

A study on continuous functions in semi prime ideal space

V.Thamaraiselvi^{1*}, P.Sivagami², G.Hari Siva Annam³ ¹Research scholar, Reg.No:19222102092016,
PG and Research Department of Mathematics, Kamaraj college, Thoothukudi-628003, India. ORCID: 0000-0001-5441-4987
²PG and Research Department of Mathematics, Kamaraj college, Thoothukudi-628003, India. ORCID: 0000-0002-2035-5306
³PG and Research Department of Mathematics, Kamaraj college, Thoothukudi-628003, India. ORCID: 0000-0002-2035-5306

Abstract: In this paper new type of continuous functions namely S-continuous introduced in semi prime ideal space and compare with continuous function in topological space and study some of their properties. Also we introduced strongly S-continuous and S-irresolute in semi prime ideal space and compared with S-continuous in semi prime ideal space. Totally S-continuous and contra S-continuous were introduced and discussed.

Key words: S-continuous, strongly S-continuous, totally S-continuous.

1. Introduction

Ideals in a topological space (X, τ) is treated in the classic text by Kuratowski [7]. An ideal I on a topological space (X, τ) is a non empty collection of subsets of X which satisfies (i) $A \in I$ and $B \subseteq A$ implies $B \in I$. (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. A topological space together with an ideal I is called an ideal topological space and denoted by (X, τ, I) . He also defined the local function for each subset of X with respect to an ideal I and τ . Given a topological space (X,τ) with an ideal I on X and if $\rho(X)$ is the set of all subsets of X, a set operator $(.)^* : \rho(X) \to \rho(X)$ called a local function of A with respect to τ and I is defined as follows: For $A \subseteq X, A^*(I,\tau) = \{x \in X/U \cap A \notin I \text{ for every } U \in r(x)\}$ where $r(x) = \{U \in \tau/x \in U\}$. A kuratowski closure operator $(cl)^*(.)$ for a topology $\tau^*(I,\tau)$ called *-topology finer than τ is defined by $(cl)^*(A) = A \cup A^*(I,\tau)$. We denote A^* for $A^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$. Further Vaidyanathaswamy [12] extended the study of ideals and local functions. The properties of the topology generated by the ideal I and τ , called the star topology which is finer than τ , denoted by τ^* are studied by Vaidyanathaswamy, Hashimoto, Hayashi and Samuels [4]. In 1990, Jankovic and Hamlet [3] in addition to their findings, consolidated all the results. A function $f:(X,\tau)\to(Y,\sigma)$ is said to be continuous if inverse image of every open in Y is open in X. Let $f: X \to Y$ and $f: Y \to Z$ be two bijection mappings. Then $g \circ f : Y \to Z$ is also bijection mapping and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. In 2021 we introduced prime ideals in topological space and study some properties [10]. Also we introduced semi prime ideal space in a topological space [11]. In this research paper we introduced S-continuous, strongly S-continuous and S-irresolutu in semi prime ideal.space and discussed.

[©]Asia Mathematika, DOI: 10.5281/zenodo.7551542

^{*}Correspondence: thamarai4208@gmail.com

2. Preliminaries

Definition 2.1. A semi-prime ideal S on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in S$ and $B \subseteq A$ implies $B \in S$. (ii) $A \cap B \in S$ and $A \in S$ implies $B \in S$. The space (X, τ, S) is said to be a semi-prime ideal space.

Definition 2.2. Given a topological space (X, τ) with a semi prime ideal S on X and if $\rho(X)$ is the set of all subsets of X, a set operator $(.)_S^* : \rho(X) \to \rho(X)$ is called a semi prime local function of A with respect to τ and S is defined as follows: For $A \subseteq X, A_S^*(S, \tau) = \{x \in U/U \cap A \notin SforeveryU \in r(x)\}$ where $r(x) = \{U \in \tau/x \in U.$

Definition 2.3. A subset A of a semi prime ideal space (X, τ, S) is said to be S-closed if $A_S^* \subseteq A$.

Definition 2.4. A subset A of a semi prime ideal space (X, τ, S) is S-open if its complement is S-closed.

Result 2.1. Every open is S-open.

Definition 2.5. A subset A of a semi prime ideal space is said to be S-clopen if it is both S-closed and S-open.

Definition 2.6. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be totally continuous if inverse image of every open in Y is clopen in X.

Definition 2.7. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be contra continuous if inverse image of every open in Y is closed in X.

Definition 2.8. Let (X, τ) be a topological space and let $x \in X$. Then the neighbourhood of x is an open set of X containing x.

3. Continuous functions in semi prime ideal space

In this section we defined S-continuous and discussed some properties.

Definition 3.1. A function $f: (X, \tau, S) \to (Y, \sigma)$ is said to be S-continuous if inverse image of every open in Y is S-open in X.

Example 3.1. Consider the semi prime ideal space

 $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, S = \{\phi, \{a\}, \{b\}, \{a, b\}\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{b\}, X\}. \text{ Define } f : (X, \tau, S) \to (Y, \sigma) \text{ by } f(a) = b, f(b) = c, f(c) = a. \text{ Then } f \text{ is } S\text{-continuous.}$

Definition 3.2. A function $f: (X, \tau, S_1) \to (Y, \sigma, S_2)$ is said to be S-irresolute if the inverse image of every S-open in Y is S-open in X.

Example 3.2. Consider the semi prime ideal spaces $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, S = \{\phi, \{a\}, \{b\}, \{a, b\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{b\}, X\}.$ Define $f : (X, \tau, S) \to (Y, \sigma, S)$ by f(a) = b, f(b) = c, f(c) = a. Then f is S-irresolute.

Definition 3.3. A function $f: (X, \tau) \to (Y, \sigma, S)$ is said to be strongly S-continuous if inverse image of every S-open in Y is open in X.

Example 3.3. Consider the semi prime ideal space $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$, and $Y = \{a, b, c\}$, $\sigma = \{\phi, \{b\}, X\}, S = \{\phi, \{a\}, \{b\}, \{a, b\}$. Define $f : (X, \tau) \to (Y, \sigma, S)$ by f(a) = b, f(b) = c, f(c) = a. Then f is strongly S-continuous. Theorem 3.1. Every continuous is S-continuous.

Proof. Let $f: (X, \tau, S) \to (Y, \sigma)$ be a continuous function and let U be any open in Y. Since f is continuous, $f^{-1}(U)$ is open in X and hence $f^{-1}(U)$ is S-open in X. Therefore f is S-continuous.

Remark 3.1. The converse of the above theorem need not be true as shown in the following example.

Example 3.4. Consider the semi prime ideal space $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$, and $Y = \{a, b, c\}$, $\sigma = \{\phi, \{a\}, \{b, c\}, X\}, S = \{\phi, \{a\}, \{b\}, \{a, b\}$. Define $f : (X, \tau, S) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Then f is S-continuous but not continuous.

Theorem 3.2. Every strongly S-continuous is continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma, S)$ be strongly S-continuous and let U be any open set in Y. Since every open is S-open, U is S-open. Since f is strongly S-continuous, $f^{-1}(U)$ is open in X and hence f is continuous.

Remark 3.2. The converse of the above theorem need not be true as shown in the following example.

Example 3.5. Consider the semi prime ideal space $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$, and $Y = \{a, b, c\}$, $\sigma = \{\phi, \{a\}, X\}, S = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Define $f : (X, \tau) \to (Y, \sigma, S)$ by f(a) = a, f(b) = b, f(c) = c. Then f is continuous but not strongly S-continuous.

Theorem 3.3. Every strongly S-continuous is S-continuous.

Proof. Obvious.

Remark 3.3. The converse of the above theorem need not be true as shown in the following example.

Example 3.6. Consider the semi prime ideal space $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$, $S_1 = \{\phi, \{a\}, \{c\}, \{a, c\}\}$ and $Y = \{a, b, c\}$, $\sigma = \{\phi, \{a\}, X\}, S_2 = \{\phi, \{a\}, \{b\}, \{a, b\}$. Define $f : (X, \tau, S_1) \to (Y, \sigma, S_2)$ by f(a) = a, f(b) = b, f(c) = c. Then f is S-continuous but not strongly S-continuous.

Theorem 3.4. every irresolute is S-continuous.

Proof. Let $f: (X, \tau, S_1 \to (Y, \sigma, S_2 \text{ be S-irresolute and U be open in Y. Since every open is S-open, U is open. Since f is S-irresolute, <math>f^{-1}(U)$ is S-open in X and hence f is S-continuous.

Remark 3.4. The converse of the above theorem need not be true as shown in the following example.

Example 3.7. Consider the semi prime ideal space $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$, $S_1 = \{\phi, \{a\}, \{c\}, \{a, c\}\}$ and $Y = \{a, b, c\}$, $\sigma = \{\phi, \{a\}, X\}, S_2 = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Define $f : (X, \tau, S_1) \to (Y, \sigma, S_2)$ by f(a) = a, f(b) = b, f(c) = c. Then f is S-continuous but not S-irresolute.

Theorem 3.5. Every strongly S-continuous is S-irresolute.

Proof. Let $f : (X, \tau, S_1 \to (Y, \sigma, S_2)$ be strongly S-continuous and U be S-open in Y. Since f is strongly S-continuous, $f^{-1}(U)$ is open in X. Since every open is S-open, $f^{-1}(U)$ is S-open in X and hence f is irresolute. \Box

Remark 3.5. The converse of the above theorem need not be true as shown in the following example.

Example 3.8. Consider the semi prime ideal space $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$, $S_1 = \{\phi, \{a\}, \{c\}, \{a, c\}\}$ and $Y = \{a, b, c\}$, $\sigma = \{\phi, \{a\}, X\}, S_2 = \{\phi, \{a\}, \{b\}, \{a, b\}$. Define $f : (X, \tau, S_1) \to (Y, \sigma, S_2)$ by f(a) = a, f(b) = c, f(c) = b. Then f is S-irresolute but not strongly S-continuous.

Example 3.9. The concepts continuous and S-irresolute are independent to each other. For, consider the semi prime ideal space $X = \{a, b, c\}$,

 $\tau = \{\phi, \{a\}, \{b, c\}, X\} \ , \ S_1 = \{\phi, \{a\}, \{c\}, \{a, c\}\} \ and \ Y = \{a, b, c\},$

 $\sigma = \{\phi, \{a\}, X\}, S_2 = \{\phi, \{a\}, \{b\}, \{a, b\}.$ Define $f : (X, \tau, S_1) \to (Y, \sigma, S_2)$ by f(a) = a, f(b) = b, f(c) = c. Then f is not S-irresolute but continuous.

Consider the semi prime ideal space $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$,

 $S_1 = \{\phi, \{a\}, \{b\}, \{a, b\}\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{a\}, \{b, c\}, X\},\$

 $S_2 = \{\phi, \{a\}, \{c\}, \{a, c\}\}$. Define $f: (X, \tau, S_1) \rightarrow (Y, \sigma, S_2)$ by f(a) = a, f(b) = c, f(c) = b. Then f is S-irresolute but not continuous.

Theorem 3.6. Let $f: (X, \tau, S_1) \to (Y, \sigma, S_2)$ be a function. Then

- 1. f is S-continuous iff inverse image of every closed in Y is S-closed in X.
- 2. f is S-irresolute iff inverse image of every S-closed set in Y is S-closed in X.
- 3. f is strongly S-continuous iff inverse image of every S-closed in Y is closed in X

Proof. Obvious

Theorem 3.7. Let X and Y be topological spaces and $f: X \to Y$. Then f is S-continuous iff for each $x \in X$ and each neighbourhood V of f(x), there is a S-neighbourhood U of x such that $f(U) \subset V$.

Proof. Let V be neighbourhood in f(x). Since f is S-continuous, $f^{-1}(V)$ is S-open in X. Let $U = f^{-1}(V)$. Then U is S-open and hence S-neighbourhood of x which gives $f(U) \subset V$.

Conversely assume that for each $x \in X$ and each neighbourhood V of f(x), there is a S-neighbourhood U of x such that $f(U) \subset V$. Let B be open set in Y and let $x \in f^B$. Then $f(x) \in B$ and hence B is a neighbourhood of f(x). By assumption, there is a S-neighbourhood A_x of x such that $f(A_x) \subset B$. Then $A_x \subset f^{-1}(B)$ for each x. This gives $f^{-1}(B) = \bigcup A_x$. Since every A_x is S-open, $\bigcup A_x$ is S-open which gives $f^{-1}(B)$ is open and hence f is S-continuous.

4. Contra and totally continuous in semi prime ideal space

In this section we defined contra S-continuous in semi prime ideal space and compared with continuous functions. Also we defined totally S-continuous functions and discussed.

Definition 4.1. A function $f: (X, \tau, S) \to (Y, \sigma)$ is said to be contra S-continuous if inverse image of every open in Y is S-closed in X.

Example 4.1. Consider the semi prime ideal space $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\},$ $S = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{b\}, X\}.$ Define $f : (X, \tau, S) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is contra S-continuous.

Definition 4.2. A function $f: (X, \tau, S) \to (Y, \sigma)$ is said to be totally S-continuous if inverse image of every open is S-clopen in X.

Example 4.2. Consider the semi prime ideal space $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, S = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{b\}, X\}.$ Define $f : (X, \tau, S) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is totally S-continuous.

Theorem 4.1. Every totally S-continuous is contra S-continuous.

Proof. Let $f: (X, \tau, S) \to (Y, \sigma)$ be totally S-continuous and U be open set in Y. Since f is totally S-continuous $f^{-1}(U)$ is S-clopen in X. Therefore $f^{-1}(U)$ is S-closed and hence f is contra S-continuous.

Example 4.3. The converse of above theorem is not always true. For Consider the semi prime ideal space $X = \{a, b, c\}, \tau = \{\phi, \{b, c\}, X\},\$

 $S = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{a\}, X\}.$ Define

 $f: (X, \tau, S) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Then f is contra S-continuous but not totally S-continuous.

Theorem 4.2. Every contra continuous is contra S-continuous.

Proof. Let $f: (X, \tau, S) \to (Y, \sigma)$ be contra continuous and U be open set in Y. Since f is contra continuous $f^{-1}(U)$ is S-closed in X. Since every closed is S-closed, $f^{-1}(U)$ is S-closed in X and hence f is contra S-continuous.

Example 4.4. The converse of above theorem is not always true. For Consider the semi prime ideal space $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\},$

 $S = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{b\}, X\}$. Define

 $f: (X, \tau, S) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is contra S-continuous but not contra continuous.

Theorem 4.3. Every totally continuous is totally S-continuous.

Proof. Let $f: (X, \tau, S) \to (Y, \sigma)$ be totally continuous and U be open set in Y. Since f is totally continuous $f^{-1}(U)$ is clopen in X. Since every clopen is S-clopen, $f^{-1}(U)$ is S-clopen in X and hence f is totally S-continuous.

Example 4.5. The converse of above theorem need not be always true. For Consider the semi prime ideal space $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\},$

$$\begin{split} S &= \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{b\}, X\}. \text{ Define} \\ f : (X, \tau, S) \rightarrow (Y, \sigma) \text{ by } f(a) = b, f(b) = c, f(c) = a. \text{ Then } f \text{ is totally S-continuous but not totally continuous.} \end{split}$$

Theorem 4.4. every totally continuous is contra S-continuous.

Proof. Obvious.

V.THAMARAISELVI, P.SIVAGAMI and G.HARI SIVA ANNAM

Example 4.6. The converse of above theorem need not be always true. For consider the semi prime ideal space $X = \{a, b, c\}, \tau = \{\phi, \{b, c\}, X\},$ $S = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{a\}, X\}.$ Define $f : (X, \tau, S) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Then f is contra S-continuous but not totally continuous.

Theorem 4.5. Every totally S-continuous is S-continuous.

Proof. Let $f: (X, \tau, S) \to (Y, \sigma)$ be totally S-continuous and U be open set in Y. Since f is totally S-continuous, $f^{-1}(U)$ is S-clopen in X and hence S-open in X. Therefore f is S-continuous.

Example 4.7. The converse of above theorem need not be always true. For consider the semi prime ideal space $X = \{a, b, c\}, \tau = \{\phi, \{b, c\}, X\},$ $S = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\} \text{ and } Y = \{a, b, c\}, \sigma = \{\phi, \{a\}, X\}.$ Define $f : (X, \tau, S) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Then f is S-continuous but not totally S-continuous.

5. composition of functions in semi prime ideal space

In this section we discussed about the composition of continuous functions in semi prime ideal space.

Theorem 5.1. Let $f: (X, \tau, S_1) \to (Y, \sigma, S_2)$ and $g: (Y, \sigma, S_2) \to (Z, \delta, S_3)$ be bijection mappings. If

- 1. f is strongly S-continuous and g is strongly S-continuous, then $g \circ f$ is strongly S-continuous.
- 2. f is strongly S-continuous and g is strongly S-continuous, then $g \circ f$ is continuous.
- 3. f is strongly S-continuous and g is strongly S-continuous, then $g \circ f$ is S-continuous.
- 4. f is strongly S-continuous and g is strongly S-continuous, then $g \circ f$ is S-irresolute.

Proof.

- Let V be S-open in Z. Since g is strongly S-continuous, g⁻¹(V) is open in Y and hence g⁻¹(V) is S-open in Y. Since f is strongly S-continuous, f⁻¹(g⁻¹(V)) is open in X. Since f and g are bijections, (g ∘ f)⁻¹(V) is open in X. Therefore g ∘ f is strongly S-continuous.
 - (2),(3) and (4) are obvious.

Theorem 5.2. Let $f: (X, \tau, S_1) \to (Y, \sigma, S_2)$ and $g: (Y, \sigma, S_2) \to (Z, \delta, S_3)$ be bijection mappings. If

- 1. f is strongly S-continuous and g is S-irresolute, then $g \circ f$ is strongly S-continuous.
- 2. f is strongly S-continuous and g is S-irresolute, then $g \circ f$ is continuous.
- 3. f is strongly S-continuous and g is S-irresolute, then $g \circ f$ is S-continuous.
- 4. f is strongly S-continuous and g is S-irresolute, then $g \circ f$ is S-irresolute.

Proof.

- 1. Let V be S-open in Z. Since g is S-irresolute, $g^{-1}(V)$ is S-open in Y. Since f is strongly S-continuous, $f^{-1}(g^{-1}(V))$ is open in X. Since f and g are bijections, $(g \circ f)^{-1}(V)$ is open in X. Therefore $g \circ f$ is strongly S-continuous.
 - (2),(3) and (4) are obvious.

Theorem 5.3. Let $f: (X, \tau, S_1) \to (Y, \sigma, S_2)$ and $g: (Y, \sigma, S_2) \to (Z, \delta, S_3)$ be bijection mappings. If

- 1. f is strongly S-continuous and g is S-continuous, then $g \circ f$ is continuous.
- 2. f is strongly S-continuous and g is S-continuous, then $g \circ f$ is S-continuous.
- 3. f is strongly S-continuous and g is continuous, then $g \circ f$ is continuous.
- 4. f is strongly S-continuous and g is continuous, then $g \circ f$ is S-continuous.

Proof.

- 1. Let V be open in Z. Since g is S-continuous, $g^{-1}(V)$ is S-open in. Since f is strongly S-continuous, $f^{-1}(g^{-1}(V))$ is open in X. Since f and g are bijections, $(g \circ f)^{-1}(V)$ is open in X. Therefore $g \circ f$ is continuous.
 - (2),(3) and (4) are obvious.

Theorem 5.4. Let $f: (X, \tau, S_1) \to (Y, \sigma, S_2)$ and $g: (Y, \sigma, S_2) \to (Z, \delta, S_3)$ be bijection mappings. If

- 1. f is S-irresolute and g is S-continuous, then $g \circ f$ is continuous.
- 2. f is strongly S-continuous and g is S-irresolute, then $g \circ f$ is S-irresolute.
- 3. f is S-irresolute and g is strongly S-continuous, then $g \circ f$ is S-irresolute.
- 4. f is S-irresolute and g is strongly S-continuous, then $g \circ f$ is S-continuous.
- 5. f is S-irresolute and g is S-continuous, then $g \circ f$ is S-continuous.
- 6. f is S-irresolute and g is continuous, then $g \circ f$ is S-continuous.

Proof. (1) Let V be S-open in Z. Since g is S-irresolute, $g^{-1}(V)$ is S-open in Y. Since f is S-irresolute, $f^{-1}(g^{-1}(V))$ is S-open in X. Since f and g are bijections, $(g \circ f)^{-1}(V)$ is S-open in X. Therefore $g \circ f$ is S-irresolute.

(2),(3) and (4) are obvious.

(5) Let V be S-open in Z. Since g is S-continuous, $g^{-1}(V)$ is S-open in Y. Since f is S-irresolute, $f^{-1}(g^{-1}(V))$ is S-open in X. Since f and g are bijections, $(g \circ f)^{-1}(V)$ is S-open in X. Therefore $g \circ f$ is S-continuous. (6) obvious.

Theorem 5.5. Let $f: (X, \tau, S_1) \to (Y, \sigma, S_2)$ and $g: (Y, \sigma, S_2) \to (Z, \delta, S_3)$ be bijection mappings. If

- 1. f is S-continuous and g is strongly S-continuous, then $g \circ f$ is S-irresolute.
- 2. f is S-continuous and g is strongly S-continuous, then $g \circ f$ is S-continuous.
- 3. f is S-continuous and g is continuous, then $g \circ f$ is S-continuous.

Proof. (1) Let V be S-open in Z. Since g is strongly S-continuous, $g^{-1}(V)$ is open in Y. Since f is S-continuous, $f^{-1}(g^{-1}(V))$ is S-open in X. Since f and g are bijections, $(g \circ f)^{-1}(V)$ is S-open in X. Therefore $g \circ f$ is S-irresolute.

(2) Obvious.

(3) Let V be open in Z. Since g is continuous, $g^{-1}(V)$ is open in Y. Since f is S-continuous, $f^{-1}(g^{-1}(V))$ is S-open in X. Since f and g are bijections, $(g \circ f)^{-1}(V)$ is S-open in X. Therefore $g \circ f$ is S-continuous.

Theorem 5.6. Let $f: (X, \tau, S_1) \to (Y, \sigma, S_2)$ and $g: (Y, \sigma, S_2) \to (Z, \delta, S_3)$ be bijection mappings. If

- 1. f is continuous and g is strongly continuous, then $g \circ f$ is S-continuous.
- 2. f is continuous and g is strongly S-continuous, then $g \circ f$ is strongly S- continuous.
- 3. f is S-continuous and g is strongly S-continuous, then $g \circ f$ is S-irresolute.

Proof.

- 1. Let V be open in Z. Since g is continuous, $g^{-1}(V)$ is open in Y. Since f is continuous $f^{-1}(g^{-1}(V))$ is open in X. Since f and g are bijections, $(g \circ f)^{-1}(V)$ is open in X and hence $(g \circ f)^{-1}(V)$ is S-open in X. Therefore $g \circ f$ is S-continuous.
- 2. Let V be S-open in Z. Since g is strongly S-continuous, $g^{-1}(V)$ is open in Y. Since f is continuous $f^{-1}(g^{-1}(V))$ is open in X. Since f and g are bijections, $(g \circ f)^{-1}(V)$ is open in X. Therefore $g \circ f$ is strongly S-continuous.
- 3. obvious.

Acknowledgment

I thank S.A for her trust on me and support my work. Also I thank my T.A for her new ideas to my research and supporting for me.

References

- A.Acikgoz, T.noiri and Yuksel. A decomposition of continuity in ideal topological spaces, Acta Math.Hunger., 105, No.4(2004), 285-289.
- [2] A.Ozkurt, Some generelizations of local continuity in ideal topological spaces, Scientific studies and research series Mathematics and Informatics, 24, No.1 (2014) 75-80.
- [3] D.Jankovic and T.R.Hamlett, New topologies from old ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [4] E.Hayashi. Topolgies defined by local properties, Math.Ann., 156 (1964), 205-215.
- [5] I.Rajasekaran and O.Nethaji. Unified approach of several sets in ideal nanotopological spaces, Asia Mathematika, 3(1)(2019), 70-78
- [6] I.Rajasekaran and O.Nethaji. An introductory notes to ideal nano topological spaces, Asia Mathematika, 3(1)(2019), 47-59.
- [7] K.Kuratowski. Topology, New York, Academic Press, 1966.
- [8] M.E.Abd EI.Monsef, E.F.Lashien and A.A.Nasef, On I-open sets and I-continuous functions, Kyungpook Math.J., 32 No.1 (1992), 21-30.
- [9] N.Levine. A decomposition of continuity in topological spaces, Amer. Math. Monthly.,68(1961),44-46.
- [10] P.Sivagami, V.Thamaraiselvi, G.Hari Siva Annam. Study on new type of ideal in topological spaces, Strad Research (2021).
- [11] P.Sivagami, V.Thamaraiselvi, G.Hari Siva Annam. A study on new type of ideal in topological spaces, J.Math.Comput.Sci.(2022).
- [12] R.vaidyanathaswamy. The localism theory in set topology, Acad.Sci., 20(1945), 51-61.
- [13] S.Fomin. Extensions of topological spaces, Ann. of Math., 44(1943), 471-480.
- [14] S.Ganesan, C.Alexander, M.Sugapriya and N.Aishwarya, Decomposition of $n\alpha$ -continuity and n^*u_{α} -continuity, Asia mathematika, volume 1, issue2.(2020),109-116.