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Abstract: In this paper new type of continuous functions namely S-continuous introduced in semi prime ideal space

and compare with continuous function in topological space and study some of their properties. Also we introduced

strongly S-continuous and S-irresolute in semi prime ideal space and compared with S-continuous in semi prime ideal

space. Totally S-continuous and contra S-continuous were introduced and discussed.
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1. Introduction

Ideals in a topological space (X, τ) is treated in the classic text by Kuratowski [7]. An ideal I on a topological

space (X, τ) is a non empty collection of subsets of X which satisfies (i) A ∈ I and B ⊆ A implies B ∈ I . (ii)

A ∈ I and B ∈ I implies A ∪B ∈ I . A topological space together with an ideal I is called an ideal topological

space and denoted by (X, τ, I). He also defined the local function for each subset of X with respect to an ideal

I and τ . Given a topological space (X, τ) with an ideal I on X and if ρ(X) is the set of all subsets of X, a

set operator (.)∗ : ρ(X) → ρ(X) called a local function of A with respect to τ and I is defined as follows: For

A ⊆ X , A∗(I, τ) = {x ∈ X/U ∩A /∈ I for every U ∈ r(x)} where r(x) = {U ∈ τ/x ∈ U} . A kuratowski closure

operator (cl)∗(.) for a topology τ∗(I, τ) called *-topology finer than τ is defined by (cl)∗(A) = A∪A∗(I, τ). We

denote A∗ for A∗(I, τ) and τ∗ for τ∗(I, τ). Further Vaidyanathaswamy [12] extended the study of ideals and

local functions. The properties of the topology generated by the ideal I and τ , called the star topology which is

finer than τ , denoted by τ∗ are studied by Vaidyanathaswamy, Hashimoto, Hayashi and Samuels [4]. In 1990,

Jankovic and Hamlet [3] in addition to their findings, consolidated all the results. A function f : (X, τ) → (Y, σ)

is said to be continuous if inverse image of every open in Y is open in X. Let f : X → Y ) and f : Y → Z be

two bijection mappings. Then g ◦ f : Y → Z is also bijection mapping and (g ◦ f)−1 = f−1 ◦ g−1 . In 2021

we introduced prime ideals in topological space and study some properties [10]. Also we introduced semi prime

ideal space in a topological space [11]. In this research paper we introduced S-continuous, strongly S-continuous

and S-irresolutu in semi prime ideal.space and discussed.
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2. Preliminaries

Definition 2.1. A semi prime ideal S on a topological space (X, τ) is a nonempty collection of subsets of X

which satisfies (i) A ∈ S and B ⊆ A implies B ∈ S . (ii) A ∩ B ∈ S and A ∈ S implies B ∈ S . The space

(X, τ, S) is said to be a semi prime ideal space.

Definition 2.2. Given a topological space (X, τ) with a semi prime ideal S on X and if ρ(X) is the set of all

subsets of X, a set operator (.)∗S : ρ(X) → ρ(X) is called a semi prime local function of A with respect to τ and S

is defined as follows: For A ⊆ X,A∗
S(S, τ) = {x ∈ U/U∩A /∈ SforeveryU ∈ r(x)} where r(x) = {U ∈ τ/x ∈ U .

Definition 2.3. A subset A of a semi prime ideal space (X, τ, S) is said to be S-closed if A∗
S ⊆ A .

Definition 2.4. A subset A of a semi prime ideal space (X, τ, S) is S-open if its complement is S-closed.

Result 2.1. Every open is S-open.

Definition 2.5. A subset A of a semi prime ideal space is said to be S-clopen if it is both S-closed and S-open.

Definition 2.6. A function f : (X, τ) → (Y, σ) is said to be totally continuous if inverse image of every open

in Y is clopen in X.

Definition 2.7. A function f : (X, τ) → (Y, σ) is said to be contra continuous if inverse image of every open

in Y is closed in X.

Definition 2.8. Let (X, τ) be a topological space and let x ∈ X . Then the neighbourhood of x is an open set

of X containing x.

3. Continuous functions in semi prime ideal space

In this section we defined S-continuous and discussed some properties.

Definition 3.1. A function f : (X, τ, S) → (Y, σ) is said to ben S-continuous if inverse image of every open in

Y is S-open in X.

Example 3.1. Consider the semi prime ideal space

X = {a, b, c}, τ = {ϕ, {a}, X}, S = {ϕ, {a}, {b}, {a, b}} and Y = {a, b, c}, σ = {ϕ, {b}, X} . Define f :

(X, τ, S) → (Y, σ) by f(a) = b, f(b) = c, f(c) = a . Then f is S-continuous.

Definition 3.2. A function f : (X, τ, S1) → (Y, σ, S2) is said to be S-irresolute if the inverse image of every

S-open in Y is S-open in X.

Example 3.2. Consider the semi prime ideal spaces X = {a, b, c},
τ = {ϕ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}, S = {ϕ, {a}, {b}, {a, b} and

Y = {a, b, c}, σ = {ϕ, {b}, X} . Define f : (X, τ, S) → (Y, σ, S) by f(a) = b, f(b) = c, f(c) = a .Then f is

S-irresolute.

Definition 3.3. A function f : (X, τ) → (Y, σ, S) is said to be strongly S-continuous if inverse image of every

S-open in Y is open in X.

Example 3.3. Consider the semi prime ideal space X = {a, b, c},
τ = {ϕ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X} , and Y = {a, b, c},
σ = {ϕ, {b}, X}, S = {ϕ, {a}, {b}, {a, b} . Define f : (X, τ) → (Y, σ, S) by f(a) = b, f(b) = c, f(c) = a .Then f is

strongly S-continuous.
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Theorem 3.1. Every continuous is S-continuous.

Proof. Let f : (X, τ, S) → (Y, σ) be a continuous function and let U be any open in Y. Since f is continuous,

f−1(U) is open in X and hence f−1(U) is S-open in X. Therefore f is S-continuous.

Remark 3.1. The converse of the above theorem need not be true as shown in the following example.

Example 3.4. Consider the semi prime ideal space X = {a, b, c},
τ = {ϕ, {a}, X} , and Y = {a, b, c},
σ = {ϕ, {a}, {b, c}, X}, S = {ϕ, {a}, {b}, {a, b} . Define f : (X, τ, S) → (Y, σ) by f(a) = a, f(b) = b, f(c) =

c .Then f is S-continuous but not continuous..

Theorem 3.2. Every strongly S-continuous is continuous.

Proof. Let f : (X, τ) → (Y, σ, S) be strongly S-continuous and let U be any open set in Y. Since every open is

S-open, U is S-open. Since f is strongly S-continuous, f−1(U) is open in X and hence f is continuous.

Remark 3.2. The converse of the above theorem need not be true as shown in the following example.

Example 3.5. Consider the semi prime ideal space X = {a, b, c},
τ = {ϕ, {a}, {b, c}, X} , and Y = {a, b, c},
σ = {ϕ, {a}, X}, S = {ϕ, {a}, {b}, {a, b} . Define f : (X, τ) → (Y, σ, S) by f(a) = a, f(b) = b, f(c) = c .Then f is

continuous but not strongly S-continuous.

Theorem 3.3. Every strongly S-continuous is S-continuous.

Proof. Obvious.

Remark 3.3. The converse of the above theorem need not be true as shown in the following example.

Example 3.6. Consider the semi prime ideal space X = {a, b, c},
τ = {ϕ, {a}, {b, c}, X} , S1 = {ϕ, {a}, {c}, {a, c}}and Y = {a, b, c},
σ = {ϕ, {a}, X}, S2 = {ϕ, {a}, {b}, {a, b} . Define f : (X, τ, S1) → (Y, σ, S2) by f(a) = a, f(b) = b, f(c) =

c .Then f is S-continuous but not strongly S-continuous.

Theorem 3.4. every irresolute is S-continuous.

Proof. Let f : (X, τ, S1 → (Y, σ, S2 be S-irresolute and U be open in Y. Since every open is S-open, U is open.

Since f is S-irresolute, f−1(U) is S-open in X and hence f is S-continuous.

Remark 3.4. The converse of the above theorem need not be true as shown in the following example.

Example 3.7. Consider the semi prime ideal space X = {a, b, c},
τ = {ϕ, {a}, {b, c}, X} , S1 = {ϕ, {a}, {c}, {a, c}}and Y = {a, b, c},
σ = {ϕ, {a}, X}, S2 = {ϕ, {a}, {b}, {a, b} . Define f : (X, τ, S1) → (Y, σ, S2) by f(a) = a, f(b) = b, f(c) =

c .Then f is S-continuous but not S-irresolute.

Theorem 3.5. Every strongly S-continuous is S-irresolute.
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Proof. Let f : (X, τ, S1 → (Y, σ, S2 be strongly S-continuous and U be S-open in Y. Since f is strongly S-

continuous, f−1(U) is open in X. Since every open is S-open, f−1(U) is S-open in X and hence f is irresolute.

Remark 3.5. The converse of the above theorem need not be true as shown in the following example.

Example 3.8. Consider the semi prime ideal space X = {a, b, c},
τ = {ϕ, {a}, {b, c}, X} , S1 = {ϕ, {a}, {c}, {a, c}}and Y = {a, b, c},
σ = {ϕ, {a}, X}, S2 = {ϕ, {a}, {b}, {a, b} . Define f : (X, τ, S1) → (Y, σ, S2) by f(a) = a, f(b) = c, f(c) =

b .Then f is S-irresolute but not strongly S-continuous.

Example 3.9. The concepts continuous and S-irresolute are independent to each other. For, consider the semi

prime ideal space X = {a, b, c},
τ = {ϕ, {a}, {b, c}, X} , S1 = {ϕ, {a}, {c}, {a, c}}and Y = {a, b, c},
σ = {ϕ, {a}, X}, S2 = {ϕ, {a}, {b}, {a, b} . Define f : (X, τ, S1) → (Y, σ, S2) by f(a) = a, f(b) = b, f(c) =

c .Then f is not S-irresolute but continuous.

Consider the semi prime ideal space X = {a, b, c}, τ = {ϕ, {a}, X} ,

S1 = {ϕ, {a}, {b}, {a, b}}and Y = {a, b, c}, σ = {ϕ, {a}, {b, c}, X},
S2 = {ϕ, {a}, {c}, {a, c} . Define f : (X, τ, S1) → (Y, σ, S2) by f(a) = a, f(b) = c, f(c) = b .Then f is S-irresolute

but not continuous.

Theorem 3.6. Let f : (X, τ, S1) → (Y, σ, S2) be a function. Then

1. f is S-continuous iff inverse image of every closed in Y is S-closed in X.

2. f is S-irresolute iff inverse image of every S-closed set in Y is S-closed in X.

3. f is strongly S-continuous iff inverse image of every S-closed in Y is closed in X

Proof. Obvious

Theorem 3.7. Let X and Y be topological spaces and f : X → Y . Then f is S-continuous iff for each x ∈ X

and each neighbourhood V of f(x), there is a S-neighbourhood U of x such that f(U) ⊂ V .

Proof. Let V be neighbourhood in f(x). Since f is S-continuous, f−1(V ) is S-open in X. Let U = f−1(V ). Then

U is S-open and hence S-neighbourhood of x which gives f(U) ⊂ V .

Conversely assume that for each x ∈ X and each neighbourhood V of f(x), there is a S-neighbourhood U of x

such that f(U) ⊂ V . Let B be open set in Y and let x ∈ fB . Then f(x) ∈ B and hence B is a neighbourhood

of f(x). By assumption, there is a S-neighbourhood Ax of x such that f(Ax) ⊂ B . Then Ax ⊂ f−1(B) for

each x. This gives f−1(B) = ∪Ax . Since every Ax is S-open, ∪Ax is S-open which gives f−1(B) is open and

hence f is S-continuous.

4. Contra and totally continuous in semi prime ideal space

In this section we defined contra S-continuous in semi prime ideal space and compared with continuous functions.

Also we defined totally S-continuous functions and discussed.

Definition 4.1. A function f : (X, τ, S) → (Y, σ) is said to be contra S-continuous if inverse image of every

open in Y is S-closed in X.
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Example 4.1. Consider the semi prime ideal space X = {a, b, c}, τ = {ϕ, {a}, X},
S = {ϕ, {a}, {b}, {c}, {a, b}, {a, c} and Y = {a, b, c}, σ = {ϕ, {b}, X} . Define

f : (X, τ, S) → (Y, σ) by f(a) = b, f(b) = c, f(c) = a . Then f is contra S-continuous.

Definition 4.2. A function f : (X, τ, S) → (Y, σ) is said to be totally S-continuous if inverse image of every

open is S-clopen in X.

Example 4.2. Consider the semi prime ideal space X = {a, b, c}, τ = {ϕ, {a}, X},
S = {ϕ, {a}, {b}, {c}, {a, b}, {a, c} and Y = {a, b, c}, σ = {ϕ, {b}, X} . Define

f : (X, τ, S) → (Y, σ) by f(a) = b, f(b) = c, f(c) = a . Then f is totally S-continuous.

Theorem 4.1. Every totally S-continuous is contra S-continuous.

Proof. Let f : (X, τ, S) → (Y, σ) be totally S-continuous and U be open set in Y. Since f is totally S-continuous

f−1(U) is S-clopen in X. Therefore f−1(U) is S-closed and hence f is contra S-continuous.

Example 4.3. The converse of above theorem is not always true. For Consider the semi prime ideal space

X = {a, b, c}, τ = {ϕ, {b, c}, X},
S = {ϕ, {a}, {b}, {c}, {a, b}, {a, c} and Y = {a, b, c}, σ = {ϕ, {a}, X} . Define

f : (X, τ, S) → (Y, σ) by f(a) = a, f(b) = b, f(c) = c . Then f is contra S-continuous but not totally S-

continuous.

Theorem 4.2. Every contra continuous is contra S-continuous.

Proof. Let f : (X, τ, S) → (Y, σ) be contra continuous and U be open set in Y. Since f is contra continuous

f−1(U) is S-closed in X. Since every closed is S-closed, f−1(U) is S-closed in X and hence f is contra S-

continuous.

Example 4.4. The converse of above theorem is not always true. For Consider the semi prime ideal space

X = {a, b, c}, τ = {ϕ, {a}, X},
S = {ϕ, {a}, {b}, {c}, {a, b}, {a, c} and Y = {a, b, c}, σ = {ϕ, {b}, X} . Define

f : (X, τ, S) → (Y, σ) by f(a) = b, f(b) = c, f(c) = a . Then f is contra S-continuous but not contra continuous.

Theorem 4.3. Every totally continuous is totally S-continuous.

Proof. Let f : (X, τ, S) → (Y, σ) be totally continuous and U be open set in Y. Since f is totally continuous

f−1(U) is clopen in X. Since every clopen is S-clopen, f−1(U) is S-clopen in X and hence f is totally S-

continuous.

Example 4.5. The converse of above theorem need not be always true. For Consider the semi prime ideal space

X = {a, b, c}, τ = {ϕ, {a}, X},
S = {ϕ, {a}, {b}, {c}, {a, b}, {a, c} and Y = {a, b, c}, σ = {ϕ, {b}, X} . Define

f : (X, τ, S) → (Y, σ) by f(a) = b, f(b) = c, f(c) = a . Then f is totally S-continuous but not totally continuous.

Theorem 4.4. every totally continuous is contra S-continuous.

Proof. Obvious.
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Example 4.6. The converse of above theorem need not be always true.

For consider the semi prime ideal space X = {a, b, c}, τ = {ϕ, {b, c}, X},
S = {ϕ, {a}, {b}, {c}, {a, b}, {a, c} and Y = {a, b, c}, σ = {ϕ, {a}, X} . Define

f : (X, τ, S) → (Y, σ) by f(a) = a, f(b) = b, f(c) = c . Then f is contra S-continuous but not totally continuous.

Theorem 4.5. Every totally S-continuous is S-continuous.

Proof. Let f : (X, τ, S) → (Y, σ) be totally S-continuous and U be open set in Y. Since f is totally S-continuous,

f−1(U) is S-clopen in X and hence S-open in X. Therefore f is S-continuous.

Example 4.7. The converse of above theorem need not be always true.

For consider the semi prime ideal space X = {a, b, c}, τ = {ϕ, {b, c}, X},
S = {ϕ, {a}, {b}, {c}, {a, b}, {a, c} and Y = {a, b, c}, σ = {ϕ, {a}, X} . Define

f : (X, τ, S) → (Y, σ) by f(a) = a, f(b) = b, f(c) = c . Then f is S-continuous but not totally S-continuous.

5. composition of functions in semi prime ideal space

In this section we discussed about the composition of continuous functions in semi prime ideal space.

Theorem 5.1. Let f : (X, τ, S1) → (Y, σ, S2) and g : (Y, σ, S2) → (Z, δ, S3 be bijection mappings. If

1. f is strongly S-continuous and g is strongly S-continuous, then g ◦ f is strongly S-continuous.

2. f is strongly S-continuous and g is strongly S-continuous, then g ◦ f is continuous.

3. f is strongly S-continuous and g is strongly S-continuous, then g ◦ f is S-continuous.

4. f is strongly S-continuous and g is strongly S-continuous, then g ◦ f is S-irresolute.

Proof.

1. Let V be S-open in Z. Since g is strongly S-continuous, g−1(V ) is open in Y and hence g−1(V ) is S-open in Y.

Since f is strongly S-continuous, f−1(g−1(V )) is open in X. Since f and g are bijections, (g ◦ f)−1(V ) is open

in X. Therefore g ◦ f is strongly S-continuous.

(2),(3) and (4) are obvious.

Theorem 5.2. Let f : (X, τ, S1) → (Y, σ, S2) and g : (Y, σ, S2) → (Z, δ, S3 be bijection mappings. If

1. f is strongly S-continuous and g is S-irresolute, then g ◦ f is strongly S-continuous.

2. f is strongly S-continuous and g is S-irresolute, then g ◦ f is continuous.

3. f is strongly S-continuous and g is S-irresolute, then g ◦ f is S-continuous.

4. f is strongly S-continuous and g is S-irresolute, then g ◦ f is S-irresolute.

Proof.

1. Let V be S-open in Z. Since g is S-irresolute, g−1(V ) is S-open in Y. Since f is strongly S-continuous, f−1(g−1(V ))

is open in X. Since f and g are bijections, (g ◦ f)−1(V ) is open in X. Therefore g ◦ f is strongly S-continuous.

(2),(3) and (4) are obvious.
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Theorem 5.3. Let f : (X, τ, S1) → (Y, σ, S2) and g : (Y, σ, S2) → (Z, δ, S3 be bijection mappings. If

1. f is strongly S-continuous and g is S-continuous, then g ◦ f is continuous.

2. f is strongly S-continuous and g is S-continuous, then g ◦ f is S-continuous.

3. f is strongly S-continuous and g is continuous, then g ◦ f is continuous.

4. f is strongly S-continuous and g is continuous, then g ◦ f is S-continuous.

Proof.

1. Let V be open in Z. Since g is S-continuous, g−1(V ) is S-open in. Since f is strongly S-continuous, f−1(g−1(V ))

is open in X. Since f and g are bijections, (g ◦ f)−1(V ) is open in X. Therefore g ◦ f is continuous.

(2),(3) and (4) are obvious.

Theorem 5.4. Let f : (X, τ, S1) → (Y, σ, S2) and g : (Y, σ, S2) → (Z, δ, S3 be bijection mappings. If

1. f is S-irresolute and g is S-continuous, then g ◦ f is continuous.

2. f is strongly S-continuous and g is S-irresolute, then g ◦ f is S-irresolute.

3. f is S-irresolute and g is strongly S-continuous, then g ◦ f is S-irresolute.

4. f is S-irresolute and g is strongly S-continuous, then g ◦ f is S-continuous.

5. f is S-irresolute and g is S-continuous, then g ◦ f is S-continuous.

6. f is S-irresolute and g is continuous, then g ◦ f is S-continuous.

Proof. (1) Let V be S-open in Z. Since g is S-irresolute, g−1(V ) is S-open in Y. Since f is S-irresolute,

f−1(g−1(V )) is S-open in X. Since f and g are bijections, (g ◦ f)−1(V ) is S-open in X. Therefore g ◦ f is

S-irresolute.
(2),(3) and (4) are obvious.

(5) Let V be S-open in Z. Since g is S-continuous, g−1(V ) is S-open in Y. Since f is S-irresolute, f−1(g−1(V ))

is S-open in X. Since f and g are bijections, (g ◦ f)−1(V ) is S-open in X. Therefore g ◦ f is S-continuous.

(6) obvious.

Theorem 5.5. Let f : (X, τ, S1) → (Y, σ, S2) and g : (Y, σ, S2) → (Z, δ, S3) be bijection mappings. If

1. f is S-continuous and g is strongly S-continuous, then g ◦ f is S-irresolute.

2. f is S-continuous and g is strongly S-continuous, then g ◦ f is S-continuous.

3. f is S-continuous and g is continuous, then g ◦ f is S-continuous.

Proof. (1) Let V be S-open in Z. Since g is strongly S-continuous, g−1(V ) is open in Y. Since f is S-continuous,

f−1(g−1(V )) is S-open in X. Since f and g are bijections, (g ◦ f)−1(V ) is S-open in X. Therefore g ◦ f is

S-irresolute.
(2) Obvious.

(3) Let V be open in Z. Since g is continuous, g−1(V ) is open in Y. Since f is S-continuous, f−1(g−1(V )) is

S-open in X. Since f and g are bijections, (g ◦ f)−1(V ) is S-open in X. Therefore g ◦ f is S-continuous.

22



V.THAMARAISELVI, P.SIVAGAMI and G.HARI SIVA ANNAM

Theorem 5.6. Let f : (X, τ, S1) → (Y, σ, S2) and g : (Y, σ, S2) → (Z, δ, S3) be bijection mappings. If

1. f is continuous and g is strongly continuous, then g ◦ f is S-continuous.

2. f is continuous and g is strongly S-continuous, then g ◦ f is strongly S- continuous.

3. f is S-continuous and g is strongly S-continuous, then g ◦ f is S-irresolute.

Proof.

1. Let V be open in Z. Since g is continuous, g−1(V ) is open in Y. Since f is continuous f−1(g−1(V )) is open in

X.Since f and g are bijections, (g ◦ f)−1(V ) is open in X and hence (g ◦ f)−1(V ) is S-open in X. Therefore g ◦ f
is S-continuous.

2. Let V be S-open in Z. Since g is strongly S-continuous, g−1(V ) is open in Y. Since f is continuous f−1(g−1(V ))

is open in X.Since f and g are bijections, (g ◦ f)−1(V ) is open in X. Therefore g ◦ f is strongly S-continuous.

3. obvious.
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