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A note on SDD invariants of clump graphs with Girth size at most three
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Abstract: The symmetric division deg invariant is one of the 200 discrete Adriatic indices introduced several years

ago. This SDD invariant has been already proved a valuable invariant in the QSAR(Quantitative Structure Activity

Relationship) and QSPR(Quantitative Structure Property Relationship) studies. In this article, we present on exact

values of SDD invariants of inorganic Clump graphs with girth size at most three.
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1. Introduction

All the inorganic graphs, unless otherwise specified, are finite, undirected, connected, and simple. Molecular

descriptors, being numerical functions of molecular structure, play a prominent role in mathematical chemistry

and are used in QSAR and QSPR studies [8] that relate biological or chemical properties of molecules to

specific molecular descriptors [3]. Many molecular descriptors are defined as functions of the structure of the

underlying molecular graph, such as the Wiener invariant [10], the Zagreb invariant [5] and Balaban invariants

[2]. D.Vukicevic et al. proved that many of these descriptors are defined as individual bond contributions.

Among the 200 discrete Adriatic invariants studied in [11], whose predictive properties were evaluated against

the benchmark datasets of the International Academy of Mathematical Chemistry [6], 20 invariants were selected

as significant predictors of physiochemical properties. The Symmetric division deg index is one of the discrete

Adriatic indices which is a good predictor of total surface area for polychlorobiphenyls and some of the results

on symmetric division deg index are also found in [3]. In [1], obtained an expression to introduce the symmetric

division deg invariant of some derived graphs and its complements and also [7][] introduce a splice graph and

its operations like edge subdivision, edge neighborhood subdivision, vertex neighborhood subdivision, vertex

subdivision graphs,In this note we concentrated on inorganic clump graphs with a grith size of at most three.

The girth of a graph is the length of the shortest cycle contained in a graph and is denoted by [g]. Since a tree

has no cycles, we define its girth as infinity. It is shown that a complete graph with n-1 regular graphs shares

many properties with a girth of size almost three.

2. Some clump graphs

From a chemical point of view, graphs with large number of edges may be considered as representations of

inorganic clumps, called clump graphs. Bearing this in mind, we consider have the graphs obtained from the

complete graphs Ks by removing some of its edges. In this section, we establish SDD invariant of following

four types of clump graphs.
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Type I Let ei, i = 1, 2, ..., t, 1 ≤ t ≤ s − 2 be distinct edges of the complete graphs Ks, s ≥ 3 all

being incident to a single vertex. The graph Kas(t) is obtained by deleting ei, i = 1, 2, ..., t from Ks. Note

that Kas(0) ∼= Ks.

Type II Let e
′

i, i = 1, 2, ..., t, 1 ≤ t ≤
⌊
s
2

⌋
be independent edges of the complete graph Kbs(t) is obtained

by deleting e
′

i, i = 1, 2, ..., t from Ks. Note that Kbs(0) ∼= Ks.

Type III Let Vt be a t element subset of the vertex set of ks, 2 ≤ t ≤ s− 1, s ≥ 3. The graph Kcs(t) is

obtained by deleting from Ks all the edges connecting pairs of vertices from Vt. Note that Kcs(0) ∼= Kcs(1) ∼=
Ks.

Type IV Let s ≥ 3, 3 ≥ t ≥ s. The graph Kds(t) is obtained by deleting from Ks the edges belonging

to a t−membered cycles.

Theorem 2.1. For [g], s ≥ 3 and 1 ≤ t ≤ s − 2, , SDD(Kas(t)) = t(t − 1) + (s − t − 1)(s − t − 2) +

2(s−1)2+t2−2t(s−1)
(s−1) + t(s− t− 1)

[
2s2−6s+5
(s−2)(s−1)

]
.

Proof: One can see that the graph Kas(t) has s vertices and s(s−1)
2 − t edges. We can partition the

edges set of Kas(t) as follows;

E1 =
{
a1a2|λKas(t)(a1) = s− 1− t, λKas(t)(a2) = s− 1

}
.

E2 =
{
a1a2|λKas(t)(a1) = s− 1, λKas(t)(a2) = s− 2

}
.

E3 =
{
a1a2|λKas(t)(a1) = s− 2, λKas(t)(a2) = s− 1

}
.

E4 =
{
a1a2|λKas(t)(a1) = s− 1, λKas(t)(a2) = s− 1

}
.

Clearly E(Kas(t)) = E1 ∪ E2 ∪ E3 ∪ E4 and |E1| = s − t − 1, |E2| = t(t−1)
2 , |E3| = t(s − t − 1),

|E4| = (s−t−1)(s−t−2)
2 . Hence

SDD(Kas(t)) =

4∑
i=1

∑
a1a2∈Ei

λKas(t)(a1)
2 + λKas(t)(a2)

2

λKas(t)(a1)λKas(t)(a2)

= (s− t− 1)
[ (s− t− 1)2 + (s− 1)2

(s− t− 1)(s− 1)

]
+

t(t− 1)

2

[ (s− 2)2 + (s− 2)2

(s− 2)(s− 2)

]
+ t(s− t− 1)

[ (s− 2)2 + (s− 1)2

(s− 2)(s− 1)

]
+

(s− t− 1)(s− t− 2)

2

[ (s− 1)2 + (s− 1)2

(s− 1)(s− 1)

]
=

(s− t− 1)2 + (s− 1)2

(s− 1)
+

t(t− 1)

2

[2(s− 2)2

(s− 2)2

]
+ t(s− t− 1)

[ (s− 2)2 + (s− 1)2

(s− 2)(s− 1)

]
+

(s− t− 1)(s− t− 2)

2

[2(s− 1)2

(s− 1)2

]
= t(t− 1) + (s− t− 1)(s− t− 2) +

2(s− 1)2 + t2 − 2t(s− 1)

(s− 1)

+ t(s− t− 1)
[ 2s2 − 6s+ 5

(s− 2)(s− 1)

]
.

Theorem 2.2. For [g], s ≥ 3 and 1 ≤ t ≤
⌊
t
2

⌋
, SDD(Kbs(t)) = 2t(s − 2t)

[
2s2−6s+5
(s−2)(s−1)

]
+ 2t(2t − 1) + (s −
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2t)(s− 2t− 1)− 2t.

Proof: One can easily check that the number of vertices and number of edges of Kbs(t) are respectively,

s and s(s−1)
2 − t. We can partition the edges set of Kbs(t) as follows;

E1 =
{
a1a2|λKbs(t)(a1) = s− 2, λKbs(t)(a2) = s− 1

}
.

E2 =
{
a1a2|λKbs(t)(a1) = s− 1, λKbs(t)(a2) = s− 1

}
.

E3 =
{
a1a2|λKbs(t)(a1) = s− 2, λKbs(t)(a2) = s− 2

}
.

We can observe that |E1| = 2t(s − 2t), |E2| = (s−2t)(s−2t−1)
2 , |E3| =

(
2t(2t−1)

2

)
− t and E(Kbs(t)) =

E1 ∪ E2 ∪ E3. Thus

SDD(Kbs(t)) =

3∑
i=1

∑
a1a2∈Ei

λKbs(t)(a1)
2 + λKbs(t)(a2)

2

λKbs(t)(a1)λKbs(t)(a2)

= 2t(s− 2t)
[ (s− 2)2 + (s− 1)2

(s− 2)(s− 1)

]
+

(s− 2t)(s− 2t− 1)

2

[ (s− 1)2 + (s− 1)2

(s− 1)(s− 1)

]
+

(2t(2t− 1)

2
− t

)[ (s− 2)2 + (s− 2)2

(s− 2)(s− 2)

]
= 2t(s− 2t)

[ (s− 2)2 + (s− 1)2

(s− 2)(s− 1)

]
+

(s− 2t)(s− 2t− 1)

2

[2(s− 1)2

(s− 1)2

]
+

(2t(2t− 1)

2
− t

)[2(s− 2)2

(s− 2)2

]
= 2t(s− 2t)

[ 2s2 − 6s+ 5

(s− 2)(s− 1)

]
+ 2t(2t− 1) + (s− 2t)(s− 2t− 1)− 2t.

Theorem 2.3. For [g], s ≥ 3 and 2 ≤ t ≤ s− 1, SDD(Kcs(t)) = (s− t)(s− t− 1) + t
[
(s−t)2+(s−1)2

(s−1)

]
.

Proof: One can see that |V ((Kcs(t)))| = s and |E((Kcs(t)))| = (s−t)(s−t−1)
2 . Moreover we can partition

the edge set of the graph Kcs(t)) as follows;

E1 =
{
a1a2|λKcs(t)(a1) = s− t, λKcs(t)(a2) = s− 1

}
and |E1| = (s− t)t and

E2 =
{
a1a2|λKcs(t)(a1) = s− 1, λKcs(t)(a2) = s− 1

}
and |E2| = (s−t)(s−t−1)

2 . Hence

SDD(Kcs(t)) =

2∑
i=1

∑
a1a2∈Ei

λKcs(t)(a1)
2 + λKcs(t)(a2)

2

λKcs(t)(a1)λKcs(t)(a2)

= (s− t)t
[ (s− t)2 + (s− 1)2

(s− t)(s− 1)

]
+

(s− t)(s− t− 1)

2

[ (s− 1)2 + (s− 1)2

(s− 1)(s− 1)

]
= t

[ (s− t)2 + (s− 1)2

(s− 1)

]
+

(s− t)(s− t− 1)

2

[2(s− 1)2

(s− 1)2

]
= (s− t)(s− t− 1) + t

[ (s− t)2 + (s− 1)2

(s− 1)

]
.
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Theorem 2.4. For [g], s ≥ 3 and 2 ≤ t ≤ s−1, SDD(Kds(t)) = t(t−3)+(s−t)(s−t−1)+
(
st−t2

)[
2s2−8s+10
(s−3)(s−1)

]
.

Proof: Note that |V (Kds(t))| = s and |E((Kds(t)))| = s(s−1)
2 − t. Form the structure of the graph

Kds(t) we have following edge partitions;

E1 =
{
a1a2|λKds(t)(a1) = s− 3, λKds(t)(a2) = s− 3

}
.

E2 =
{
a1a2|λKds(t)(a1) = s− 3, λKds(t)(a2) = s− 1

}
.

E3 =
{
a1a2|λKds(t)(a1) = s− 1, λKds(t)(a2) = s− 1

}
.

Moreover, |E1| = t(t−1)
2 − t, |E2| = t(s− t), |E3| = (s−t)(s−t−1)

2 .

SDD(Kds(t)) =

3∑
i=1

∑
a1a2∈Ei

λKds(t)(a1)
2 + λKds(t)(a2)

2

λKds(t)(a1)λKds(t)(a2)

=
( t(t− 1)

2
− t

)[ (s− 3)2 + (s− 3)2

(s− 3)(s− 3)

]
+

(
t(s− t)

)[ (s− 3)2 + (s− 1)2

(s− 3)(s− 1)

]
+
( (s− t)(s− t− 1)

2

)[ (s− 1)2 + (s− 1)2

(s− 1)(s− 1)

]
=

( t(t− 1)

2
− t

)[2(s− 3)2

(s− 3)2

]
+

(
t(s− t)

)[ (s− 3)2 + (s− 1)2

(s− 3)(s− 1)

]
+
( (s− t)(s− t− 1)

2

)[2(s− 1)2

(s− 1)2

]
=

( t(t− 1)

2
− t

)(
2
)
+
(
t(s− t)

)[ (s− 3)2 + (s− 1)2

(s− 3)(s− 1)

]
+
( (s− t)(s− t− 1)

2

)(
2
)

= t(t− 1)− 2t+ (st− t2)
[ (s− 3)2 + (s− 1)2

(s− 3)(s− 1)

]
+(s− t)(s− t− 1)

= t(t− 3) + (s− t)(s− t− 1) +
(
st− t2

)[ 2s2 − 8s+ 10

(s− 3)(s− 1)

]
.

3. Conclusion

In this note we have exhibited the existence of inorganic clump graphs and also evinced the exact values of SDD

invariants of graphs with grith size atmost three.
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