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Abstract: In this study, we give the Cauchy-length formula for the homothetic motions in generalized complex plane

Cp and we express a geometric interpretation of this formula when this length is constant in Cp . Then, we calculate the

area formula of the non linear points for the homothetic motions in Cp and we express this area formula with respect to

the Cauchy length formula. Moreover, for non linear three points we give new version of Holditch theorem during the

homothetic motions in Cp . Consequently, we obtain some conclusions. Therefore, Holditch theorem in this study is the

most general theorem including all the studies for planar motions so far.
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1. Introduction

Mechanics, a subbranch of physics, is the science which studies motion and equilibrium. Mechanics can be

divided into three chapters: Kinematics, Dynamics and Statics. Kinematics, one of the subbranch of mechanics,

is the science that studies the way the geometric properties of material systems change over time. The formation

of kinematics belongs to Ampère (1775-1836), who founded this science and named it [1]. Kinematics tries to

determine how the object motions, what trajectory it goes on, what its location, velocity and acceleration are at

any moment, without taking into account the forces acting on the object. Dynamics is the science that studies

motion by considering the forces that create and change the motions of material systems. The fundamental

quantities in kinematics are time and length when in dynamics, there are three fundamental quantities: time,

length and mass. Therefore, kinematics becomes a science between dynamics and geometry.

In different spaces and dimensions, kinematics was studied by many scientists. In Euclidean and complex

planes the planar motions with one parameter were expressed by Müller [2]. Then, in Lorentzian plane the

same motions were given by Ergin [3] and Görmez [4]. After that, for hyperbolic planes the planar motions were

expressed by Yüce and Kuruoǧlu [5]. In addition to that, these motions for Galilean planes were obtained Akar

and Yüce [6]. The Holditch theorem given by Holditch [7] is one of the remarkable expressions of kinematics.

The most important part of this classic Holditch theorem given by Holditch is that the area of the trajectory

during the motion is independent of the drawn curve. Therefore, thanks to this feature, many scientists started

to study this theorem. On the other hand, Steiner expressed the area of the trajectory in terms of Steiner

points for one-parameter planar motions [8, 9]. Later, many scientists generalized Holditch theorem and the

area formula in different ways and perspectives [2, 10–26].
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2. Preliminaries

Any generalized complex number is expressed Z = (z, w) or Z = z + iw and the number system consisting of

these numbers includes ordinary (when p+ q2
/
4 is negative), dual (zero) and double (positive) numbers where

i2 = (q, p), (i2 = iq + p) and z, w, q, p ∈ R [27, 29, 31]. In this study, we assume that q = 0 and i2 = p ∈ R
(−∞ < p <∞). Therefore, we study in generalized complex number system

Cp =
{
z + iw : z, w ∈ R, i2 = p ∈ R

}
.

Some operations defined on this system are as follows. If we take two numbers Z1 = z1+iw1, Z2 = z2+iw2 ∈ Cp

therefore, we define that the addition of this numbers as

Z1 ± Z2 = (z1 + iw1)± (z2 + iw2) = (z1 ± z2) + i(w1 ± w2).

In addition to that, the product in system Cp is

Mp(Z1, Z2) = (z1z2 + pw1w2) + i(z1w2 + z2w1)

[27–29]. In addition to that, we suppose that z 1 = z1 + iw1, z 2 = z2 + iw2 ∈ Cp are position vectors of Z1 ,

Z2 . Therefore, the scalar product can be expressed as

⟨z1, z2⟩p = Re (Mp (z 1, z̄ 2)) = Re (Mp (z̄ 1, z 2)) = z1w1 − pz2w2

[27]. In addition, the p−magnitude of Z = z + iw ∈ Cp is

|Z|p =
√∣∣Mp(Z,Z)

∣∣ = √
|z2 − pw2|

where ”− ” is the ordinary complex conjugation, [27]. On the other hand, the unit circle is defined as |Z|p = 1

in Cp . Therefore, the unit circles in this plane are given for the special cases of p in Figure 1.

Figure 1. The Unit Circle in Cp

Moreover, in Cp any circle can be characterized by the equation∣∣∣(z − a)
2 − p(w − b)

2
∣∣∣ = r2
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where the center and radius of this circle M(a, b) and r , respectively [27].

Now, we symbolise the number Z = z + iw in Cp with
−→
OT . Therefore, the angles γp are expressed by

the inverse of tangent function as

γp =


1√
|p|

tan−1
(
α
√
|p|

)
, p < 0

α, p = 0
1√
p tan

−1
(
α
√
p
)
, p > 0 (branch I, III)

where α ≡ w/z (see Figure 2).

Figure 2. Elliptic, Parabolic and Hyperbolic Angles

We suppose that the intersection of unit circle with OT is any point N , L is the orthogonal projection

of N on OM , and the tangent of the unit circle at M is QM (see Figure 3). Therefore, the p−trigonometric

functions (sinp , cosp and tanp) can be given as

sin pγp =


1√
|p|

sin
(
γp
√

|p|
)
, p < 0

γp, p = 0
1√
p sinh

(
γp
√
p
)
, p > 0

cos pγp =


cos

(
γp
√

|p|
)
, p < 0

1, p = 0
cosh

(
γp
√
p
)
, p > 0

where these functions are given for branch I when p ≥ 0 and the ratio QM
OM = NL

OL gives

tan pγp =
sin pγp
cos pγp

.

On the other hand, the Maclaurin expansions of these function for branch I can be expressed cos pγp =
∞∑

n=0

pn

(2n)!γ
2n
p and sin pγp =

∞∑
n=0

pn

(2n+1)!γ
2n+1
p . The Euler Formula in Cp is expressed as eiγp = cos pγp+ i sin pγp
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ERİŞİR and GÜNGÖR

Figure 3. γp for the special cases of p

where i2 = p. Moreover, the exponential forms of Z in Cp is

Z = rp(cospγp + i sin pγp) = rpe
iγp

where rp = |Z|p [27]. Then, we can write that the p−rotation matrix is

A(γp) =

[
cos pγp p sin pγp
sin pγp cos pγp

]
.

[27].

Now, we express the homothetic planar motions with one parameter in Cp . The homothetic motions in

p-complex plane, the subset of Cp , was expressed as

CJ =
{
z + Jw : x, y ∈ R, J2 = p, p ∈ {−1, 0, 1}

}
by Gürses et. al [30]. Analogously, with the help of that study the homothetic planar motions with one param-

eter in Cp can be obtained as follows.

We suppose that Kp,K′
p are the moving and fixed planes in Cp , respectively and the vectors x = x1+ix2

and x′ = x′1+ix
′
2 are the position vectors of any point X according to the these planes, respectively. Therefore,

the homothetic motions in Cp is characterized by the equation

x′ = (hx− u) eiγp

where
−−→
OO′ = u (u′ = −ueiγp ), γp is the p−rotation angle of this homothetic motion, and h is the homothetic

scale in Cp . In that case, the relative and absolute velocity vectors of X can be calculated as

Vr
′ = Vre

iγp = hẋeiγp (1)

and

Va
′ = Vae

iγp =
(
ḣ+ iγ̇ph

)
xeiγp − (u̇+ iγ̇pu) e

iγp + hẋeiγp , (2)

48
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respectively. Therefore, considering the equations (1) and (2) the guide velocity vector can be given as

Vf
′ = Vfe

iγp =
(
ḣ+ iγ̇ph

)
xeiγp + u̇′.

Theorem 2.1. The relationship between velocity vectors of the homothetic motions Kp/K′
p in Cp is

Va = Vf +Vr.

On the other hand, there are points (defined as pole points) during this homothetic motions that seem

to be fixed both in Kp and K′
p in Cp . Therefore, we consider that the pole points of the homothetic motions

Kp/K′
p are Q = (q1, q2) ∈ Cp and the components of these pole points can be expressed as

q1 =
dh(du1+pu2dγp)−ph(du2+u1dγp)dγp

dh2−ph2dγp
2 ,

q2 =
dh(du2+u1dγp)−h(du1+pu2dγp)dγp

dh2−ph2dγp
2 .

where Vf = 0. Let the position vector of the pole point Q be q . Moreover, the guide velocity vector of the

fixed point X in Kp can be expressed with the help of the pole points as

dx
′ = (dh+ ihdγp) (x− q) eiγp .

In addition to that, for the homothetic motions in Cp the following proposition can be expressed.

Proposition 2.1. We consider that two any generalized complex vectors be u = (u1, u2) and v = (v1, v2) in

Cp . Therefore, the equations

i) [ueiγp , veiγp ] = [u, v]
ii) [u, (dh+ ihdγp) v] = [u, v]dh+ 1

2 [uv̄+ ūv]hdγp,

are hold where h is homothetic scale and

[u, v] =

∣∣∣∣ u1 u2
v1 v2

∣∣∣∣ = u1v2 − u2v1

[16].

In this study, we assume the open motions in branch I restricted to time interval [t1, t2] in Cp .

3. Main Theorems and Results

In this section, we obtain the Cauchy length formula for the homothetic motions in Cp and we give a geometric

interpretation of this formula when this length is constant. Then, we calculate the area formula of the non linear

points for the homothetic motions in Cp and we express this area formula with respect to the Cauchy length

formula. Moreover, for non linear three points we give new version of Holditch theorem during the homothetic

motions. Consequently, we obtain some conclusions.

Now, we assume that Cp is the generalized complex plane and Kp/K′
p is the homothetic motion in Cp .

Moreover, we consider that any point in Cp is X = (x1, x2) and g is any straight line through point X in
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the branch I in Cp . In this case, the Hesse form of the line g with regard to the moving generalized complex

plane Kp can be written as h = x1 cos pψp − px2 sin pψp where the Hesse coordinates are (h, ψp), the distance

between the origin point O and the straight line g is h = h(ψp) and the contact point of the straight line g

and the envelope curve (g) is the point X . In addition to that, the angle ψp in Cp is the angle in the positive

direction made by the perpendicular descending from O to the straight line g and the principal axis of the

moving plane Kp . Similarly, the straight line g can be expressed with regard to K′
p as

k′ = x′1 cos pψ
′
p − px′2 sin pψ

′
p (3)

where the point X ′ = (x′1, x
′
2) is the representation of X according to the fixed plane K′

p and the angle ψ′
p

in Cp is the angle in the positive direction made by the perpendicular descending from the origin point O to

the straight line g and the principal axis of the moving plane K′
p . In addition to that, the relationship between

the angles ψp and ψ′
p is ψ′

p = γp + ψp where the angle γp is the rotation angle of the homothetic motion in

Cp .

Theorem 3.1. The Cauchy length formula under the homothetic motions in Cp is obtained

L′ =
1√
|p|

|phkδp −A cos pψp + pB sin pψp| (4)

where δp =
t2∫
t1

dγp , A =
t2∫
t1

(pu1 − ü1)dγp and B =
t2∫
t1

(pu2 − ü2)dγp , h is homothetic scale and ψp is the angle

in the positive direction made by the perpendicular descending from O to the straight line g and the principal

axis of Kp .

Proof. We consider the equation (3) and write the components x′1 and x′2 in equation (3). Therefore, we get

k′ = hk − u1 cos pψp + pu2 sin pψp

where h is the homothetic scale in Cp and taking the differential we obtain

k̇′ = hk̇ − u̇1 cos pψp + pu̇2 sin pψp,

k̈′ = hk̈ − ü1 cos pψp + pü2 sin pψp.
(5)

On the other hand, we know that the Cauchy length formula in Cp as

L′ =
1√
|p|

t2∫
t1

∣∣∣pk′ − k̈′
∣∣∣ dγp (6)

by the help of [14] where dψ′
p = dγp . If we use the equation (5) and (6) then, for the homothetic planar motions

in Cp the Cauchy length formula can be obtained

L′ =
1√
|p|

|phkδp −A cos pψp + pB sin pψp|

where δp =
t2∫
t1

dγp , A =
t2∫
t1

(pu1 − ü1)dγp and B =
t2∫
t1

(pu2 − ü2)dγp . It should be emphasized here that the

expression in the absolute value in equation (6) is positive for p > 0 and negative for p < 0 (p ̸= 0).
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Conclusion 3.1. We suppose that the fixed straight lines which have Hesse coordinates (h, ψp) and the

enveloping trajectories of these lines have the same Cauchy length L′ = d during the homothetic motions

in Cp . Therefore, all of these lines are tangent to the cycles with radius d√
|p|hδp

and center SG =
(

A
phδp

, B
phδp

)
in Kp where A =

t2∫
t1

(pu1 − ü1)dγp and B =
t2∫
t1

(pu2 − ü2)dγp .

Proof. We consider that the Cauchy length formula under the homothetic planar motions in Cp given in the

equation (4) is constant. Therefore, we can write L′ = d = constant and obtain the function k as

k =
d√

|p|hδp
+
A cos pψp

phδp
− B sin pψp

hδp
. (7)

On the other hand, we can write the straight line g as

k = r + a cos pψp − pb sin pψp (8)

where the point (a, b) is the point at distance r from the point X on the straight line g . Therefore, considering

the equation (7) and (8) we obtain

r =
d√

|p|hδp
, a =

A cos pψp

phδp
, b =

B sin pψp

hδp
.

Consequently, all the constant straight lines g of homothetic motion in Cp , which draw envelope trajectories

with the same length, lie on the cycle with center SG =
(

A
phδp

, B
phδp

)
and radius r = d√

|p|hδp
where A =

t2∫
t1

(pu1 − ü1)dγp and B =
t2∫
t1

(pu2 − ü2)dγp .

Now, we give a new version of the Holditch theorem given by [12, 14, 16] considering non linear points

for homothetic planar motion in Cp . First of all, we assume that the non linear three fixed points X , Y and

Z in Kp for the homothetic planar motions draw the trajectories kX , kY and kZ with areas FX , FY and FZ ,

respectively. With a special choosing, we consider X = (0, 0), Y = (z + w, 0) and Z = (z, u) (z > u) in Kp .

We know that the area FX for the homothetic planar motion is calculated

FX = F0 +
1

2
h2 (t0) δp (xx̄− xs̄− x̄s) + ζ1x1 + ζ2x2

where δp =
t2∫
t1

dγp , ζ1 = 1
2

t2∫
t1

(−2hq2 + u2) dh and ζ2 = 1
2

t2∫
t1

(2hq1 − u1) dh considering [16]. In that case, for

X = (0, 0), Y = (z + w, 0) and Z = (z, u) the areas for homothetic planar motions are written by

FX = F0 for X = (0, 0) ,

FY = FX +
1

2
h2δp

(
(z + w)

2 − 2 (z + w) s1

)
+ ζ1 (z + w) for Y = (z + w, 0) (9)
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and

FZ = FX +
1

2
h2δp

(
z2 − pu2 − 2zs1 + 2pus2

)
+ ζ1z + ζ2u for Z = (z, u) . (10)

Therefore, using the equation (9) we get the first component of the Steiner point as

s1 =
FX − FY

h2 (z + w) δp
+

ζ1
h2δp

+
z + w

2
. (11)

Moreover, from the equations (10) and (11) we obtain

FZ =
zFY + wFX

z + w
− 1

2
h2δp

(
zw + pu2

)
+ ph2us2δp + ζ2u

where ζ2 = 1
2

t2∫
t1

(2hq1 − u1) dh.

Theorem 3.2. We assume that the one parameter homothetic motion in Cp with S = SG and the non linear

points X = (0, 0) , Y = (z + w, 0) ∈ Kp move along the trajectories with the areas FX and FY , respectively,

then the point Z = (z, u) ∈ Kp draws the trajectory with the area

FZ =
zFY + wFX

z + w
− 1

2
h2δp

(
zw + pu2

)
−
√

|p|huLXY + ζ2u (12)

where LXY is the length of the enveloping curve (XY ) obtained by substituting the specially selected points X

and Y in equation (4).

Proof. Now, we suppose that the one-parameter homothetic planar motion S = SG in Cp . Therefore, we get

s2 = B
phδp

. If equation (6) is adapted for X = (0, 0), Y = (z + w, 0) and Z = (z, u) consequently, we have

FZ =
zFY + wFX

z + w
− 1

2
h2δp

(
zw + pu2

)
−
√

|p|huLXY + ζ2u

where LXY is the length of the enveloping curve (XY ) obtained by substituting the specially selected points

X and Y in equation (4).

Therefore, the Holditch theorem for non linear points in homothetic motions of Cp can be given with

following theorem.

Theorem 3.3. Main Theorem: We suppose that the one parameter homothetic motion in Cp with S = SG

and the non linear points X = (0, 0) , Y = (z + w, 0) and Z = (z, u) ∈ Kp move along the trajectories with

the areas FX , FY and FZ , respectively. Therefore, the area between FX , FY and FZ varies depending on

the distance of Z to the line XY and the points X,Y to the projection point of Z, the rotation angle of the

homothetic motion, the homothetic scale and the length of the envelope curve of (XY ) , while it is independent

of the choosing of the curves.

Corollary 3.1. We assume that X , Y and Z are linear points for the homothetic planar motions in Cp .

Therefore, u = 0 and using the equation (12) we get

FZ =
zFY + wFX

z + w
− 1

2
h2δpzw
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In this case, this formula is the area formula in [16].

Corollary 3.2. We consider that the homothetic scale is h = 1 in equation (12). Therefore, the area formula

can be obtained as

FZ =
zFY + wFX

z + w
− 1

2
δp

(
zw + pu2

)
−

√
|p|uLXY .

This formula is area formula given in Cp in [14]

Corollary 3.3. Now, we assume that both u = 0 and h = 1 . Therefore, the equation (12) is obtained

FZ =
zFY + wFX

z + w
− 1

2
δpzw.

This equation is area formula in [12]

4. Conclusion

The Holditch theorem is a theorem that expresses the area of the trajectory drawn during the motion. To be

more specific, the Holditch theorem in plane geometry emphasizes that if a fixed-length chord is allowed to

rotate in a convex closed curve, the position of a point on the chord x units from one end and y units from the

other end, the curve drawn by this point is less than the area of the original curve πxy . This theorem was first

given in 1858 by the English mathematician Hamnet Holditch. Although not emphasized by Holditch, the proof

of the theorem requires the chord to be short enough that the position of the point taken is a simple closed

curve. The fact that the area of trajectories expressed in the Holditch theorem is independent of the curve

(circle, ellipse, etc.) makes this theorem very interesting. Thus, the Holditch theorem has been included as one

of Clifford A. Pickover’s 250 milestones in the history of mathematics. It should be noted again that the most

important feature of the theorem is that the formula that gives the area πxy is independent of both the shape

and size of the original curve, and this formula gives the same formula as the area of an ellipse with axes x and

y . Until now, Holditch’s theorem has been generalized to many planes and spaces. But since the generalized

complex plane mentioned in this study includes hyperbolic, dual, and complex planes, and planes in other

possible choices of p ∈ R , the study in this plane is a very extended study. In this study, we have generalized

the studies of [12, 14, 16], which gives the Holditch theorem regarding areas for planar motions. Therefore,

Holditch theorem in this study is the most general theorem including all the studies for planar motions so far.
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