strongly nowhere dense set then \(\mu_N \text{Int}(P \cap P) = 0_N \).

Proof. Suppose \(P \) is \(\mu_N \) strongly nowhere dense then \(\mu_N \text{Int}(\mu_N \text{Cl}(P \cap P)) = 0_N \). Now, \(\mu_N \text{Int}(P \cap P) \subseteq \mu_N \text{Int}(\mu_N \text{Cl}(P \cap P)) = 0_N \). Hence, \(\mu_N \text{Int}(P \cap P) = 0_N \). \(\square \)

4. \(\mu_N \) strongly first category sets in \(\mu_N \) TS:

Definition 4.1. A neutrosophic set is said to be \(\mu_N \) strongly first category set in \(\mu_N \) TS if \(\delta = \bigcup_{i=1}^{\infty} \delta_i \) where \(\delta_i \)'s are \(\mu_N \) strongly nowhere dense sets. The left out sets are called as \(\mu_N \) strongly second category sets. The complement of \(\mu_N \) strongly first category sets are called \(\mu_N \) strongly residual sets.

Example 4.1. Let \((X, \mu_N)\) be a \(\mu_N \) TS where \(X = \{a, b\} \) and we define neutrosophic sets \(L_1 = \{<0.6, 0.4, 0.8><0.8, 0.6, 0.9>\}, L_2 = \{<0.6, 0.3, 0.8><0.9, 0.2, 0.7>\}, L_3 = \{<0.5, 0.4, 0.9><0.7, 0.8, 0.9>\}, L_4 = \{<0.4, 0.6, 0.9><0.6, 0.8, 0.9>\}, L_5 = \{<0.3, 0.7, 0.9><0.5, 0.9, 0.9>\} \) and \(\mu_N = \{0_N, L_1, L_2, L_3, L_4\} \) be a \(\mu_N \) TS. Here \(\mu_N \) strongly first category set is \(L_2 = \{<0.6, 0.3, 0.8><0.9, 0.2, 0.7>\} \). The \(\mu_N \) strongly second category sets are \(0_N, 1_N, L_1, L_3, L_4 \) and the \(\mu_N \) strongly residual set is \(\overline{L_2} \).
Proposition 4.1. If \(P \) is a \(\mu_N \) first category set then \(P \) is \(\mu_N \) strongly first category set.

Proof. Let \(P \) be a \(\mu_N \) first category set in a \(\mu_N \) TS. Then \(P = \bigcup_{i=1}^{\infty} P_i \) where \(P_i \)'s are \(\mu_N \) nowhere dense sets in \(\mu_N \) TS. By making use of the fact “Every \(\mu_N \) nowhere dense set is \(\mu_N \) strongly nowhere dense set” we deduce that \(P_i \)'s are \(\mu_N \) strongly nowhere dense sets and hence \(P = \bigcup_{i=1}^{\infty} P_i \) where \(P_i \)'s are \(\mu_N \) strongly nowhere dense sets. Therefore, \(P \) is \(\mu_N \) strongly first category set.

Remark 4.1. Every \(\mu_N \) strongly first category sets need not be \(\mu_N \) first category set. It is exemplified below.

Example 4.2. Let \(X = \{ a \} \) and \(\mu_N = \{ 0_N, A, C, E \} \) be a \(\mu_N \) TS where \(0_N = \{ < 0, 1, 1 > \} \), \(A = \{ < 0.7, 0.8, 0.9 > \} \), \(B = \{ < 0.3, 0.4, 0.6 > \} \), \(C = \{ < 0.9, 0.7, 0.6 > \} \), \(1_N = \{ < 1, 0, 0 > \} \). Here the \(\mu_N \) first category set is \(0_N = \{ < 0, 1, 1 > \} \) and the \(\mu_N \) strongly first category set is \(C = \{ < 0.9, 0.7, 0.6 > \} \). From this clearly we deduce that the \(\mu_N \) strongly first category sets need not be \(\mu_N \) first category set.

Proposition 4.2. If \(P = \bigcup_{i=1}^{\infty} P_i \) where \(P_i \)'s are \(\mu_N \) closed sets with \(\mu_N \text{Int} P = 0_N \) then \(P \) is a \(\mu_N \) strongly first category set.

Proof. Suppose \(P = \bigcup_{i=1}^{\infty} P_i \) where \(P_i \)'s are \(\mu_N \) closed sets with \(\mu_N \text{Int} P = 0_N \) in a \(\mu_N \) TS \((X, \mu_N)\). Then by the fact, “If \(P \) is \(\mu_N \) closed in \(\mu_N \) TS with \(\mu_N \text{Int} (P_i) = 0_N \) then \(P \) is \(\mu_N \) strongly nowhere dense set”.

By making use of this theorem we deduce that \(P \) is \(\mu_N \) closed in \(\mu_N \) TS with \(\mu_N \text{Int} (P_i) = 0_N \). Thus, \(P \) is \(\mu_N \) strongly nowhere dense set and then we have \(P = \bigcup_{i=1}^{\infty} P_i \) where \(P_i \)'s are \(\mu_N \) strongly nowhere dense sets. Thereupon \(P \) is a \(\mu_N \) strongly first category set.

Theorem 4.1. If \(P = \bigcup_{i=1}^{\infty} P_i \) where \(\mu_N \text{Int}(\mu_N \text{Fr}(P_i)) = 0_N \) then \(P \) is \(\mu_N \) strongly first category set.

Proof. Assume that \(P = \bigcup_{i=1}^{\infty} P_i \) where \(\mu_N \text{Int}(\mu_N \text{Fr}(P_i)) = 0_N \). By theorem, “If \(\mu_N \text{Int}(\mu_N \text{Fr}(P)) = 0_N \) for a \(\mu_N \) open set in \(\mu_N \) TS then \(P \) is \(\mu_N \) strongly nowhere dense set.” By making use of this we obtain that \(P_i \)'s are \(\mu_N \) strongly nowhere dense sets. Therefore, \(P = \bigcup_{i=1}^{\infty} P_i \) where \(P_i \)'s are \(\mu_N \) strongly nowhere dense sets and hence \(P \) is \(\mu_N \) strongly first category set.

Theorem 4.2. If \(P = \bigcup_{i=1}^{\infty} P_i \) where \(P_i \)'s are \(\mu_N \) open sets in \(\mu_N \) TS then \(P \) is \(\mu_N \) strongly first category set.

Proof. Given that \(P = \bigcup_{i=1}^{\infty} P_i \) where \(P_i \)'s are \(\mu_N \) open sets in \(\mu_N \) TS and also \(\mu_N \) dense set in \(\mu_N \) TS. By theorem, “If \(P \) is a \(\mu_N \) open set in \(\mu_N \) TS and \(P \) is also \(\mu_N \) dense set in \((X, \mu_N)\), then \(P \) is a \(\mu_N \) strongly nowhere dense set in \((X, \mu_N)\). ” By making use of this theorem we obtain that \(P_i \)'s are \(\mu_N \) strongly nowhere dense sets and \(P = \bigcup_{i=1}^{\infty} P_i \), where \(P_i \)'s are \(\mu_N \) strongly nowhere dense sets. Thereupon we get \(P \) is \(\mu_N \) strongly first category set.

Theorem 4.3. Every subset of \(\mu_N \) strongly first category set is \(\mu_N \) strongly first category set.

Proof. Let \(P \) be a \(\mu_N \) strongly first category set. Then \(P = \bigcup_{i=1}^{\infty} P_i \) where \(P_i \)'s are \(\mu_N \) strongly nowhere dense sets. Suppose \(\zeta \subseteq P = \bigcup_{i=1}^{\infty} P_i \). From this we deduce that \(\zeta \subseteq \bigcup_{i=1}^{\infty} P_i \) which implies us that \(\zeta \subseteq P \) for some \(\mu_N \) strongly nowhere dense sets. By using proposition 3.14 we obtain that \(\zeta \) is \(\mu_N \) strongly first category set.

Remark 4.2. Superset of \(\mu_N \) strongly first category set need not be \(\mu_N \) strongly first category set. This can be explained in the below example.
Example 4.3. Let $\mu_N = \{0_N, \tau_a, \tau_b\}$ where $0_N = \{<0,0.1>, \tau_a = \{<0.1,0.4,0.6>, \tau_b = \{<0.2,0.3,0.5>, \tau_c = \{<0.6,0.6,0.1>, \tau_d = \{<0.5,0.7,0.2>. \text{ Here, } \tau_e = \{<0.6,0.6,0.1> \text{ is } \mu_N \text{ strongly first category set but } \tau_f = \{<0.6,0.6,0.1> \text{ but } \tau_g = \{<0.5,0.7,0.2> \text{ is not } \mu_N \text{ strongly first category set.}

5. μ_N Strongly Baire Space:

Definition 5.1. A μ_N TS is called μ_N strongly Baire space if $\mu_N Cl(\bigcup_{i=1}^{\infty}P_i) = 1_N$ where P_i’s are μ_N strongly nowhere dense sets.

Example 5.1. Let $X = \{a\} \text{ and } \mu_N = \{0_N, A, C, E\} \text{ be a } \mu_N \text{ TS where } 0_N = \{<0,1,1>, A = \{<0.7,0.8,0.9>, B = \{<0.3,0.4,0.6>, C = \{<0.9,0.7,0.6>, 1_N = \{<1,0,0>. \text{ Here the } \mu_N \text{ first category set is } 0_N = \{<0,1,1> \text{ and the } \mu_N \text{ strongly first category sets are } C = \{<0.9,0.7,0.6> \text{ and } 1_N = \{<1,0,0>. \text{ Then } \mu_N Cl(1_N) = 1_N \text{. Hence } (X, \mu_N) \text{ is a } \mu_N \text{ strongly Baire space.}

Theorem 5.1. Let (X, μ_N) be a μ_N TS. Then the following statements are parallel in nature.

1. (X, μ_N) is a μ_N strongly Baire space.
2. $\mu_N Cl(P) = 1_N$, for every μ_N strongly first category set.
3. $\mu_N Int(P) = 0_N$, for every μ_N residual sets.

Proof. (i) \Rightarrow (ii). Let P be a μ_N strongly first category set in (X, μ_N). Then $P = \bigcup_{i=1}^{\infty}P_i$ where P_i’s are μ_N strongly nowhere dense sets. Since (X, μ_N) is a μ_N strong Baire space we get $\mu_N Cl(\bigcup_{i=1}^{\infty}P_i) = 1_N$. Hence, $\mu_N Cl(P) = 1_N$.

(ii) \Rightarrow (iii). Let P be a μ_N strongly residual set in (X, μ_N). Then we retrieve that P is a μ_N strongly first category set in (X, μ_N). From (ii) we obtain that $\mu_N Cl(P) = 1_N \Rightarrow \mu_N Int(P) = 1_N$. Hence, $\mu_N Int(P) = 0_N$.

(iii) \Rightarrow (i). Let P be a μ_N strongly first category set in (X, μ_N). Then $P = \bigcup_{i=1}^{\infty}P_i$ where P_i’s are a μ_N strongly nowhere dense sets. We have if P is a μ_N strongly first category set then P is a μ_N strongly residual set in (X, μ_N). Now by making use of (iii) we obtain that $\mu_N Int(P) = 0_N$ which gives us that $\mu_N Cl(P) = 0_N$. Therefore we get $\mu_N Cl(P) = 1_N$ and hence $\mu_N Cl(\bigcup_{i=1}^{\infty}P_i) = 1_N$ where P_i’s are a μ_N strongly nowhere dense sets. Hence, (X, μ_N) is a μ_N strongly Baire space.

Theorem 5.2. If $\{P_i\}, i = 1 \text{ to } \infty$ is μ_N open set and μ_N dense set in μ_N TS then (X, μ_N) is a μ_N strongly Baire space.

Proof. We know that, “If ζ is μ_N open set and μ_N dense then ζ is μ_N strongly nowhere dense sets”. By making use of this fact we obtain that P_i’s are μ_N strongly nowhere dense sets in (X, μ_N). Let $\xi = \bigcup_{i=1}^{\infty}\xi_i$ then ξ_i’s are μ_N strongly first category sets. Now, $\mu_N Cl(\xi_i) = \mu_N Cl(\bigcup_{i=1}^{\infty}\xi_i) \supseteq \bigcup_{i=1}^{\infty}\mu_N Cl(\xi_i) = 1_N$. Hence, (X, μ_N) is a μ_N strongly Baire space.

References