

An Overview on μ_N Strongly Nowhere Dense Sets

N.Raksha Ben^{1*}and G. Hari siva annam²

¹Department of Mathematics, S.A.V.Sahaya Thai Arts and Science (Women) College, Vadakkankulam, Tirunelveli-627116, India.ORCID iD: 0000-0003-1208-8620 ²PG and Research Department of Mathematics, Kamaraj college, Thoothukudi-628003, India. ORCID iD: 0000-0002-0561-1287

Received: 21 Jul 2022	•	Accepted: 12 Aug 2022	•	Published Online: 31 Aug 2022
------------------------------	---	------------------------------	---	-------------------------------

Abstract: In this article we have introduced some new types of sets such as μ_N strongly dense, μ_N strongly nowhere dense, μ_N strongly first category sets, μ_N strongly nowhere residual sets and their attributes are explained briefly. Also by making use of these we have retrieved μ_N strongly Baire space and its properties are to be described.

Key words: μ_N strongly dense, μ_N strongly nowhere dense, μ_N strongly first category sets, μ_N strongly nowhere residual sets

1. Introduction

Zadeh's concept of fuzziness has a huge impact on all fields of mathematics. C.L.Chang[3] later combined the ideas of fuzziness with topological spaces, laying the groundwork for the theory of fuzzy topological spaces. K.T.Attanasov[1] discovered intuitionistic fuzzy sets, and with his friend Stoeva[2], he expanded his research to reveal a generalisation to intuitionistic L-fuzzy sets. F.Smarandache[7] directed his attention to the degree of indeterminacy and proposed the neutrosophic sets. Following that, A.A.Salama and Albowi[13] discovered the neutrosophic sets using neutrosophic sets. We[12] created Generalized topological spaces via neutrosophic sets using all of the works as inspiration and named it as TS. In μ_N TS the concept of Baire space was putforth by us and here we extended our research ideas into the strong natures of μ_N Baire space.

2. Necessities

Definition 2.1. [14] Let X be a non-empty fixed set. A Neutrosophic set [NS for short] A is an object having the form $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle > : x \in X \}$ where $\mu_A(x), \sigma_A(x)$ and $\gamma_A(x)$ which represents the degree of membership function, the degree of indeterminacy and the degree of non-membership function respectively of each element $x \in X$ to the set A.

Remark 2.1. [14] Every intuitionistic fuzzy set A is a non empty set in X is obviously on Neutrosophic sets having the form $A = \{ < \mu_A (x), 1 - (\mu_A (x) + \sigma_A (x)), \gamma_A (x) > : x \in X \}$. Since our main purpose is to construct the tools for developing Neutrosophic Set and Neutrosophic topology, we must introduce the neutrosophic sets 0_N and 1_N in X as follows: 0_N may be defined as follows $(0_1) 0_N = \{ < x, 0, 0, 1 > : x \in X \}$

[©]Asia Mathematika, DOI: 10.5281/zenodo.7120723

^{*}Correspondence: rakshaarun218@gmail.com

 1_N may be defined as follows (1_1) $1_N = \{ < x, 1, 0, 0 > : x \in X \}$

Definition 2.2. [14] Let $A = \{ < \mu_A, \sigma_A, \gamma_A > \}$ be a NS on X, then the complement of the set A [C (A) for short] may be defined as three kinds of complements : (C_1) $C (A) = A = \{ < x, 1 - \mu_A (x), 1 - \sigma_A (x), 1 - \gamma_A (x) > : x \in X \}$

Definition 2.3. [14] Let X be a non-empty set and neutrosophic sets A and B in the form $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle > : x \in X \}$ and $B = \{ \langle x, \mu_B(x), \sigma_B(x), \gamma_B(x) \rangle > : x \in X \}$. Then we may consider two possibilities for definitions for subsets $(A \subseteq B)$. $A \subseteq B$ may be defined as :

 $(A \subseteq B) \iff \mu_A (x) \le \mu_B (x), \ \sigma_A (x) \le \sigma_B (x), \ \gamma_A (x) \ge \gamma_B (x) \ \forall x \in X$

Proposition 2.1. [14] For any neutrosophic set A, the following conditions holds: $0_N \subseteq A, 0_N \subseteq 0_N$ $A \subseteq 1_N, 1_N \subseteq 1_N$

Definition 2.4. [14] Let X be a non empty set and $A = \{ \langle x, \mu_A (x), \sigma_A (x), \gamma_A (x) \rangle > : x \in X \} B = \{ \langle x, \mu_B (x), \sigma_B (x), \gamma_B (x) \rangle > : x \in X \}$ are NSs. Then $A \cap B$ may be defined as : $(I_1) A \cap B = \langle x, \mu_A (x) \rangle \wedge \mu_B (x), \sigma_A (x) \rangle \wedge \sigma_B (x), \gamma_A (x) \vee \gamma_B (x) \rangle >$ $A \cup B$ may be defined as : $(I_1) A \cup B = \langle x, \mu_A (x) \rangle \vee \mu_B (x), \sigma_A (x) \vee \sigma_B (x), \gamma_A (x) \wedge \gamma_B (x) \rangle >$

Definition 2.5. [12] A μ_N topology is a non - empty set X is a family of neutrosophic subsets in X satisfying the following axioms:

 $(\mu_{N_1})0_N \in \mu_N$

 (μ_{N_2}) union of any number of μ_N open set is μ_N open.

Remark 2.2. [12] The elements of μ_N are μ_N -open sets and their complement is called μ_N closed sets.

Definition 2.6. [12] The μ_N - Closure of A is the intersection of all μ_N closed sets containing A.

Definition 2.7. [12] The μ_N - Interior of A is the union of all μ_N open sets contained in A.

Definition 2.8. [13] A neutrosophic set A in NTS is called neutrosophic dense if there exists no neutrosophic closed sets B in (X,T) such that $A \subset B \subset 1_N$.

Definition 2.9. [13] The μ_N Topological spaces is said to be μ_N Baire's Space if $\mu_N Int(\bigcup_{i=1}^{\infty} G_i) = 0_N$ where G_i 's are μ_N nowhere dense set in (X, μ_N) .

Proposition 2.2. [13] Let (X, μ_N) be a μ_N TS. Then the following are equivalent.

- 1. (X, μ_N) is μ_N Baire's Space.
- 2. $\mu_N Int(A) = 0_N$, for all μ_N first category set in (X, μ_N) .
- 3. $\mu_N Cl(A) = 1_N$, for every μ_N Residual set in (X, μ_N) .

3. μ_N Strongly Nowhere Dense sets:

Definition 3.1. Let (X, μ_N) be a μ_N Topological Space. A neutrosophic sets ζ defined on (X, μ_N) is called μ_N strongly nowhere dense set in (X, μ_N) if $\zeta \wedge \overline{\zeta}$ is a μ_N nowhere dense set in (X, μ_N) . That is, ζ is a μ_N strongly nowhere dense set in (X, μ_N) if $\mu_N Int(\mu_N Cl(\zeta \cap \overline{\zeta})) = 0_N$ in (X, μ_N) .

Proposition 3.1. If ζ is a μ_N nowhere dense set in a μ_N Topological Space (X, μ_N) , then ζ is a μ_N strongly nowhere dense set in (X, μ_N)

Proof. Let ζ be a μ_N nowhere dense set in a μ_N Topological Space in (X, μ_N) , then $\mu_N Int(\mu_N Cl(\zeta)) = 0_N$ in (X, μ_N) . Since $\zeta \wedge \overline{\zeta} \subseteq \zeta$ in (X, μ_N) . We obtain that $\mu_N Int(\mu_N Cl(\zeta \cap \overline{\zeta})) \subseteq \mu_N Int(\mu_N Cl(\zeta))$ and hence $\mu_N Int(\mu_N Cl(\zeta \cap \overline{\zeta})) \subseteq 0_N$. That is, $\mu_N Int(\mu_N Cl(\zeta \cap \overline{\zeta})) = 0_N$. Hence ζ is a μ_N strongly nowhere dense set in (X, μ_N) .

Proposition 3.2. If $\overline{\zeta}$ is a μ_N nowhere dense set in a μ_N Topological Space in (X, μ_N) , then ζ is a μ_N strongly nowhere dense set in (X, μ_N) .

Proof. Suppose that $\bar{\zeta}$ is a μ_N nowhere dense set in a μ_N Topological Space in (X, μ_N) , then $\mu_N Int(\mu_N Cl(\bar{\zeta})) = 0_N$ in (X, μ_N) . Since $\zeta \cap \bar{\zeta} \subseteq \bar{\zeta}$, $\mu_N Int(\mu_N Cl(\zeta \cap \bar{\zeta})) \subseteq \mu_N Int(\mu_N Cl(\bar{\zeta}))$ and hence $\mu_N Int(\mu_N Cl(\zeta \cap \bar{\zeta})) \subseteq 0_N$ that implies us $\mu_N Int(\mu_N Cl(\zeta \cap \bar{\zeta})) = 0_N$. Hence ζ is a μ_N strongly nowhere dense set in (X, μ_N) . \Box

Proposition 3.3. If $\mu_N Cl(\mu_N Int\overline{\zeta}) = 1_N$, for a neutrosophic set ζ defined on (X, μ_N) , then ζ is a μ_N strongly nowhere dense set in (X, μ_N) .

Proof. Suppose that $\mu_N Cl(\mu_N Int\overline{\zeta}) = 1_N$ in (X, μ_N) . Then we deduce that $\overline{\mu_N Cl(\mu_N Int\overline{\zeta})} = 0_N$ which implies us $\overline{\mu_N Int(\mu_N Cl\overline{\zeta})} = 0_N$. We obtain $\mu_N Int(\mu_N Cl\zeta) = 0_N$. Thus, ζ is a μ_N nowhere dense set in (X, μ_N) . By using proposition 3.2, ζ is a μ_N strongly nowhere dense set in (X, μ_N) .

Proposition 3.4. If ζ is a μ_N strongly nowhere dense set in (X, μ_N) , then $\overline{\zeta}$ is also a μ_N strongly nowhere dense set.

Proof. Let ζ be a μ_N strongly nowhere dense set in (X, μ_N) which entails us that $\mu_N Int(\mu_N Cl(\zeta \cap \overline{\zeta})) = 0_N$ in (X, μ_N) . Now $\mu_N Int(\mu_N Cl(\overline{\zeta} \cap \overline{\zeta})) = \mu_N Int(\mu_N Cl(\overline{\zeta} \cap \zeta)) = 0_N$. This implies us $\overline{\zeta}$ is also a μ_N strongly nowhere dense set in (X, μ_N) .

Proposition 3.5. If ζ is a μ_N nowhere dense set in μ_N Topological space then $\overline{\zeta}$ is μ_N strongly nowhere dense set in (X, μ_N) .

Proof. Let ζ be a μ_N nowhere dense set in (X, μ_N) . Now by using Proposition 3.2 we get ζ is a μ_N strongly nowhere dense set in (X, μ_N) and by proposition 3.4 we obtain that $\overline{\zeta}$ is μ_N strongly nowhere dense set in (X, μ_N) .

Proposition 3.6. If ζ is a μ_N strongly nowhere dense set in (X, μ_N) , then $\mu_N Cl(\zeta \cup \overline{\zeta}) = 1_N$.

Proof. Let ζ be a μ_N strongly nowhere dense set in (X, μ_N) then we obtain that $\mu_N Cl(\zeta \cup \bar{\zeta}) = 0_N \Rightarrow \mu_N Cl(\overline{\mu_N Int(\zeta \cap \bar{\zeta})}) = 1_N \Rightarrow \mu_N Cl(\mu_N Int(\overline{\zeta \cap \bar{\zeta}})) = 1_N$. But $\mu_N Cl(\mu_N Int(\overline{\zeta} \cup \zeta)) \subseteq \mu_N Cl(\overline{\zeta} \cup \zeta) \Rightarrow 1_N \subseteq \mu_N Cl(\overline{\zeta} \cup \zeta)$. Hence we get $\mu_N Cl(\zeta \cup \bar{\zeta}) = 1_N$.

Proposition 3.7. If $\mu_N Int \mathbf{P}$ is a μ_N dense set, for a neutrosophic set \mathbf{P} defined on a μ_N TS (X, μ_N) then \mathbf{P} is μ_N strongly nowhere dense set in (X, μ_N) .

Proof. Suppose that $\mu_N Int\mathbf{P}$ is a μ_N dense set in (X, μ_N) , then $\mu_N Cl(\mu_N Int\mathbf{P}) = 1_N$ in (X, μ_N) . Then $\overline{\mu_N Cl(\mu_N Int\mathbf{P})} = 0_N$. This implies us $\mu_N Int(\mu_N Cl\bar{\mathbf{P}}) = 0_N$ in (X, μ_N) . Since $\mathbf{P} \cap \bar{\mathbf{P}} \subseteq \bar{\mathbf{P}}$ we deduce that $\mu_N Int(\mu_N Cl(\mathbf{P} \cap \bar{\mathbf{P}})) \subseteq \mu_N Int(\mu_N Cl\bar{\mathbf{P}})$ and hence $\mu_N Int(\mu_N Cl(\mathbf{P} \cap \mathbf{P})) \subseteq 0_N$. That is $\mu_N Int(\mu_N Cl(\mathbf{P} \cap \bar{\mathbf{P}})) = 0_N$ which implies us that \mathbf{P} is μ_N strongly nowhere dense set in (X, μ_N) .

Proposition 3.8. If **P** is a neutrosophic set defined on (X, μ_N) such that $\mu_N Int(\mu_N Fr(\mathbf{P})) = 0_N$ in a μ_N Topological space then **P** is a μ_N strongly nowhere dense set in (X, μ_N) .

Proof. Let \mathbf{P} be a neutrosophic set defined on (X, μ_N) such that $\mu_N Int(\mu_N Fr(\mathbf{P})) = 0_N$. Since $\mu_N Fr(\mathbf{P}) = \mu_N Cl(\mathbf{P}) \cap \mu_N Cl(\bar{\mathbf{P}})$ and we know that $\mu_N Cl(\mathbf{P} \cap \bar{\mathbf{P}}) \subseteq \mu_N Cl(\mathbf{P}) \cap \mu_N Cl(\bar{\mathbf{P}})$. Now $\mu_N Cl(\mathbf{P} \cap \bar{\mathbf{P}}) \subseteq \mu_N Fr(\mathbf{P}) \Rightarrow \mu_N Int(\mu_N Cl(\mathbf{P} \cap \bar{\mathbf{P}})) \subseteq \mu_N Int(\mu_N Fr(\mathbf{P})) = 0_N$. Hence we get $mu_N Int(\mu_N Fr(\mathbf{P})) = 0_N$ that implies us \mathbf{P} is a μ_N strongly nowhere dense set in (X, μ_N) .

Definition 3.2. A neutrosophic set in a μ_N Topological space is called μ_N simply open set in (X, μ_N) if $\mu_N Fr(\mathbf{P})$ is μ_N nowhere dense set in (X, μ_N) . In other words, \mathbf{P} is μ_N simply open set iff $\mu_N Int(\mu_N Cl(\mu_N Fr\mathbf{P})) = 0_N$ in (X, μ_N) .

Proposition 3.9. If **P** is a μ_N simply open set in a μ_N Topological space (X, μ_N) , then **P** is a μ_N strongly nowhere dense set in (X, μ_N) .

Proof. Let **P** be a simply open set in (X, μ_N) . Then $\mu_N Int(\mu_N Cl(\mu_N Fr \mathbf{P})) = 0_N$ in (X, μ_N) . But $\mu_N Int(\mu_N Fr \mathbf{P}) \subseteq \mu_N Int\mu_N Cl(\mu_N Fr \mathbf{P})$. From this we obtain that $\mu_N Int(\mu_N Fr \mathbf{P}) = 0_N$ in (X, μ_N) . Then by using proposition 3.8 we obtain that **P** is a μ_N strongly nowhere dense set in (X, μ_N) .

Remark 3.1. The converse of the above proposition need not be true. This can be illustrated in the example given below.

Example 3.1. Let (X, μ_N) be a μ_N TS where $X = \{a, b\}$ and we define neutrosophic sets $\delta_1 = \{< 0.6, 0.4, 0.8 > < 0.8, 0.6, 0.9 >\}, \delta_2 = \{< 0.6, 0.3, 0.8 > < 0.9, 0.2, 0.7 >\}, \delta_3 = \{< 0.5, 0.4, 0.9 > < 0.7, 0.8, 0.9 >\}, \delta_4 = \{< 0.4, 0.6, 0.9 > < 0.6, 0.8, 0.9 >\}, \delta_5 = \{< 0.3, 0.7, 0.9 > < 0.5, 0.9, 0.9 >\}$ and $\mu_N = \{0_N, \delta_1, \delta_2, \delta_3, \delta_4\}$ be a μ_N TS here the μ_N simply open sets are $\{0_N, \delta_2, \delta_3, \delta_4\}$ be a μ_N TS here the μ_N simply open sets are $\{0_N, \delta_2, \delta_5, 1_N\}$ and the μ_N strongly nowhere dense sets are $\{0_N, \delta_2, \delta_3, \delta_5, 1_N\}$. Here δ_5 is μ_N strongly nowhere dense set in (X, μ_N) but not μ_N simply open set in (X, μ_N) .

Proposition 3.10. If **P** is a μ_N closed set with $\mu_N Int(\mathbf{P}) = 0_N$ in a μ_N TS (X, μ_N) , then **P** is a μ_N strongly nowhere dense set in (X, μ_N) .

Proof. Let **P** be a μ_N closed set with $\mu_N Int(\mathbf{P}) = 0_N$ in (X, μ_N) . Then $\mu_N Int\mu_N Cl(\mu_N Cl \mathbf{P} \cap \mu_N Cl \mathbf{\overline{P}}) = \mu_N Int\mu_N Cl(\mathbf{P} \cap \overline{\mu_N Int \mathbf{P}}) = \mu_N Int\mu_N Cl(\mathbf{P} \cap \overline{0_N}) = \mu_N Int(\mu_N Cl \mathbf{P}) = \mu_N Int \mathbf{P} = 0_N$. Hence, we get **P** is a μ_N simply open set in (X, μ_N) . By proposition 3.9 deduce that **P** is a μ_N strongly nowhere dense set in (X, μ_N) .

Proposition 3.11. If **P** is a μ_N open set and μ_N dense set in a μ_N Topological space (X, μ_N) , then **P** is a μ_N strongly nowhere dense set in (X, μ_N) .

Proof. Let \mathbf{P} be a μ_N open and μ_N dense set in (X, μ_N) . Then $\overline{\mathbf{P}}$ is a μ_N closed set with $\mu_N Int \overline{\mathbf{P}} = \overline{\mu_N Cl \mathbf{P}} = 0_N$ in (X, μ_N) . Then by using proposition 3.10 we retrieve that $\overline{\mathbf{P}}$ is a μ_N strongly nowhere dense set in (X, μ_N) and by using the proposition 3.4 we obtain that $\overline{\overline{\mathbf{P}}}$ is a μ_N strongly nowhere dense set in (X, μ_N) which implies us that \mathbf{P} is a μ_N strongly nowhere dense set in (X, μ_N) .

Proposition 3.12. Every subset of μ_N strongly nowhere dense set is μ_N strongly nowhere dense set.

Proof. Let \mathbf{P} be a μ_N strongly nowhere dense set, then $\mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}) = 0_N$. If $\zeta \subseteq \mathbf{P}$ we have $\zeta \cap \overline{\mathbf{P}} \subseteq \cap \overline{\mathbf{P}} \Rightarrow \mu_N Int(\mu_N Cl(\zeta \cap \overline{\mathbf{P}}) \subseteq \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}) = 0_N)$. Therefore ζ is a μ_N strongly nowhere dense set. Hence, subset of μ_N strongly nowhere dense set is μ_N strongly nowhere dense set. \Box

Proposition 3.13. A neutrosophic set is μ_N strongly nowhere dense set if and only $\mu_N Cl(\mu_N Int(\mathbf{P} \cap \overline{\mathbf{P}})) = 1_N$.

Proof. Suppose \mathbf{P} is μ_N strongly nowhere dense then $\mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}})) = 0_N$. Now, $\mu_N Cl(\mu_N Int(\mathbf{P} \cap \overline{\mathbf{P}})) = \mu_N Cl(\mu_N Cl(\overline{\mathbf{P} \cap \overline{\mathbf{P}}})) = \overline{\mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = 1_N$. Conversely we assume that $\mu_N Cl(\mu_N Int(\overline{\mathbf{P} \cap \overline{\mathbf{P}}})) = 1_N$. On considering, $\mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}})) = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \overline{\mu_N Cl(\mu_N Int(\overline{\mathbf{P} \cap \overline{\mathbf{P}}}))} = \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}})) = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \overline{\mu_N Cl(\mu_N Int(\overline{\mathbf{P} \cap \overline{\mathbf{P}}))} = \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}})) = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \overline{\mu_N Cl(\mu_N Int(\overline{\mathbf{P} \cap \overline{\mathbf{P}}))} = \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}})) = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}})) = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}})) = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}})) = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}))}} = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}})) = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}))} = \overline{\mu_N Cl(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}))}} = \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}))$

Proposition 3.14. If **P** is μ_N strongly nowhere dense set then $\mu_N Int(\mathbf{P} \cap \overline{\mathbf{P}}) = 0_N$.

Proof. Suppose \mathbf{P} is μ_N strongly nowhere dense then $\mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}) = 0_N$. Now, $\mu_N Int(\mathbf{P} \cap \overline{\mathbf{P}}) \subseteq \mu_N Int(\mu_N Cl(\mathbf{P} \cap \overline{\mathbf{P}}) = 0_N$. Hence, $\mu_N Int(\mathbf{P} \cap \overline{\mathbf{P}}) = 0_N$.

4. μ_N strongly first category sets in μ_N TS:

Definition 4.1. A neutrosophic set is said to be μ_N stongly first category set in μ_N TS if $\delta = \bigcup_{i=1}^{\infty} \delta_i$ where δ_i 's are μ_N stongly nowhere dense sets. The left out sets are called as μ_N stongly second category sets. The complement of μ_N stongly first category sets are called μ_N stongly residual sets.

Example 4.1. Let (X, μ_N) be a μ_N TS where $X = \{a, b\}$ and we define neutrosophic sets $L_1 = \{< 0.6, 0.4, 0.8 > < 0.8, 0.6, 0.9 > \}$, $L_2 = \{< 0.6, 0.3, 0.8 > < 0.9, 0.2, 0.7 > \}$, $L_3 = \{< 0.5, 0.4, 0.9 > < 0.7, 0.8, 0.9 > \}$, $L_4 = \{< 0.4, 0.6, 0.9 > < 0.6, 0.8, 0.9 > \}$, $L_5 = \{< 0.3, 0.7, 0.9 > < 0.5, 0.9, 0.9 > \}$ and $\mu_N = \{0_N, L_1, L_2, L_3, L_4\}$ be a μ_N TS. Here μ_N stongly first category set is $L_2 = \{< 0.6, 0.3, 0.8 > < 0.9, 0.2, 0.7 > \}$. The μ_N stongly second category sets are $0_N, 1_N, L_1, L_3, L_4$ and the μ_N stongly residual set is $\overline{L_2}$.

Proposition 4.1. If **P** is a μ_N first category set then **P** is μ_N stongly first category set.

Proof. Let **P** be a μ_N first category set in a μ_N TS. Then $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N nowhere dense sets in μ_N TS. By making use of the fact "Every μ_N nowhere dense set is μ_N strongly nowhere dense set" we deduce that \mathbf{P}_i 's are μ_N strongly nowhere dense sets and hence $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N strongly nowhere dense sets. Therefore, **P** is μ_N strongly first category set.

Remark 4.1. Every μ_N strongly first category sets need not be μ_N first category set. It is exemplified below.

Example 4.2. Let $X = \{a\}$ and $\mu_N = \{0_N, A, C, E\}$ be a μ_N TS where $0_N = \{<0, 1, 1>\}$, $A = \{<0.7, 0.8, 0.9>\}$, $B = \{<0.3, 0.4, 0.6>\}$, $C = \{<0.9, 0.7, 0.6>\}$, $1_N = \{<1, 0, 0>\}$. Here the mu_N first category set is $0_N = \{<0, 1, 1>\}$ and the μ_N strongly first category set is $C = \{<0.9, 0.7, 0.6>\}$. From this clearly we deduce that the μ_N strongly first category sets need not be μ_N first category set.

Proposition 4.2. If $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N closed sets with $\mu_N Int \mathbf{P} = \mathbf{0}_N$ then \mathbf{P} is a μ_N strongly first category set.

Proof. Suppose $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N closed sets with $\mu_N Int\mathbf{P} = 0_N$ in a μ_N TS (X, μ_N) . Then by the fact, "If \mathbf{P} is μ_N closed in μ_N TS with $\mu_N Int(\mathbf{P}_i) = 0_N$ then \mathbf{P} is μ_N strongly nowhere dense set". By making use of this theorem we deduce that \mathbf{P} is μ_N closed in μ_N TS with $\mu_N Int(\mathbf{P}_i) = 0_N$. Thus, \mathbf{P} is μ_N strongly nowhere dense set and then we have $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N strongly nowhere dense sets. Thereupon \mathbf{P} is a μ_N strongly first category set.

Theorem 4.1. If $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where $\mu_N Int(\mu_N Fr(\mathbf{P}_i)) = 0_N$ then \mathbf{P} is μ_N strongly first category set.

Proof. Assume that $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where $\mu_N Int(\mu_N Fr(\mathbf{P}_i)) = 0_N$. By theorem, "If $\mu_N Int(\mu_N Fr(\mathbf{P})) = 0_N$ for a mu_N open set in μ_N TS then \mathbf{P} is μ_N strongly nowhere dense set." By making use of this we obtain that \mathbf{P}_i 's are μ_N strongly nowhere dense sets. Therefore, $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N strongly nowhere dense sets and hence \mathbf{P} is μ_N strongly first category set.

Theorem 4.2. If $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N open sets in μ_N TS then \mathbf{P} is μ_N strongly first category set.

Proof. Given that $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N open sets in μ_N TS and also μ_N dense set in μ_N TS. By theorem, "If \mathbf{P} is a μ_N open set in μ_N TS and \mathbf{P} is also μ_N dense set in (X, μ_N) , then \mathbf{P} is a μ_N strongly nowhere dense set in (X, μ_N) ." By making use of this theorem we obtain that \mathbf{P}_i 's are μ_N strongly nowhere dense sets and $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$, where \mathbf{P}_i 's are μ_N strongly nowhere dense sets. Thereupon we get \mathbf{P} is μ_N strongly first category set.

Theorem 4.3. Every subset of μ_N strongly first category set is μ_N strongly first category set.

Proof. Let **P** be a μ_N strongly first category set. Then $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N strongly nowhere dense sets. Suppose $\zeta \subseteq \mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$. From this we deduce that $\zeta \subseteq \bigcup_{i=1}^{\infty} \mathbf{P}_i$ which implies us that $\zeta \subseteq \mathbf{P}$ for some μ_N strongly nowhere dense sets. By using proposition 3.14 we obtain that ζ is μ_N strongly first category set.

Remark 4.2. Superset of μ_N strongly first category set need not be μ_N strongly first category set. This can be explained in the below example.

Example 4.3. Let $\mu_N = \{0_N, \tau_a, \tau_b\}$ where $0_N = \{<0,1,1>\}, \tau_a = \{<0.1,0.4,0.6>\}, \tau_b = \{<0.2,0.3,0.5>\}, \tau_c = \{<0.6,0.6,0.1>\}, \tau_d = \{<0.5,0.7,0.2>\}$. Here, $\tau_c = \{<0.6,0.6,0.1>\}$ is μ_N strongly first category set but $\overline{\tau_b} \supseteq \tau_c = \{<0.6,0.6,0.1>\}$ but $\overline{\tau_b} = \{<0.5,0.7,0.2>\}$ is not μ_N strongly first category set.

5. μ_N Strongly Baire Space:

Definition 5.1. A μ_N TS is called μ_N strongly Baire space if $\mu_N Cl(\bigcup_{i=1}^{\infty} \mathbf{P}_i) = 1_N$ where \mathbf{P}_i 's are μ_N strongly nowhere dense sets.

Example 5.1. Let $X = \{a\}$ and $\mu_N = \{0_N, A, C, E\}$ be a μ_N TS where $0_N = \{<0, 1, 1>\}$, $A = \{<0.7, 0.8, 0.9>\}$, $B = \{<0.3, 0.4, 0.6>\}$, $C = \{<0.9, 0.7, 0.6>\}$, $1_N = \{<1, 0, 0>\}$. Here the μ_N first category set is $0_N = \{<0, 1, 1>\}$ and the μ_N strongly first category sets are $C = \{<0.9, 0.7, 0.6>\}$ and $1_N = \{<1, 0, 0>\}$. $\mu_N Cl(1_N) = 1_N$. Hence (X, μ_N) is a μ_N strongly Baire space.

Theorem 5.1. Let (X, μ_N) be a μ_N TS. Then the following statements are parallel in nature.

- 1. (X, μ_N) is a μ_N strongly Baire space.
- 2. $\mu_N Cl(\mathbf{P}) = 1_N$, for every μ_N strongly first category set.
- 3. $\mu_N Int(\mathbf{P}) = 0_N$, for every μ_N residual sets.

Proof. $(i) \Rightarrow (ii)$. Let **P** be a μ_N strongly first category set in (X, μ_N) . Then $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are μ_N strongly nowhere dense sets. Since (X, μ_N) is a μ_N strong Baire space we get $\mu_N Cl(\bigcup_{i=1}^{\infty} \mathbf{P}_i) = 1_N$. Hence, $\mu_N Cl(\mathbf{P}) = 1_N$.

 $(ii) \Rightarrow (iii)$. Let \mathbf{P} be a μ_N strongly residual set in (X, μ_N) . Then we retrieve that $\overline{\mathbf{P}}$ is a μ_N strongly first category set in (X, μ_N) . From (ii) we obtain that $\mu_N Cl(\overline{\mathbf{P}}) = 1_N \Rightarrow \overline{\mu_N Int(\mathbf{P})} = 1_N$. Hence, $\mu_N Int(\mathbf{P}) = 0_N$. $(iii) \Rightarrow (i)$. Let \mathbf{P} be a μ_N strongly first category set in (X, μ_N) . Then $\mathbf{P} = \bigcup_{i=1}^{\infty} \mathbf{P}_i$ where \mathbf{P}_i 's are a μ_N strongly nowhere dense sets. We have if \mathbf{P} is a μ_N strongly first category set then $\overline{\mathbf{P}}$ is a μ_N strongly residual set in (X, μ_N) . Now by making use of (iii) we obtain that $\mu_N Int(\overline{\mathbf{P}}) = 0_N$ which gives us that $\overline{\mu_N Cl(\mathbf{P}_i)} = 0_N$. Therefore we get $\mu_N Cl(\mathbf{P}_i) = 1_N$ and hence $\mu_N Cl(\bigcup_{i=1}^{\infty} \mathbf{P}_i) = 1_N$ where \mathbf{P}_i 's are a μ_N strongly nowhere dense sets. Hence, (X, μ_N) is a μ_N strongly Baire space.

Theorem 5.2. If $\{\mathbf{P}_i\}$, i = 1 to ∞ is μ_N open set and μ_N dense set in μ_N TS then (X, μ_N) is a μ_N strongly Baire space.

Proof. We know that, "If ζ is μ_N open set and μ_N dense then ζ is μ_N strongly nowhere dense sets". By making use of this fact we obtain that \mathbf{P}_i 's are μ_N strongly nowhere dense sets in (X, μ_N) . Let $\xi = \bigcup_{i=1}^{\infty} \xi_i$ then ξ_i 's are μ_N strongly first category sets. Now, $\mu_N Cl(\xi_i) = \mu_N Cl(\bigcup_{i=1}^{\infty} \xi_i) \supseteq \bigcup_{i=1}^{\infty} \mu_N Cl(\xi_i) = 1_N$. Hence, (X, μ_N) is a μ_N strongly Baire space.

References

- [1] Atanassov.K.T, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87–96.
- [2] Atanassov.K.and Stoeva.S, Intuitionistic fuzzy sets, Polish Syrup.on Interval & fuzzy mathematics, (August1983)23-26.

N.RAKSHA BEN and G. HARI SIVA ANNAM

- [3] Chang.C.L, Fuzzy topological spaces, Journal of Mathematical Analysis and Application, 24(1968), 183–190.
- [4] Dogan Coker, An introduction to intuitionstic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1997), 81–89
- [5] Ekici.E and Etienne Kerre.K, On fuzzy contra continuities, Advances in Fuzzy Mathematics, 2006, 35-44
- [6] FloretinSmarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
- [7] FloretinSmarandache, NeutrosophicSet:- A Generalization of Intuitionistic Fuzzy set, Journal of DefenseResourses Management, 1(2010),107–116.
- [8] FloretinSmarandache, A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic Probability. Ameican Research Press, Rehoboth, NM,1999.
- [9] Iswarya .P,Dr.K.Bageerathi, A Study on neutrosophic Frontier and neutrosophic semi frontier in Neutrosophic topological spaces. Neutrosophic sets and systems, vol. 16,2017.
- [10] Dhavaseelan.R, S.Jafari, Narmada Devi.R, Hanif Page.Md.Neutrosophic Baire's Space, Neutrosophic Sets and Systems, Vol 16.2017
- [11] Dhavaseelan.R, Narmada Devi.R, S.Jafari, Characterization of Neutrosophic Nowhere Dense Sets, International Journal Of Mathematical Archive, Vol.9, No.3, 2018
- [12] Raksha Ben .N, Hari Siva Annam.G, Generalized topological spaces via neutrosophic Sets, J.Math.Comput.Sci.,11(2021), 716-734.
- [13] Raksha Ben N, Hari Siva Annam.G, μ_N Dense sets and its nature, South East Asian Journal of Mathematics and Mathematical Sciences, Vol 17, No.2 (2021), 68-81.
- [14] Salama A.A and Alblowi S.A, Neutrosophic set and Neutrosophic topological space, ISOR J. Mathematics, 3(4)(2012), 31–35.
- [15] Zadeh.L.A, Fuzzy set, Inform and Control, 8(1965), 338–353.