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Abstract: This study develops a solution approach of multi-objective linear programming problem (molp -problem) in

non-deterministic way. Here each objective function of molp -problem corresponds a decision set in which each decision

is described in virtue of three independent states : degree of acceptance, degree of hesitation and degree of rejection.

By cultivation of experts’ hesitancy independently, the decision making becomes more realistic and promising in today’s

complexity. Taking intersection of all these sets, optimal decision of molp -problem is drawn. The methodology is based

on a principle that expert always wishes to elevate the acceptance part and put back the hesitation and rejection part

of overall decision. A suitable solution algorithm is developed. The proposed model is applied on two practical fields to

measure its competency. After comparing and analysing the outcomes with the existing approach, a validation on the

efficiency of present framework is drawn.

Key words: Linear programming problem; function of acceptance, hesitation and rejection; neutrosophic set; multi-

objective optimization.

1. Introduction

In the present real scenario, the information regarding any fact are incomplete and imprecise in nature due to ill

human observation and consequently, making decision in respective ground is almost impossible in a straight way.

Experts have to undergo through a confused state almost in every cases. There are a lot of parameters involved

in a decision making and these affect the decision directly or indirectly with different degrees of presence. For

instance, ruined economic structure of a society may call an obstacle in the smooth run of a nearer market or

the political turmoil in a duration may inhibit the economic development of a country, though the other factors

are as good as. These are two examples of indirect factor. Again, in a production house, all products may not

be of standard quality to be produced in the market or all quality products may not be sold at a unique price.

Similarly, due to varying market, the price of raw material or the maintenance cost of factory is not fixed. Hence

it is clear that decision making should not be deterministic (i.e., the approach taken should not be in classical

sense). It needs some special management to reach at probable fair outcome. Most of the optimization model

in real state direct the multi-objective linear programming problem (molp-problem) and objectives are there

conflicting in nature. Naturally, a compromise solution is reached and it fulfills all objectives with a degree

of satisfaction. Probability theory, fuzzy set theory and its extensions are all reliable mathematical tools in

that concern. Probability theory is based on classical set and is applied only on random process. Fuzzy set

theory [30] tells about how much an element belongs to a set and it is measured on [0,1]. Then non-belonging

of the element to this set is automatically described by the complement of belonging. Intuitionistic fuzzy set

(ifs) theory [2] admits the degree of belonging and non-belonging of an element simultaneously, and these are
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individually measured on [0,1] so that their sum is restricted on [0,1] also. But there are certain real facts where

we may get the tri-component outcomes as occurred in casting of poll by an elector, forecasting on the result of

a sports event and in many decision makings. Such facts can not be analysed perfectly by fuzzy set or ifs due

to their structural characteristics. Under neutrosophic set (nts) theory [26, 27], an element is designed by three

independent characters namely acceptance, hesitation, rejection so that their sum lies in [−0, 3+] . The middle

character of nts brings an opportunity to the researchers to handle the real life decision making problem in a

more precise way. Here, expert has a flexibility to stand independently at a neutral zone between yes and no in

making any decision. ifs only tackle incomplete information not indeterminate, but nts tackle both. So nts

theory is the more generalized thought for modelling optimization and decision making based on uncertainty.

Researchers developed different optimization techniques in fuzzy and intuitionistic fuzzy sense for decision

making with uncertainty. Zimmermann [31, 32] first took an attempt to solve the fuzzy multi-objective pro-

gramming. Tang and Wang [28] developed a model of fuzzy nonlinear programming problems in manufacturing

systems and its optimization technique using genetic algorithm to find a family of solutions with acceptable

membership degrees instead of having exact optimal solution. Angelov [1] used ifs theory to solve optimiza-

tion problem. A fuzzy optimization method for multi criteria decision making problem based on the inclusion

degrees of ifs was proposed by Luo and Yu [20]. Nagorgani [21] presented a structure of intuitionistic fuzzy

linear programming problem ( lp-problem) and its solution approach in which decision variable, the coefficients

of objective function and constraints were all taken as triangular intuitionistic fuzzy number. Based on ifs

representation, Dubey et al. [14] designed an lp-problem under interval uncertainty by taking non-membership

function with respect to three different viewpoints viz. , optimistic, pessimistic, and mixed. These formations

along with their indeterminacy factors provides a S-shaped membership functions in the fuzzy counterparts of

the intuitionistic fuzzy linear programming models. Bharatiand and Singh [12] took the intersection of various

intuitionistic fuzzy decision sets corresponding to each objective function towards solving a molp-problem. A

solution approach of nonlinear programming problem over ifs was managed by Singh and Yadav [25] using

the concept of component wise optimization technique. A model of multi-objective optimization problem was

developed by Firoz [16] where the uncertain parameters were described as intuitionistic fuzzy numbers. To solve

this model, he developed an interactive neutrosophic programming approach. Pramanik [22] extended Zimmer-

mann’s approach to solve a neutrosophic molp-problem. Bera and Mahapatra [4–11] modified the structure of

lp-problem by use of neutrosophic numbers in several directions to mitigate the complexity of decision making

with uncertainty and applied these in different practical fields to ensure its’ competency. Khalifa and Kumar

[17] presented a structure of fully neutrosophic lp-problem and its solution approach. Several models of lp-

problem were designed over ifs and nts by Loganathan and Lalitha [19], Edalatpanah [15], Basumatary and

Broumi [3], Khatter [18], Das and Dash [13] and others. They proposed different ranking functions to convert

these models into its’ crisp forms. Rahaman et al [23] brought a decision making approach based on fuzzy

parameterized hypersoft set theory.

This study develops a solution algorithm of molp-problem in non-deterministic approach. Each objective

function of molp-problem corresponds a neutrosophic decision set. Then, by taking the intersection of all these

sets, optimal decision set of molp-problem is reached. The methodology is based on a principle that expert

always wishes to elevate the acceptance part and put back the hesitation and rejection part of overall decision.

The efficiency of proposed model is examined on two practical fields. The design of study is made as follow.

Some useful results are highlighted in Section 2. The proposed model and an efficient algorithm towards

solving of an molp-problem are drawn in Section 3. Section 4 illustrates the methodology by two real life
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examples. A proper validation is drawn after comparing the outcomes in existing frame. A brief note of the

study, its limitation and future direction are stated in Section 5.

2. Preliminaries

We recall some necessary definitions and results to make out the main thought.

Definition 2.1. [12] A crisp molp-problem for k number of objective functions, l number of constraints and

n decision variables is designed as :

optimize gs(x), 1 ≤ s ≤ k (1)

subject to ρi(x) = σi, 1 ≤ i ≤ l

x = (x1, x2, · · · , xn) ≥ 0

A solution x0 (say) will be a complete optimal for the problem (1), if gs(x0) ≥ gs(x) (for maximize function)

and gs(x0) ≤ gs(x) (for minimize function) for all x and 1 ≤ s ≤ k . But such solution x0 which will optimize

all objective functions simultaneously, generally does not exist, more specifically if the objectives are conflicting

in nature. To overcome it, the Pareto optimality concept was welcome.

x0 is a Pareto optimal solution of the molp-problem (1), if gs(x0) ≥ gs(x) for all s and gs(x0) > gs(x) for

atleast one s (for maximize function). For minimize function, it is gs(x0) ≤ gs(x) for all s and gs(x0) < gs(x)

for atleast one s .

Definition 2.2. [31] Zimmermann designed the molp-problem (1) in fuzzy climate when all objectives are to

be maximized as :

Find x = (x1, x2, · · · , xn) (2)

subject to gs(x) ⪰ Us, 1 ≤ s ≤ k

ρi(x) = σi, 1 ≤ i ≤ l

x = (x1, x2, · · · , xn) ≥ 0

Here Us be the lowest permitted value and objective functions are all taken as fuzzy constraints. If µs be the

membership value corresponding to objective function gs(x) for 1 ≤ s ≤ k , then the feasible solution of the

system is characterized by µ = min{µs : 1 ≤ s ≤ k} . The final decision is now obtained by solving the following

problem in crisp sense :

maxµ (3)

subject to µs(x) ≥ µ, 1 ≤ s ≤ k

ρi(x) = σi, 1 ≤ i ≤ l

x = (x1, x2, · · · , xn) ≥ 0

Definition 2.3. [26, 27, 29] An nts T̃ defines an object y of the universe X in virtue of three independent

characters namely acceptance (λT̃ ), hesitation (ζT̃ ) and rejection (ξT̃ ). Thus T̃ is displayed as : T̃ = {<
y, (λT̃ (y), ζT̃ (y), ξT̃ (y)) >: y ∈ X} where λT̃ , ζT̃ , ξT̃ are standard or non-standard subset of ]−0, 1+[ with

−0 ≤ λT̃ (y) + ζT̃ (y) + ξT̃ (y) ≤ 3+ .
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When the three components of an nts are standard subset of ]−0, 1+[ (i.e., the member of [0, 1] only),

it is called single valued neutrosophic (SV-nts) set. Thus an SV-nts set P̃ is designed as : P̃ = {<
y, (λP̃ (y), ζP̃ (y), ξP̃ (y)) >: y ∈ X} where λP̃ , ζP̃ , ξP̃ : X → [0, 1] and 0 ≤ λP̃ (y) + ζP̃ (y) + ξP̃ (y) ≤ 3.

Definition 2.4. [4] The intersection of two nts M̃, Ñ defined over the common universe X is denoted by

M̃ ∩ Ñ = Ṽ and is defined by : Ṽ = {< x, λṼ (x), ζṼ (x), ξṼ (x) >: x ∈ X} where λṼ (x) = λ
M̃
(x) ∗

λÑ (x), ζṼ (x) = ζ
M̃
(x) ⋄ ζÑ (x), ξṼ (x) = ξ

M̃
(x) ⋄ ξÑ (x). ‘∗ ’and ‘⋄ ’respectively refers t - norm and t - conorm.

a ∗ b = min{a, b} and a ⋄ b = max{a, b} are two examples of t - norm and t - conorm respectively.

3. Proposed model for solving molp-problem

The solution procedure of an molp-problem is managed under neutrosophic environment in a distinct style. A

suitable algorithm is also designed in order to that.

Proposition 3.1. (Solution approach) In neutrosophic environment, expert wishes to elevate the acceptance

part and put back the hesitation and rejection part of objective value and constraints both. To attain it, the

problem is solved first as a single objective under the given constraints for each objective function. All objective

values are then worked out with respect to each solution obtained as displayed by Table [? ] (for the problem

(1)). Here gs(xs)
∗ is the optimal value with respect to the decision variable set xs obtained from sth single

Table 1. Table for the values of objective functions.

Decision variable g1 g2 · · · gk
x1 = (x1

1, · · · , x1
n) g1(x1)

∗ g2(x1) · · · gk(x1)
x2 = (x2

1, · · · , x2
n) g1(x2) g2(x2)

∗ · · · gk(x2)
...

...
...

. . .
...

xk = (xk
1 , · · · , xk

n) g1(xk) g2(xk) · · · gk(xk)
∗

objective problem for 1 ≤ s ≤ k . With the values calculated corresponding to each column of Table 1, the

functions for three neutrosophic components are set (see the algorithm part for detail). The molp-problem (1)

is then arranged in neutrosophic atmosphere as follows :

maxλr(x), min ζr(x), min ξr(x) (4)

subject to λr(x) ≥ ζr(x), λr(x) ≥ ξr(x),

ζr(x) ≥ 0, ξr(x) ≥ 0,

λr(x) + ζr(x) + ξr(x) ≤ 3,

x = (x1, x2, · · · , xn) ≥ 0

for 1 ≤ r ≤ k + l and x ∈ X

where λr(x), ζr(x), ξr(x) respectively represent the acceptance, hesitation, rejection part of the solution x to the

rth nts and X be the full solution set.

Let Õ and C̃ be the integrated neutrosophic objective and constraints respectively. The decision set is
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then defined by the intersection of these i.e.,

Õ ∩ C̃ = {< x,min(λÕ(x), λC̃(x)),max(ζÕ(x), ζC̃(x)),max(ξÕ(x), ξC̃(x)) >: x ∈ X}

where

Õ = {< x, λÕ(x), ζÕ(x), ξÕ(x) >: x ∈ X}

= {< x,min
s

λg
s(x),max

s
ζgs (x),max

s
ξgs (x) >: x ∈ X},

C̃ = {< x, λC̃(x), ζC̃(x), ξC̃(x) >: x ∈ X}

= {< x,min
i

λρ
i (x),max

i
ζρi (x),max

i
ξρi (x) >: x ∈ X} and

min(λÕ(x), λC̃(x)) =
k+l
min
r=1

λr(x) = λ̃(x) (say),

max(ζÕ(x), ζC̃(x)) =
k+l
max
r=1

ζr(x) = ζ̃(x) (say),

max(ξÕ(x), ξC̃(x)) =
k+l
max
r=1

ξr(x) = ξ̃(x) (say).

Here λ̃, ζ̃, ξ̃ respectively indicate the acceptance, hesitation, rejection component of neutrosophic decision set

of the problem. Now for this decision set,

λ̃(x) ≤ λr(x), ζ̃(x) ≥ ζr(x), ξ̃(x) ≥ ξr(x) for 1 ≤ r ≤ k + l

Hence it can be presented by the following inequalities for the lowest state of acceptance ‘a ’, highest state of

hesitation ‘b ’ and highest state of rejection ‘c ’ related to objective and constraints as :

a ≤ λr(x), b ≥ ζr(x), c ≥ ξr(x), for 1 ≤ r ≤ k + l

a ≥ b, a ≥ c,

b ≥ 0, c ≥ 0,

0 ≤ a+ b+ c ≤ 3

To optimize in neutrosophic ground, the problem (1) is then finally designed as :

max(a− b− c) (5)

subject to a ≤ λr(x), b ≥ ζr(x), c ≥ ξr(x), for 1 ≤ r ≤ k + l

a ≥ b, a ≥ c,

b ≥ 0, c ≥ 0,

0 ≤ a+ b+ c ≤ 3,

x = (x1, x2, · · · , xn) ≥ 0

Now using simplex method, the system (5) provides the solution of problem (1).

Proposition 3.2. (Solution algorithm)

The solution of problem is managed here using the steps stated below.

Step 1 : Solve the problem as a single objective with respect to all given constraints for the first objective
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function. Evaluate decision variables and the value of respective objective function.

Step 2 : Calculate the value of remaining objective functions of the problem with these decision variables.

Step 3 : Perform the Step 1 and Step 2 for other objective functions of the problem similarly.

Step 4 : Draw a table (Table [1]) to put all objective values obtained in Step 1, Step 2, Step 3 at a glance.

Step 5 : Find the higher (Hs) and lower (Ls) value corresponding to each column of objective function

gs, 1 ≤ s ≤ k in the Table [1].

Step 6 : When objective function is of maximization, for all 1 ≤ s ≤ k , set

Hs
λ = max{gs(xj) : 1 ≤ j ≤ k}, Ls

λ = min{gs(xj) : 1 ≤ j ≤ k} for acceptance

Hs
ζ = Hs

λ − t

1 + t
(Hs

λ − Ls
λ), L

s
ζ = Ls

λ, t ∈ (0, 1) for hesitation

Hs
ξ = Hs

λ − t(Hs
λ − Ls

λ), L
s
ξ = Ls

λ, for rejection.

When objective function is of minimization, for all 1 ≤ s ≤ k , set

Hs
λ = max{gs(xj) : 1 ≤ j ≤ k}, Ls

λ = min{gs(xj) : 1 ≤ j ≤ k} for acceptance

Hs
ζ = Hs

λ, L
s
ζ = Ls

λ − t

1 + t
(Hs

λ − Ls
λ), t ∈ (0, 1) for hesitation

Hs
ξ = Hs

λ, L
s
ξ = Ls

λ − t(Hs
λ − Ls

λ), for rejection.

Step 7 : Construct the function of acceptance λs(gs) , hesitation ζs(gs) and rejection ξs(gs) for each objective

function gs, 1 ≤ s ≤ k as follows :

λs(gs(x)) =


0, while gs(x) ≤ Ls

λ
gs(x)−Ls

λ

Hs
λ−Ls

λ
, while Ls

λ ≤ gs(x) ≤ Hs
λ

1, while gs(x) ≥ Hs
λ.

ζs(gs(x)) =


1, while gs(x) ≤ Ls

ζ
Hs

ζ−gs(x)

Hs
ζ−Ls

ζ
, while Ls

ζ ≤ gs(x) ≤ Hs
ζ

0, while gs(x) ≥ Hs
ζ .

ξs(gs(x)) =


1, while gs(x) ≤ Ls

ξ
Hs

ξ−gs(x)

Hs
ξ−Ls

ξ
, while Ls

ξ ≤ gs(x) ≤ Hs
ξ

0, while gs(x) ≥ Hs
ξ .
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Step 8 : Draw a crisp lp-problem equivalent to the molp-problem (1) as :

max(a− b− c) (6)

subject to, λs(gs(x)) ≥ a,

ζs(gs(x)) ≤ b,

ξs(gs(x)) ≤ c,

0 ≤ b ≤ a,

0 ≤ c ≤ a,

0 ≤ a+ b+ c ≤ 3,

ρi(x) = σi,

1 ≤ i ≤ l,

1 ≤ s ≤ k,

x ≥ 0.

Step 9 : Solve the problem (6) using any suitable usual method.

Remark 3.1. From algorithm, it is clear that different functions for two neutrosophic components namely

hesitation and rejection are formed at different states of t ∈ (0, 1) . Consequently, the objective functional value

of system (6) i.e., max(a− b− c) is changed at different ‘t ’. But, whatever the state of t ∈ (0, 1) is applied, the

system (6) always provides optimal solution to the problem at each ‘t ’ and these solutions may be distinct (see

the application part : Sec4), if the problem admits an optimal solution. Decision makers then have a flexibility

to chose and implement the suitable optimal solution with a degree of satisfaction (a− b− c) in the demand of

situation arisen.

Remark 3.2. (Drawback of existing methods)

There are different solution approaches of molp-problem with uncertainty under distinct atmosphere. Following

drawbacks of existing literatures, we note.

1. Bharatiand and Singh [12] developed the solution algorithm of molp-problem in intuitionistic fuzzy sense

where all objective functions are maximization in nature. No view on minimization character was sighted therein.

Further as this study was driven under ifs atmosphere, experts’ hesitancy were not included independently in

the experimental data and thus there was a question on the fair outcome.

2. Singh and Yadav [25] used to practice the component wise optimization technique to optimize intuitionistic

fuzzy non-linear programming problem in manufacturing industry. So uncertainty and vagueness was not treated

precisely as ifs does not allow to practice the indeterminacy nature independently. The model was on single

objective treatment. In real state, one always wishes to elevate the level of acceptance of a decision and lower

down its level of rejection. No attempt on this angle was seen, and thus the matter of experts’ satisfaction was

omitted there.
3. The notion of molp-problem in neutrosophic state was studied by Pramanik [22]. But he only considered the

set of maximize objective functions. Further, no insight on the construction of neutrosophic components for the

coefficients of objective function was given and the model was not demonstrated practically. So a clear picture

of this study was not displayed to the beginners.

4. A solution approach of multi-objective intuitionistic fuzzy non-linear programming problem was brought by
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Loganathan and Lalitha [19]. All intuitionistic fuzzy numbers were defuzzified therein to solve the problem in

conventional way. So no new angle was seen in this attempt.

Remark 3.3. (Impact of present study)

The methodology to draw a conclusion of molp-problem designed in this text is reliable, realistic and timeliness.

Followings arguments support this truth.

1. In the solution approach, the decision set is defined by taking intersection of objective functions and the set

of constraints in neutrosophic sense. Then expert’s hesitancy is treated independently and it is not possible in

fuzzy or intuitionistic fuzzy state. Thus experts can take their opinions towards any decision making in a more

flexible way.

2. There is a scope to elevate the degree of acceptance of a decision and to lower down its degree of hesitation

and rejection. Thus the methodology does not only provide us a decision of an molp-problem but also brings a

perfection to that.

3. The method provides the set of solutions of a molp-problem with different degrees of satisfaction to the

experts. Thus there will be an opportunity to set a strategy of problem to the experts in their own rights.

4. The method is also applicable for a molp-problem with the objective functions in conflicting nature (i.e.,

maximization and minimization character). Thus the limitation of existing approaches (where objective functions

are of maximization characters only) are overcome.

4. Application of proposed approach

The competency of proposed solution approach is examined here. Two real life examples of molp-problem are

drawn and are solved with the help of solution methodology presented in this study. The outcome is analyzed

and compared in existing frame.

Example 4.1. A pharmaceutical company is going to develop a low energy high protein nutritional supplement

in three forms (B1 : Cereals, B2 : Dry powder, B3 : Liquid) under the supervision of a panel of nutritionists.

These are produced by the variation of quantity of content e.g., energy, protein, carbohydrate, fat, vitamin,

mineral. The current portfolio estimated by the panel is now available by Table 2. Based on the information,

evaluate the unit of nutritional supplement required for an adult in a month which the company can provide to

customers at a minimum cost keeping the maximum profit but assuring the quality. Let, the unit of nutrition

Table 2. Estimation of various subjects related to production.

Nutrient Unit /100 gm B1 B2 B3 Requirement / month
Energy kcal 170 200 185 ≤ 18000
Protein gm 10 11 9 ≥ 950

Carbohyd gm 70 79 75 ≤ 7250
Fat gm 2.5 2 1.5 ≤ 185

Vitamin C mg 130 145 135 ≥ 13000
Iron mg 35 40 38 ≤ 3700

Unit profit Rs 21 24 22.5 max
Unit cost Rs 58 67 60 min
Quality percent 80 77 82 max

B1 , B2 , B3 required for an adult in a month be x1, x2, x3 respectively. Mathematically, the problem is then
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designed as :

max {g1 = 21x1 + 24x2 + 22.5x3}

min {g2 = 58x1 + 67x2 + 60x3}

max {g3 = 80x1 + 77x2 + 82x3}

subject to 170x1 + 200x2 + 185x3 ≤ 18000

10x1 + 11x2 + 9x3 ≥ 950

70x1 + 79x2 + 75x3 ≤ 7250

2.5x1 + 2x2 + 1.5x3 ≤ 185

130x1 + 145x2 + 135x3 ≥ 13000

35x1 + 40x2 + 38x3 ≤ 3700

x1, x2, x3 ≥ 0

The proposed approach is now illustrated step-wise as stated in solution algorithm.

Step 1, Step 2, Step 3, Step 4 :

Solution with respect to g1 is : x1 = 23.10345, x2 = 34.72906, x3 = 38.52217 .

Solution with respect to g2 is : x1 = 24.37500, x2 = 38.12500, x3 = 31.87500 .

Solution with respect to g3 is : x1 = 27.20000, x2 = 24.00000, x3 = 46.00000 .

The objective values with respect to these solutions are provided by Table 3. Step 5 : The higher and

Table 3. Objective values with respect to the solutions.

(x1, x2, x3) g1 g2 g3
(23.10345, 34.72906, 38.52217) 2185.42∗ 5978.18 7681.23
(24.37500, 38.12500, 31.87500) 2144.06 5880.63∗ 7499.38
(27.20000, 24.00000, 46.00000) 2182.20 5945.60 7796∗

lower values of objective functions are as follows.

H1 = 2185.42 H2 = 5978.18 H3 = 7796

L1 = 2144.06 L2 = 5880.63 L3 = 7499.38

Step 6 : The higher and lower values of three neutrosophic components corresponding to each objective function

are set as follows. For objective function g1 ,

H1
λ = 2185.42, L1

λ = 2144.06

H1
ζ = 2185.42− 41.36× t

1 + t
, L1

ζ = 2144.06, t ∈ (0, 1)

H1
ξ = 2185.42− 41.36× t, L1

ξ = 2144.06
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For objective function g2 ,

H2
λ = 5978.18, L2

λ = 5880.63

H2
ζ = 5978.18, L2

ζ = 5880.63− 97.55× t

1 + t
, t ∈ (0, 1)

H2
ξ = 5978.18, L2

ξ = 5880.63− 97.55× t.

For objective function g3 ,

H3
λ = 7796, L3

λ = 7499.38

H3
ζ = 7796− 296.62× t

1 + t
, L3

ζ = 7499.38, t ∈ (0, 1)

H3
ξ = 7796− 296.62× t, L3

ξ = 7499.38

Step 7 : Followings are the functions of acceptance, hesitation and rejection for three objective functions.

λ1(g1) =
g1 − 2144.06

41.36
, ζ1(g1) =

2185.42− 41.36× t
1+t − g1

41.36× 1
1+t

, ξ1(g1) =
2185.42− 41.36× t− g1

41.36× (1− t)

λ2(g2) =
g2 − 5880.63

97.55
, ζ2(g2) =

5978.18− g2

97.55× 1+2t
1+t

, ξ2(g2) =
5978.18− g2
97.55× (1 + t)

λ3(g3) =
g3 − 7499.38

296.62
, ζ3(g3) =

7796− 296.62× t
1+t − g3

296.62× 1
1+t

, ξ3(g3) =
7796− 296.62× t− g3

296.62× (1− t)
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Step 8 : The molp-problem is now converted into a crisp lp-problem as follows :

max = a− b− c

21x1 + 24x2 + 22.5x3 − 2144.06 ≥ 41.36× a,

2185.42− 41.36× t

1 + t
− (21x1 + 24x2 + 22.5x3) ≤ 41.36× b

1 + t
,

2185.42− 41.36× t− (21x1 + 24x2 + 22.5x3) ≤ 41.36× c× (1− t),

58x1 + 67x2 + 60x3 − 5880.63 ≥ 97.55× a,

5978.18− (58x1 + 67x2 + 60x3) ≤ 97.55× b× (1 + 2t)

1 + t
,

5978.18− (58x1 + 67x2 + 60x3) ≤ 97.55× c× (1 + t),

80x1 + 77x2 + 82x3 − 7499.38 ≥ 296.62× a,

7796− 296.62× t

1 + t
− (80x1 + 77x2 + 82x3) ≤ 296.62× b

1 + t
,

7796− 296.62× t− (80x1 + 77x2 + 82x3) ≤ 296.62× c× (1− t),

b ≤ a,

c ≤ a,

a+ b+ c ≤ 3,

0 ≤ b,

0 ≤ c,

170x1 + 200x2 + 185x3 ≤ 18000,

10x1 + 11x2 + 9x3 ≥ 950,

70x1 + 79x2 + 75x3 ≤ 7250,

2.5x1 + 2x2 + 1.5x3 ≤ 185,

130x1 + 145x2 + 135x3 ≥ 13000,

35x1 + 40x2 + 38x3 ≤ 3700,

x1, x2, x3 ≥ 0,

0.1 ≤ t ≤ 0.9;

Step 9 : For different t , several optimal stages are shown in Table 4 using software LINGO. Corresponding

final optimal values for objective functions are given in Table 5 for different t .

Proposition 4.1. (Analysis of results and validation of methodology)

The developed method provides the set of solutions with different degrees of satisfaction to the experts. Then

experts may have a flexibility to choose a suitable optimal solution in demand of situation arisen. For the present

problem, it is seen from Table 4 that the difference between acceptance part of a decision set and its sum of

hesitation and rejection part goes towards perfection (i.e., a−b−c goes towards 1) as t tends to 1. More clearly,

this perfection arises when the higher value (lower value) of both hesitation and rejection part of a decision set

are far from the higher value (lower value) of acceptance part for maximize (minimize) objective (see the Step 6

of algorithm). It is also seen that as t raises, both hesitation and rejection part of a decision gradually decrease

whatever the state of acceptance value is. Thus the model directs the experts not only to find a decision of an
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Table 4. Several stages for optimal solutions of Example [? ] in nts .

t x1 x2 x3 a b c a− b− c
0.1 24.92621 29.95515 41.84944 0.7852400 0.1362360 0.1351101 0.5138940
0.2 24.54591 30.95119 41.15523 0.7493202 0.1008157 0.9801529E-01 0.5504892
0.3 24.17727 31.91668 40.48232 0.7145019 0.7114758E-01 0.6735866E-01 0.5759956
0.4 23.82759 32.83250 39.84401 0.6814746 0.4593561E-01 0.4218576E-01 0.5933532
0.5 23.49967 33.69133 39.24543 0.6505027 0.2424595E-01 0.2155196E-01 0.6047048
0.6 23.19400 34.49190 38.68747 0.6216321 0.5388669E-02 0.4630888E-02 0.6116125
0.7 23.10345 34.72906 38.52217 0.6130791 0.1931560E-04 0.1604063E-04 0.6130438
0.8 23.10345 34.72906 38.52217 0.6130791 0.1887859E-04 0.1514949E-04 0.6130451
0.9 23.10345 34.72906 38.52217 0.6130791 0.1850402E-04 0.1435215E-04 0.6130463

Table 5. Optimal values for objective functions

t max g1 min g2 max g3
0.1 2183.99 5963.68 7732.30
0.2 2184.29 5966.71 7721.64
0.3 2184.58 5969.64 7711.32
0.4 2184.85 5972.42 7701.52
0.5 2185.11 5975.03 7692.33
0.6 2185.35 5977.45 7683.77
0.7 2185.42 5978.18 7681.23
0.8 2185.42 5978.18 7681.23
0.9 2185.42 5978.18 7681.23

molp-problem but also to make a perfection of that. Moreover as the decision making in uncertain climate,

by instinct, is full of hesitancy and indeterminacy, so hesitancy of experts should be cultivated more precisely

on setting a decision. Therefore outcome of a decision making over nts is much better than in fuzzy or ifs

climate.

Further, let us consider the problem stated by Roy and Das [24] and also the methodology designed

therein. For that problem, a comparison of outcomes obtained by two methodologies is now drawn in Table 6. In

earlier method, infeasible solutions are appeared at some stages, and setting of neutrosophic components for each

objective function require two indicators (i.e., t and λ). This increases the number of stages for optimality, and

then it may bring a lot of confusion to decision maker to opt the suitable one. Again, no any development for a

molp-problem with minimize objective function is seen there. They made an attempt to elevate the trustiness,

ambiguity of a decision and to lower down its falsity status. In practical arena, one always tries to get a reliable

end over its ambiguity and falsity. All these regards ensure the superiority of present study.

Example 4.2. A jeweller wishes to make three types of ornaments viz. necklace, bracelet and ear ring for

her business purpose. To these, she likes to use lesser quantity of costly metal (pure gold, silver) and greater

quantity of cheap metal (palladium, nickel). The following Table 7 provides all necessary information. With

respect to provided data, find out the number of ornaments to be produced by jeweller monthly to attain the

maximum profit by minimizing the metal cost and making charge.

Suppose, the number of necklace, bracelet and ring to be made per month be x1, x2, x3 respectively.
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Table 6. Comparison of outcomes for the problem defined in [24].

Methodology → Roy and Das [24] Bera and Mahapatra
Objective value 1.391557 0.4864383

a 0.5308708 0.5308708
b 0.4135885 0.4443252E-01
c 0.5308708 0.0
x 65.25714 65.25714
y 26.91871 26.91871
z 49.83236 49.83236
t 0.8 0.8
λ 0.1 to 0.9 NA

Objective value 1.123483 0.3271771
a 0.5308708 0.5308708
b 0.6174164E-01 0.2036938
c 0.5308708 0.0
x 65.25714 65.25714
y 26.91871 26.91871
z 49.83236 49.83236
t 0.5 0.5
λ 0.1 to 0.9 NA

Objective value 0.1588747
a 0.5308708
b 0.2567809
c 0.1152153
x infeasible solution 65.25714
y found 26.91871
z 49.83236
t 0.4 0.4
λ 0.1 to 0.9 NA

Objective value -0.2061023E-01
a 0.5308708
b 0.3098679
c 0.2416131
x infeasible solution 65.25714
y found 26.91871
z 49.83236
t 0.3 0.3
λ 0.1 to 0.9 NA

Table 7. Estimation of various subjects related to production.

Metal Unit 1 Necklace 2 Bracelet 2 Ear ring Availability / month
Gold gm 10 10.5 4 ≤ 810
Silver gm 9.8 11 2.5 ≤ 770
Nickel gm 10 8 3 ≥ 675

Palladium gm 8 9 3 ≥ 650
Unit profit Rs 9800 10000 3500 max
Metal cost Rs 48750 52000 17000 min

Making charge Rs 5800 5400 2800 min
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Mathematically, the problem is then designed as :

max {g1 = 9800x1 + 10000x2 + 3500x3}

min {g2 = 48750x1 + 52000x2 + 17000x3}

min {g3 = 5800x1 + 5400x2 + 2800x3}

subject to 10x1 + 10.5x2 + 4x3 ≤ 810

9.8x1 + 11x2 + 2.5x3 ≤ 770

10x1 + 8x2 + 3x3 ≥ 675

8x1 + 9x2 + 3x3 ≥ 650

x1, x2, x3 ≥ 0

Solution with 1st objective is : x1 = 60.91549, x2 = 10.70423, x3 = 22.11268 .

Solution with 2nd objective is : x1 = 25.68182, x2 = 26.36364, x3 = 69.09091 .

Solution with 3rd objective is : x1 = 31.16776, x2 = 37.33553, x3 = 21.54605 .

The objective values with respect to these solutions are provided by Table 8.

Table 8. Objective values with respect to the solutions.

(x1, x2, x3) g1 g2 g3
(60.91549, 10.70423, 22.11268) 781408.50∗ 3899119.88 473028.19
(25.68182, 26.36364, 69.09091) 757136.42 3796159∗ 484772.76
(31.16776, 37.33553, 21.54605) 754210.52 3825600.32 442713.80∗

Several optimal stages are shown in Table 9 with different t using software LINGO. Hence, max g1 =

Table 9. Several stages for optimal solutions of Example 4.2

t x1 x2 x3 a b c a− b− c
0.1 53.22448 14.12245 32.36736 0.7817131 0.2000963 0.1984426 0.3831741
0.2 53.22448 14.12245 32.36736 0.7817131 0.1871031 0.1819057 0.4127043
0.3 53.22448 14.12245 32.36736 0.7817131 0.1773581 0.1679130 0.4364420
0.4 53.22448 14.12245 32.36736 0.7817131 0.1697787 0.1559192 0.4560152
0.5 53.22448 14.12245 32.36736 0.7817131 0.1637152 0.1455246 0.4724733
0.6 53.22448 14.12245 32.36736 0.7817131 0.1587541 0.1364293 0.4865297
0.7 53.22448 14.12245 32.36736 0.7817131 0.1546199 0.1284041 0.4986892
0.8 53.22448 14.12245 32.36736 0.7817131 0.1511217 0.1212705 0.5093209
0.9 53.22448 14.12245 32.36736 0.7817131 0.1481233 0.1148878 0.5187020

776110.16, min g2 = 3876644.70, min g3 = 475591.82 for all t .

5. Conclusion

This study finds an non-deterministic solution approach of molp-problem. To emphasize the hesitancy of

experts in decision making, the methodology is developed over nts theory. Here an molp-problem is primarily

treated as a number of single objective crisp lp-problem under the asset of provided constraints. Each objective

function corresponds a neutrosophic decision set. The intersection of all these set admits an optimal decision

set of molp-problem. A suitable algorithm is furnished to sketch this solution approach. It is illustrated on
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two real grounds. The approach directs the experts not only to find a decision of an molp-problem but also

to make a perfection of that by elevating its acceptance level and lower down its hesitancy and rejection level.

A comparative analysis on the outcomes of application field over nts , fuzzy and ifs environment is also done.

In today’s uncertain state, this model ensures the trustiness of the worked out solution over its ambiguity and

falsities.

But we welcome a software based algorithm and flow chart to attain a quick outcome of problem. We are

also looking forward to solve multi-objective nonlinear programming problems under this setting in near future.
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