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Abstract: The main objective of this paper is to investigate the class of left regular LA-semihyperrings with respect

to their hyperideals. Then, produce the intresting characterizations of left regular LA-semihyperrings with respect to

their hyperideals. In this connection, we prove that right (left, two sided, inerior, bi-, generalized bi-, quasi) hyperideals

are coincide in a left regular LA-semihyperrings having pure left identity, these hyperideals are normally not coincide in

other classes of regularities of LA-semihyperrings.
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1. Introduction

A new algebraic structure called left almost semigroup (for short, LA-semigroup) [13], initiated by Kazim and

Naseeruddin in 1972. This structure is additionally called as Abel-Grassmann’s Groupoid (for short, AG-

Groupoid) by Protic and Stevanovic [14]. That algebraic structure is non commutative and non associative,

lying in middle of groupoid and commutative semigroup possess numerous applications in the theory of flocks

[39]. Mushtaq and Kamran named an AG-Groupoid with weak associative law [11] as AG*-Groupoid. The

generality of an AG-Groupoid having left identity was called an AG**-Groupoid. Protic and Stevanovic have

also introduced a useful technique for confirmation of AG-Groupoid, AG**-Groupoid and AG*-Groupoid in

[12]. Khan and Asif [15, 16] characterized intra-regular and regular LA-semigroup with respect to their fuzzy

ideals in 2010. Khan and et al. [17] characterize right regular LA-semigroup with respect to their fuzzy ideals.

Yousafzai et al. [19] characterize weakly regular LA-semigroup by their smallest fuzzy ideals. Further, Sezer [18]

apply the idea of soft sets to LA-semigroup and produce characterization of intra-regular, completely regular,

regular, quasi-regular and weakly regular LA-semigroup. Currently, much researchers explored numerious

characterizations of LA-semigroup (see, [20–22]). Moreover, few researchers have examine the concept of LA-

semirings, that is a generalization of LA-rings [23]. Massouros and Yaqoob [25] studies the right and left almost

groups and Rehman et al. [26] explore the idea of neutrosophic LA-rings and studies several types of ideals

neutrosophic LA-rings.
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In 1934 is the first occasion when the idea of algebraic hyperstructure was floated for the first time

by a French Mathematician Marty [27]. Hyperstructures have a distinct advantage over classical algebraic

structures because the application of binary operation in hyperstructure produce a set, if this set is restricted to

a singleton element, it effectively generalizes researchers to investigate these hyperstructures in different branches

of mathematics. Various books have been written on hyperstructures, (see [10, 28]). Some authors explored

different features of semihypergroups, like Davvaz et al. [4], Drbohlav et al. [5], Gutan [6], Hedayati [7], Hila

et al. [8], Leoreanu[9] and Onipchuk [3]. Currently, Hila and Dine [1], initiate the idea of AG-hypergroupoids

that is a generalization of semihypergroups, semigroups and AG-Groupoids.

Rehman et al.[29], introduce the concept of LA-hyperrings and characterize LA-hyperrings with respect

to their hyperideals. In 2020, Hu et al. [30] apply the idea of neutrosophic set to LA-hypergroups. The idea

of LA-semihypergroups was introduced by Hila and Dine [31] and an LA-semihypergroup is lies in middle of

hypergroupoid and commutative semihypergroup. Yaqoob et al. in [32] give the characterizations intra-regular

LA-semihypergroups using right and left hyperideals. Gulistan et al. [33] studies the class of regular LA-

semihypergroups with respect to (∈Γ , ∈Γ ∨q∆ )-cubic hyperideals. Moreover, Khan et al. [34] explore few

characteristics of fuzzy right and left hyperideals in intra-regular and regular LA-semihypergroups.

In 2019, Nakkhasen and Pibaljommee [38], investigate.the intra-regular class of semihyperrings. Later

on, Nawaz et al. [37] introduce the idea of left almost semihyperrings shortenly called LA-semihyperrings,

that is a generality of LA-semirings. Currently, Nakkhasen [35] characterizes regular and weakly regular LA-

semihyperrings with repect to their hyperideals. Furthermore, Nakkhasen [36], consider the intra-regular class

of LA-semihyperrings and characterize intra-regular LA-semihyperrings using their hyperideals.

In current paper, we focused in left regular class of LA-semihyperrings. We gave few interesting char-

acterizations of left regular LA-semihyperrings by the properties of their hyperideals. Further more, we prove

that right (left, two sided, inerior, bi-, generalized bi-, quasi) hyperideals are coincide in a left regular LA-

semihyperrings having left identity, these hyperideals are normally not coincide in other classes of regularities

of LA-semihyperrings.

2. Preliminaries

This section contains few definitions and results that are helpful in upcoming work. A maping ◦ : H ×H →
P ∗(H) is knows as hyperoperation on the set H , where H is nonempty set and P ∗(H) = P (H)\{∅} represents

the all nonempty subsets of H . An ordered pair (H, ◦) is known as hypergroupoid, where H ̸= ∅ and ”◦” is

hyperoperation.

If ∅ ≠ A,B ⊆ H , then A ◦B =
⋃

p∈A,q∈B

p ◦ q , p ◦A = {p} ◦A and p ◦B = {p} ◦B .

A hypergroupoid (H, ◦) is known as LA-semihyperring [1], if is satisfies, (p ◦ q) ◦ r = (r ◦ q) ◦ p, ∀
p, q, r ∈ H . This is called a left invertive law. For a nonempty subset X,Y,and Z of an LA-semihyperring H,

means that (X ◦ Y ) ◦ Z = (Z ◦ Y ) ◦X.

A hyperstructure (R,+, ◦) is known as an LA-semihyperring [37], if it satisfies:

(i) (R,+) is an LA-semihypergroup;

(ii) (R, ◦) is an LA-semihypergroup;

(iii) ξ1 ◦ (ξ2 + ξ3) = (ξ1 ◦ ξ2) + (ξ1 ◦ ξ3) and (ξ2 + ξ3) ◦ ξ1 = (ξ2 ◦ ξ1) + (ξ3 ◦ ξ1) for all ξ1, ξ2, ξ3 ∈ R .
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Example 2.1. Let R = {ξ1, ξ2, ξ3} with the binary hyperoperation defined below:

+ ξ1 ξ2 ξ3
ξ1 ξ1 {ξ1, ξ2, ξ3} {ξ1, ξ2, ξ3}
ξ2 {ξ1, ξ2, ξ3} {ξ2, ξ3} {ξ2, ξ3}
ξ3 {ξ1, ξ2, ξ3} {ξ2, ξ3} {ξ2, ξ3}

◦ ξ1 ξ2 ξ3
ξ1 {ξ1, ξ3} ξ3 {ξ2, c}
ξ2 {ξ2, c} ξ3 ξ3
ξ3 {ξ2, ξ3} {ξ2, ξ3} {ξ2, ξ3}

It is easy to see that R is an LA-semihyperring. It is also notice that ξ1 is right identity but ξ1 is not

left identity.

It is a common reality that if an LA-semihyperring carries a pure right identity (Pure-RI), then it become

a pure identity (Pure-I) and an LA-semihyperring having pure identity (Pure-I) is coincide with commutative

semihypergroup with pure identity (Pure-I). The example below shows that if an LA-semihyperring R carries

a right identity, then it not become a left identity.

Example 2.2. Let R = {ξ1, ξ2, ξ3} with the binary hyperoperations + and ◦ defined below:

+ ξ1 ξ2 ξ3
ξ1 ξ1 {ξ1, ξ2, ξ3} {ξ1, ξ2, ξ3}
ξ2 {ξ2, ξ3} {ξ2, ξ3} {ξ2, ξ3}
ξ3 {ξ1, ξ2, ξ3} {ξ2, ξ3} {ξ2, ξ3}

◦ ξ1 ξ2 ξ3
ξ1 {ξ1, c} ξ2 {ξ2, ξ3}
ξ2 {ξ2, ξ3} {ξ2, ξ3} {ξ2, ξ3}
ξ3 {ξ2, ξ3} {ξ2, ξ3} {ξ2, ξ3}

Clearly R satisfies left invertive law, so it is an LA-semihyperring and it is simple to observe that ξ1 is

the identity of R but R is neither commutative and nor associative .

In upcoming work, we call R is an LA-semihyperring rather than (R,+, ◦) and we write pq instead of

p ◦ q ∀ p, q ∈ R .

The bellow listed conceps are occurred in [37], will apply in this research. In every LA-semihyperring

R , the medial law (pq)(rs) = (pr)(qs) holds ∀ p, q, r, s ∈ R . A member e ∈ R is known as left identity

(resp., Pure-LI) if r ∈ er (resp., r = er ) ∀ r ∈ R . Each LA-semihyperring R having a Pure-LI e satisfies

the following two law: p(qr) = q(pr) and (pq)(rs) = (sr)(qp), ∀ p, q, s, r ∈ R . The second law is known as

paramedical law. A member r ∈ R having left identity (resp., Pure-LI) e is known as left invertible (resp., pure

left invertible) if there exists r
′ ∈ R such that e ∈ r

′
a (resp., e = r

′
a). An LA-semihyperring R is known as

left invertible (resp., pure left invertible) if each member of R is left invertible (resp., pure left invertible). An

LA-semihyperring R having Pure-LI e become a left identity, but conversly it is invalid generally, see in [35].

The given law holds in an LA-semihyperrings R, (LM)(NO) = (LN)(MO) for each nonempty subsets

L,M,N,O of R . If R carries a Pure-LI e , then R also satisfies, (LM)(NO) = (ON)(ML) and L(MN) =

M(LN) for each nonempty subsets L,M,N,O of R .

Suppose R is an LA-semihyperring and ∅ ≠ I ⊆ R such that I + I ⊆ I . Then:

(i) I is known as right hyperideal [37] of R if IR ⊆ I ;

(ii) I is known as left hyperideal [37] of R if RI ⊆ I ;

(iii) I is known as hyperideal [37] of R if IR ⊆ I and RI ⊆ I ;

(iv) I is known as quasi-hyperideal [37] of R if RI ∩ IR ⊆ I ;

(v) I is known as generalized bi-hyperideal [37] of R if (IR)I ⊆ I .
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(vi) I is known as bi-hyperideal [37] of R if II ⊆ I and (IR)I ⊆ I .

(vii) I is known as interior hyperideal [37] of R if II ⊆ I and (RI)R ⊆ I .

Lemma 2.1. [35] If P is left and Q is right hyperideal of an LA-semihyperring R, then P ∩ Q is quasi-

hyperideal of R.

Lemma 2.2. An LA-semihyperring R containing left identity e satisfies, R ◦R = R .

Proof. Suppose R is an LA-semihyperring with left identity e . Then any r ∈ R =⇒ r ∈ e◦r ⊆ R◦R , therefore

R ⊆ R ◦R . Thus R = R ◦R .

Corollary 2.1. An LA-semihyperring R containing Pure-LI satisfies, R = e ◦R = R ◦ e and R ◦R = R .

Lemma 2.3. If an LA-semihyperring R contains Pure-LI, then the given conditions hold.

(i) RI = I for each left hyperideal I of R .

(ii) JR = R for each right hyperideal J of R .

Proof. It is simple.

Lemma 2.4. If B is a bi-hyperideal of an LA-semihyperring R having Pure-LI, then (rB)s is a also bi-

hyperideal of R , for any r , s ∈ R .

Proof. Suppose B is a bi-hyperideal of R . Then B +B ⊆ B, BB ⊆ B,and (BR)B ⊆ B. Thus

(((rB)s)R)((rB)s) = ((Rs)(rB))((rB)s) = (((rB)s)(rB))(Rs)

= (((rB)r)(sB))(Rs) = (((rB)r)R)((sB)s)

= ((Rr)(rB))((sB)s) = ((Br)(rR))((sB)s)

= ((Br)(sB))((rR)s) ⊆ ((Br)(sB))R

= ((Br)(sB))(eR) = ((Br)e)((sB)R)

= ((er)B)((RB)s) = (rB)((RB)s)

= (s(RB))(Br) = ((es)(RB))(Br)

= ((BR)(se))(Br) = ((BR)B)((se)r)

⊆ B((se)r) = (se)(Br) = (rB)(es) = (rB)s.

Hence (rB)s is a bi-hyperideal of R.

Lemma 2.5. In an LA-semihyperring R with Pure-LI, each idempotent quasi-hyperideal is a bi-hyperideal of

R .

Proof. Suppose Q is an idempotent quasi-hyperideal of R , then obviously Q is an LA-subsemihyperring. Thus

(QR)Q ⊆ (QR)R ⊆ (RR)Q = RQ, and

(QR)Q ⊆ (RR)(QQ) = (QQ)(RR) = QR.

Therefore, (QR)Q ⊆ QR ∩RQ ⊆ Q. Thus Q is a bi-hyperideal of R.
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Lemma 2.6. If L and M are quasi-hyperideal of an LA-semihyperring R having Pure-LI, where L is

idempotent, then LM is a bi-hyperideal of R .

Proof. Suppose L and M is a quasi-hyperideals of R , and L is an idempotent. Thus by using Lemma 2.5, we

have

((LM)R)(LM) = ((RM)L)(LM) ⊆ ((RR)L)(LM)

= (RL)(LM) = (ML)(LR) = ((LR)L)M ⊆ LM.

Lemma 2.7. A subset P of an LA-semihyperring R having Pure-LI is right hyperideal of R ⇐⇒ P is an

interior hyperideal of R .

Proof. Suppose P is a right hyperideal of R , then clearly P is an hyperideal of R , so is an interior hyperideal

of R .

Conversely, suppose P is an interior hyperideal of R . Thus

PR = P (RR) = R(PR) = (RR)(PR) = (RP )(RR) = (RP )R ⊆ P.

Lemma 2.8. If P is right hyperideal or Q is left hyperideal of an LA-semihyperring R having Pure-LI then

P ∪RP and Q ∪QR are hyperideals of R .

Proof. Suppose P is right hyperideal of R . Then P + P ⊆ and PR ⊆ P. Thus

(P ∪RP )R = PR ∪ (RP )R ⊆ P ∪ (RP )(RR)

= P ∪ (RR)(PR) = P ∪R(PR)

= P ∪ P (RR) = P ∪ PR = P ⊆ (P ∪RP ), also

R(P ∪RP ) = RP ∪R(RP ) = RP ∪ (RR)(RP )

= RP ∪ (PR)(RR) ⊆ RP ∪ P (RR)

= RP ∪ PR ⊆ RP ∪ P = P ∪RP.

Hence (P ∪RP ) is an hyperideal of R . In a similar manner (Q ∪RQ) is also an hyperideal of R .

Definition 2.1. If I and J are hyperideals of an LA-semihyperring R , such that I2 ⊆ J implies I ⊆ J , then

J is called semiprime.

Theorem 2.1. If an LA-semihyperring R contains a Pure-LI, then the given conditions are identical.

(i) If I and J are hyperideals of R , then I2 ⊆ J implies I ⊆ J .

(ii) If A is right and J is hyperideal of R then A2 ⊆ J implies A ⊆ J .

(iii) If B is left and J is a hyperideal of R then B2 ⊆ J implies B ⊆ J .

Proof. Suppose B is a left hyperideal of R and B2 ⊆ J , then by Lemma 2.8, B ∪ BR is an hyperideal of R ,

therefore by hypothesis (i), (B ∪BR)2 ⊆ J which implies (B ∪BR) ⊆ J which further implies that B ⊆ J .

(iii) =⇒ (ii) and (ii) =⇒ (i) are simple.
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Theorem 2.2. An hyperideal J of an LA-semihyperring R with Pure-LI is semiprime ⇐⇒ a2 ⊆ J implies

a ∈ J .

Proof. Let J be a semiprime hyperideal of R and a2 ⊆ J . Since Ra2 is a left hyperideal of R and a2 ⊆ Ra2 ,

also a2 ⊆ J , therefore a2 ⊆ Ra2 ⊆ J . Thus Ra2 = R(aa) = (RR)(aa) = (Ra)(Ra) = (Ra)2 . Therefore

(Ra)2 ⊆ J , but J is semiprime so Ra ⊆ J . Since a ∈ Ra , therefore a ∈ J .

Conversely, suppose I is an hyperideal of R and let I2 ⊆ J and a ∈ I implies that a2 ⊆ I2 , which implies

that a2 ⊆ J which further implies that a ∈ J . Therefore I2 ⊆ J implies I ⊆ J . Hence J is semiprime.

3. Left Regular LA-semihyperring

In current section, the notion of left regular LA-semihyperrings is defined and few of its properties are studies.

Definition 3.1. A member a of an LA-semihyperring R is known as left regular if there exists r ∈ R such

that a ∈ ra2 , and R is known as left regular if each member of R is left regular.

Example 3.1. In Example 2.2, we can show that there exists r ∈ R such that a ∈ ra2 ∀ a ∈ R . Therefore,

R is left regular LA-semihyperring.

Note that in a left regular LA-semihyperring R and an LA-semihyperring R with left identity, R2 = R .

Lemma 3.1. If B is bi- (generalized bi-) hyperideal of a left regular LA-semihyperring R then (BR)B = B .

Proof. Suppose B is bi- (generalized bi-) hyperideal of R , then (BR)B ⊆ B . Let b ∈ B , since R is left regular

so there exists an element r ∈ R such that b ∈ rb2 . Thus

b ∈ rb2 = b(rb) = (rb2)(rb) = (br)(b2r) = b2((br)r) = (((br)r)b)b

= ((br)(br))b = (b((br)r))b ∈ (B((BR)R))B ⊆ (BR)B.

Hence (BR)B = B .

Lemma 3.2. Suppose A and B are any hyperideals of left regular LA-semihyperring R , then A ∩B = AB .

Proof. Suppose A and B are any two hyperideals of R , then clearly AB ⊆ A∩B . Let a ∈ A∩B , then a ∈ A

and a ∈ B . Since R is left regular, so there exists an element r ∈ R such that a ∈ ra2 . Thus

a ∈ ra2 = a(ra) = (ra2)(ra) = (ar)(a2r) = a2((ar)r)

= (((ar)r)a)a ∈ (((AR)R)A)B ⊆ ((AR)A)B ⊆ AB.

Hence A ∩B = AB .

Lemma 3.3. Suppsose A and B are any hyperideals of left regular LA-semihyperring R , then AB = BA .

Proof. It obtains from Lemma 3.2.

Lemma 3.4. In an left regular R with having left identity, every left, right and hyperideals are idempotent.

Proof. It is simple.
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Lemma 3.5. A nonempty subset A of a left regular LA-semihyperring R having Pure-LI is a left hyperideal

of R ⇐⇒ it is a right hyperideal of R .

Proof. It is simple.

Lemma 3.6. In a left regular LA-semihyperring R having Pure-LI PQ = P ∩Q , for every hyperideals P and

Q in R .

Proof. Suppose P and Q are any hyperideals of R , then obviously PQ ⊆ P ∩ Q . Since P ∩ Q ⊆ P

and P ∩ Q ⊆ Q, then (P ∩ Q)2 ⊆ PQ , also P ∩ Q is an hyperideal of R , so using Lemma 3.4, we have

P ∩Q = (P ∩Q)2 ⊆ PQ . Hence PQ = P ∩Q .

4. Characterization Probems

The current section contains the characterizations left regular LA-semihyperrings with respect to (left, right)

hyperideals, bi-(genrealized bi-) hyperideals, interior hyperideals and quasi-hyperideals.

Theorem 4.1. For an left regular LA-semihyperring R having Pure-LI the given conditions are identical.

(i) J is left hyperideal of R .

(ii) J is right hyperideal of R .

(iii) J is hyperideal of R .

(iv) J is bi-hyperideal of R .

(v) J is generalize bi-hyperideal of R .

(vi) J is interior hyperideal of R .

(vii) J is quasi-hyperideal of R .

(viii) JR = J and RJ = J .

Proof. (i) =⇒ (viii) Suppose J is left hyperideal of R . So by Lemma 2.3, RJ = J . Now let a ∈ J and b ∈ R .

As R is left regular, so there exists r ∈ R such that a ∈ ra2 . Thus

ab ⊆ (ra2)b = (a(ra))b = (b(ra))a ∈ (R(RJ))J ⊆ (RJ)J ⊆ RJ,

which implies that J is right hyperideal of R , again by Lemma 2.3, JR = R .

(viii) =⇒ (vii)

Suppose JR = J and RJ = J then JR ∩ RJ = J , which clearly implies that J is quasi-hyperideal of

R .

(vii) =⇒ (vi)

Suppose J is quasi-hyperideal of R . Now let (ba)b ⊆ (RJ)R , since R is left regular so there exists

r, s ∈ R such that b ∈ (ra2) and a ∈ (sa2). Thus

(ba)b ⊆
(
(b
(
sa2

))
b = ((b(a(sa))) b = (a (b (sa)))b = (b (b (sa))) a ⊆ RJ, and

(ba)a ⊆ (ba)(sa2) = (a2s)(ab) = a((a2s)b) ⊆ JR.

Therefore (ba)b ⊆ JR ∩RJ ⊆ J . Hence J is an interior hyperideal of R .
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(vi) =⇒ (v)

Suppose J is an interior hyperideal of R and (ab)a ⊆ (JR)J , since R is left regular so there exists r ∈ R

such that a ∈ (ra2). Thus

(ab)a ⊆ (ab)(ra2) = (ab)(a(ra)) = ((ra)a)(ba) ⊆ (RJ)R ⊆ J.

(v) =⇒ (iv)

Suppose J is generalize bi-hyperideal of R . Let a ∈ J , and since R is left regular so there exists r in

R such that a ∈ (ra2). Thus

aa ⊆
(
ra2

)
a = (a(ra))a ⊆ (JR)J ⊆ J.

Hence J is bi-hyperideal of R .

(iv) =⇒ (iii)

Suppose J is any bi-hyperideal of R and let ab ⊆ JR . Since R is left regular, so there exists r in R

such that a ∈ (ra2). Thus

ab ⊆ (ra2)b = (a(ra))b = (b(ra))a = (b(r(ra2)))a = (b(r(a(ra))))a

= (b(a(r(ra))))a = (a(b(r(ra))))a ⊆ (JR)J ⊆ J, and

ba ⊆ b(ra2) = (eb)(ra2) = (a2r)(be) = ((be)r)(aa)

= (aa)(r(be)) = ((r(be))a)a = ((r(be))(ra2))a

= ((r(be))(a(ra)))a = (a((r(be))(ra)))a ⊆ (JR)J ⊆ J.

Hence J is an hyperideal of R .

(iii) =⇒ (ii) and (ii) =⇒ (i) are simple.

Theorem 4.2. An LA-semihyperring R having Pure-LI is left regular ⇐⇒ each bi- (interior, left, right,

two-sided) hyperideals of R are idempotent.

Proof. Suppose B is a bi-hyperideal of R . Let b ∈ B , as R is left regular so there exists r ∈ R such that

b ∈ rb2 . Thus

b ∈ rb2 = (er)(bb) = (bb)(re) = ((re)b)b = ((re)(rb2))b == ((rr)(eb2))b

= ((rr)(bb))b = ((bb)(rr))b = (((rr)b) b)b = (
(
(rr)(rb2)

)
b)b

= (
(
r2(b(rb))

)
b)b = (

(
b(r2(rb))

)
b)b ⊆ ((BR)B)B ⊆ BB.

Hence B2 = B.

Conversely, since a ∈ Ra is a bi-hyperideal of R and by hypothesis Ra is idempotent. Thus

a ∈ (Ra)(Ra) = (RR)(aa) = Ra2.

Hence R is left regular.
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Definition 4.1. A (resp., right, left) hyperideal P of an LA-semihyperring R is known as semiprime if a2 ⊆ P

implies a ∈ P, for any a ∈ R .

Theorem 4.3. In an LA-semihyperring R having Pure-LI, the given statements are identical.

(i) S is left regular.

(ii) Every hyperideal of R is semiprime.

(iii) Each right hyperideal of R is semiprime.

(iv) Each left hyperideal of R is semiprime.

Proof. (i) =⇒ (iv)

Suppose S is left regular, so by Theorem 4.1 and Lemma 3.4, each left hyperideal of S is semiprime.

(iv) =⇒ (iii)

Suppose A is right and I is any hyperideal of S such that I2 ⊆ A . Then clearly I2 ⊆ A ∪ RA . Now

by Lemma 2.8, A ∪ RA is a hyperideal of R , so is left hyperideal. Then by (iv), we have I ⊆ A ∪ RA . Now,

RA = (RR)A = (AR)R ⊆ AR ⊆ A , therefore I ⊆ A ∪RA ⊆ A . Hence A is semiprime.

(iii) =⇒ (ii).is obvious.

Now (ii) =⇒ (i)

Since a2R is a right hyperideal of R containing a2 and clearly it is a hyperideal so by hypothesis (ii),

a2R is semiprime Thus by Theorem 2.2, a ∈ a2R . Therefore

a ∈ a2R = (aa)(RR) = (RR)(aa) = Ra2.

Hence R is left regular.

Theorem 4.4. In an LA-semihyperring R having Pure-LI, the given statements are identical.

(i) R is left regular.

(ii) P ∩Q = PQ , for every semiprime right hyperideal P and every left hyperideal Q of R

Proof. (i) =⇒ (ii): Suppose R is left regular. Let P be right and Q be left hyperideals of R , so by Theorem

4.1 P and Q become hyperideals of R , therefore by Lemma 3.6, P ∩ Q ⊆ PQ . Now let a ∈ P ∩ Q , implies

that a ∈ P and a ∈ Q. As R is left regular, so there exists r ∈ R such that a ∈ ra2 . Thus

a ∈ ra2 = a(ra) ∈ P (RQ) ⊆ PQ.

Therefore P ∩Q ⊆ PQ. Thus by Theorem 4.3, P is semiprime.

(ii) =⇒ (i): Let P ∩Q = PQ for each right hyperideal P , which is semiprime and every left hyperideal Q

of R . Since a2 ⊆ a2R , where a2R is a right hyperideal of R ,so is semiprime implies that a ∈ a2R . Obviously

Ra is a left hyperideal of R and a ∈ Ra . Thus

a ∈ (a2R) ∩ (Ra) ⊆ (a2R)(Ra) = ((Ra)R) a2 ⊆ ((RR)R)a2 ⊆ (RR)a2 ⊆ Ra2.

Thus R is a left regular.

Theorem 4.5. For an LA-semihyperring R having Pure-LI, the given statements are identical.

(i) R is left regular.
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(ii) Q ∩ P ⊆ QP , for each right hyperideal P , which is semiprime and each left hyperideal Q of R .

(iii) Q ∩ P ⊆ (QP )Q , for each semiprime right hyperideal P and each left hyperideal Q of R .

Proof. (i) =⇒ (iii)

Let P be any right and Q be any left hyperideals of R . Let a ∈ Q ∩ P , then a ∈ Q and a ∈ P . As R

is left regular then there exists r in R , such that a ∈ ra2. Thus

a ∈ ra2 = a(ra) = (ra2)(ra) = (ar)(a2r) = ((a2r)r)a = ((rr)(aa))a = ((ra)(ra))a

= ((ra)((er)a))a = ((ra)((ar)e))a ⊆ ((RQ)((PR)R))Q ⊆ (Q(PR))Q ⊆ (QP )Q,

therefore, Q ∩ P ⊆ (QP )Q. Also by Theorem 4.3, Q is semiprime.

(iii) =⇒ (ii)

Suppose P is left and Q is right hyperideals of R . Let P be semiprime. Thus

P ∩Q ⊆ (PQ)P ⊆ (PQ)R = (PQ)(RR) = (RR)(QP ) = Q((RR)P ) = Q(RP ) ⊆ QP.

(ii) =⇒ (i)

Since b ∈ Rb , which is left hyperideal of R , and b2 ⊆ b2R , that is semiprime right hyperideal of R , so

by Theorem 2.2, b ∈ b2R . Thus

b ∈ (Rb) ∩ (b2R) ⊆ (Rb)(b2R) ⊆ (RR)(b2R)

= R(b2R) = b2(RR) = (bb)(RR) = (RR)(bb) = Rb2.

Hence R is left regular.

Lemma 4.1. Each LA-semihyperring R having Pure-LI is left regular if R is pure left (right) invertible.

Proof. Let r ∈ R , then there exists r
′ ∈ R such that r

′
r = r. Thus

e = er = e(er) =
(
r
′
r
)
(er) ∈ (Rr) (Rr) = (RR) (rr) = Rr2.

Thus R is left regular. In a similar way, the case of pure right invertible hold.

Theorem 4.6. For a pure left (right) invertible LA-semihyperring R, the given statements are identical:

(i) S is left regular;

(ii) P ∩Q = PQ , for each P is right Q is left hyperideal of R.

Proof. (i) =⇒ (ii) : It follows from Theorem 4.4.

Proof. (ii) =⇒ (i) : It obtains from Lemma 4.1.

Theorem 4.7. The given conditions are identical on an LA-semihyperring R left pure identity:

(i) R is lef regular.

(ii) Q ∩ P = QP , for each semiprime right hyperideal P and left hyperideal Q of R.

Proof. (i) =⇒ (ii) : It obtains by using Lemma 3.5 and Theorem 4.4.
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Proof. (ii) =⇒ (i) : It is simple.

Theorem 4.8. The given statements are identical on a pure left (right) invertible LA-semihyperring R :

(i) R is left regular.

(ii) P ∩Q = PQ , for each P is right hyperideal and Q is left hyperideal of R .

(iii) R(AA) = A , for each A is quasi-hyperideal of R .

Proof. (i) =⇒ (iii)

Suppose A is any quasi-hyperideal of R . Let a ∈ R, such that a ∈ A . As R is left regular so there

exists r in R , such that a ∈ ra2 ⊆ RA2 = R(AA). Therefore A ⊆ R(AA). Now

R(AA) = A(RA) ⊆ A(RR) = AR and

R(AA) = (RR)(AA) = (AA)(RR)

= (AA)R = (RA)A ⊆ (RR)A = RA.

therefore, R(AA) ⊆ AR ∩RA ⊆ A. Hence R(AA) = A , for every quasi-hyperideal A of R .

(iii) =⇒ (ii)

Supose P is left and Q is right hyperideal of R . So by Lemma 2.1, P ∩Q is a quasi-ideal of R . Thus

by hypothesis (iii), we have

P ∩Q = R((P ∩Q)(P ∩Q)) ⊆ R(PQ) ⊆ P (RQ) ⊆ PQ.

Also, PQ ⊆ PR ∩RQ ⊆ P ∩Q. Hence P ∩Q = PQ , for each right hyperideal P and left hyperideal Q

of R .

(ii) =⇒ (i): It obtains from Theorem 4.6.

Theorem 4.9. The given conditions are identical on an LA-semihyperring R Pure-LI:

(i) R is left regular;

(ii) J = J3, for J is left hyperideal of R .

Proof. (i) =⇒ (ii) : Suppose J is left hyperideal of R , then by Lemma 3.4, we have J3 = (JJ)J = JJ ⊆ RJ ⊆
J.

Furthermore, let j ∈ J , then there exists r ∈ R such that j ∈ rj2 . Thus

j ∈ rj2 = j (rj) =
(
rj2

)
(rj) = (j (rj)) (rj) = ((rj) (rj)) j = ((jr) (jr)) j

= (((jr) r) j) j = (((rr) j) j) j ⊆ ((RJ) J) J ⊆ (JJ) J = J3.

Hence J = J3, for every left hyperideal J of R . .

(ii) =⇒ (i) : Suppose J is left hyperideal of R having Pure-LI such that J = J3. As Rj is left hyperideal

of R and j ∈ Rj. Thus

j ∈ Rj = ((Rj) (Rj))Rj = ((RR) (jj))Rj =
(
Rj2

)
(Rj)

= (jR)
(
j2R

)
= j2 ((jR)R) ⊆ (jj)(RR) = (RR)(jj) = Rj2.

Thus R is left regular.
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Theorem 4.10. The given conditions are identical on an LA-semihyperring R Pure-LI:

(i) R is left regular;

(ii) L = Ln+1 , where n ∈ N .

Proof. By generalization of proof of Theorem 4.9, gives its proof.

Theorem 4.11. The set of all hyperideals IR of a left regular LA-semihyperring R having Pure-LI, forms a

semilattice structure.

Proof. Let P,Q ∈ IR , as P and Q are hyperideals of R , then (PQ)R = (PQ)(RR) = (PR)(QR) ⊆ PQ . Also

R(PQ) = (RR)(PQ) = (RP )(RQ) ⊆ PQ . Thus PQ is an hyperideal of R . Hence IR is closed. Also by using

Lemma 3.6, we have

PQ = P ∩Q = Q ∩ P = QP,

which implies that IR is commutative and commutativity gives so is associativity. So by using Lemma 3.4,

P 2 = P , ∀ P ∈ IR . Thus IR is semilattice.

5. Conclusions

In this paper, the notion of left regular LA-semihyperring is defined and the basic properties of many hyperideals

in terms of left regular LA-semihyperrings are discussed. The fundamental characterization of left regular LA-

semihyperrings by the properties of their (right, left) hyperideals, bi- (generalized bi-) hyperideals, interior

hyperideals and quasi-hyperideals are produced. In our future work, we shell characterized stronly-regular class

of LA-semihyperrings with repect to their hyperideals.
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