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Abstract: This article focuses on the feature screening problem of ultrahigh dimensional data with responses missing

at random. A model average feature screening method is proposed based on the inverse probability weighted method.

The proposed screening procedure is robust to the heavy-tailed distribution data and potential outliers. It can deal with

missing data when the response variable is missing at random. It is model-free and the sure screening properties are

satisfied. We illustrate its screening performance through Monte Carlo simulations.
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1. Introduction

With the rapid development of science and technology and data acquisition capability, ultrahigh dimensional

data has become more frequent in many fields, such as biomedicine, economics, social sciences, and so on. The

dimensionality p of the collected data increases exponentially with the sample size n , that is log p = O(nξ)

for some ξ > 0. Ultrahigh dimensional features lead to the invalidation of traditional statistical methods, the

inability to extract information effectively, and low computational efficiency. To handle this kind of ultrahigh

dimensional problem, some fast and simple dimensionality reduction methods without information loss need to

be studied.

In the case of complete data, many dimensionality reduction methods have been formed. [1] proposed

the feature screening method SIS for the ultrahigh dimensional linear model based on the marginal Pearson

correlation coefficients between covariates and response variable to construct screening indicators. Under some

regularity conditions, the ranking consistency and screening consistency of predictors are satisfied. Thus,

selecting features based on the sorted screening indicators can obtain the possible active predictors. On the

basis of their research, many statisticians have carried out corresponding research works. [2] proposed a feature

screening procedure under the assumption of a generalized linear model by ranking the maximum marginal

likelihood estimates or the maximum marginal likelihood itself. [3] significantly improved SIS by using distance

correlation coefficients to reduce the dimensionality of ultrahigh dimensional covariates without specifying

any model assumptions. [4] proposed a conditional quantile-based feature screening method for the ultrahigh

dimensional data without model assumptions, which to some extent, optimized the method proposed by [5].

[6] proposed a feature screening method based on the Blum-Kiefer-Rosenblatt correlation coefficient, which

is effective in dealing with nonlinear effects. [7] proposed a model-free procedure called covariate information
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number sure independence screening (CIS). CIS used a marginal utility connected to the notion of the traditional

Fisher information and possessed the sure screening property. Many feature screening procedures can also be

found in [8–10], and so on.

However, in many cases, due to some unavoidable factors, part of the information of some samples would

not be observed, which is the so-called missing data. In many practical problems studied [11–13], there are often

missing data. When the sample is missing, it cannot entirely reflect the actual characteristics of the interested

problem. Failure to properly handle missing values may lead to bias in the final analysis results. In the missing

mechanisms ([14]), missing at random (MAR) is a common phenomenon in practice, and many methods have

been proposed to solve the missing data problems. The ultrahigh dimensional features coupled with missing

data lead to many challenging problems. There are few studies on ultrahigh dimensional feature screening

with responses missing at random. [15] proposed an inverse probability weighted Pearson correlation coefficient

under the assumption of a linear model. Combined with the inverse probability weights and the SIRS feature

screening method proposed by [8], [16] proposed a model-free ultrahigh dimensional feature screening method

with responses missing at random. Furthermore, [17] studied the feature screening in ultrahigh dimensional

partially linear models with responses missing at random and [18] studied the feature screening for ultrahigh

dimensional categorical data with covariates missing at random.

In addition to the problem of missing data, observations are often accompanied by outliers, heavy tails,

etc. Some robust methods which can handle the problems of outliers, heavy tails and responses missing at

random are needed. Since quantiles are not sensitive to outliers and heavy-tailed distribution data, this paper

combines the inverse probability weighted method, the idea of model average, and conditional quantiles to

propose a feature screening procedure on the ultrahigh dimensional continuous data with responses missing at

random. Considering that the missing mechanism of the response variable is missing at random, the feature

screening method for a binary ultrahigh dimensional data based on the model averaging technique proposed by

[19] is used to screen out the predictors related to the missing indicator at first. Then the inverse probability

weights would be obtained on this basis.

The second part of this paper will introduce an inverse probability weighted conditional quantile feature

screening method (MMACQ) based on the model average technique under the assumption that the response

variable is missing at random and study its theoretical properties under some regularity conditions. The third

part uses Monte Carlo numerical simulations to verify the finite sample properties of MMACQ and compare

it with other screening methods. The relevant proofs of the theoretical properties will be presented in the

supplementary material.

2. Model Average Feature Screening

Let Y be the response variable with support set Ψy . X = (X1, . . . , Xp)
T is the covariate vector. The dimension

p is much larger than the sample size n , which increases exponentially with the increase of the sample size n

and satisfies the sparsity assumption. That is, only a small number of covariates affect the response variable.

2.1. Screening method

In order to identify those important covariates that have significant effects on the response variable, the active

and inactive predictor sets are defined as A =
{
k : F

(
y
∣∣X) depends on Xk, k = 1, . . . , p for some y ∈ Ψy

}
and

L =
{
k : F (y

∣∣X) does not depend on Xk, k = 1, . . . , p for any y ∈ Ψy

}
. If k ∈ A , then Xk is an important
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predictor. If k ∈ L , it means that Xk has no effect on the response variable and is an unimportant predictor

variable.

Considering that quantile regression has obvious robustness when dealing with heavy-tailed data and

outliers, [4] focused on the conditional quantile, Qτ

(
Y
∣∣X) = inf

(
t : pr

(
Y ≤ t

∣∣X) ≥ τ
)
, τ ∈ (0, 1). Define

the set of important predictors and the set of unimportant predictors under a given τ quantile as Aτ ={
k : Qτ

(
Y
∣∣X) depends on Xk, k = 1, . . . , p

}
and Lτ =

{
k : Qτ

(
Y
∣∣X) does not depend on Xk, k = 1, . . . , p

}
.

Obviously, Aτ is a subset of A .

In the case where the response variable is missing at random, it is assumed that the observed sample data

is (Yi, δi,Xi), i = 1, . . . , n . If Yi is missing, then δi = 0, otherwise δi = 1, and P
(
δ = 1

∣∣X, Y
)
= P

(
δ = 1

∣∣X) .
Based on the MAR assumption and the sparsity property, the value of the missing indicator δ is only affected

by some predictors. Thus we can define the active predictors set and the inactive predictors set for the missing

indicator δ as Aδ =
{
k : P

(
δ = 1

∣∣X) depends on Xk

}
and Lδ =

{
k : P

(
δ = 1

∣∣X) does not depend on Xk

}
.

When the ultrahigh dimensional data is completely observed, [4], inspired by the definition of conditional

expectation, defined the feature screening index as

dk (t) = E
([
τ − I {Y < Qτ (Y )}

]
I (Xk < t)

)
.

However, this method is no longer applicable when the response variable is missing at random. An inverse

probability weighted feature screening measurement d∗k(t) is considered here,

d∗k (t) = E

 δ

P
(
δ = 1

∣∣∣XAδ

)[[τ − I {Y < Qτ (Y )}
]
I (Xk < t)

] = dk (t) .

Given Xk , if the τ quantile conditional quantile of Y is independent of Xk , that is, Qτ (Y |Xk) = Qτ (Y ), then

d∗k(t) = 0. Given the τ quantile, the estimate of d∗k(t) is

d̂∗k (t) = n−1
n∑

i=1

δi

P̂
(
δi = 1

∣∣XÂδ

)[τ − I
{
Yi < Q̂τ (Y )

}]
I {Xik < t} , k = 1, . . . , p,

where Q̂τ (Y ) is the quantile estimate of Y1, Y2, . . . , Yn at a given τ quantile. Thus, the marginal utility of the

kth predictor is ∥∥∥d̂∗k∥∥∥ = n−1
n∑

i=1

d̂∗k (Xik)
2
, k = 1, . . . , p.

When the response variable Y is independent of the predictor variable Xk ,
∥∥∥d̂∗k∥∥∥ will fluctuate around zero

and approach zero, it can be used to measure the importance of covariates. The estimated active predictor set

would be

Âτ =
{
k :
∥∥∥d̂∗k∥∥∥ ≥ cn−α, k = 1, . . . , p

}
,

where c and α are predetermined thresholds.

In order to calculate
∥∥∥d̂∗k∥∥∥ , we have to first estimate P

(
δi = 1

∣∣XAδ

)
and Qτ (Y ). Note that the value

of δ is 0 or 1. Therefore, we can select covariates using some binary classification feature screening method.

57



PENG LAI, MINGYUE WANG, YUFEI GAO and FENGLI SONG

[19] proposed a conditional quantile feature screening method called MACQFS, based on the model average

technique for the binary response variable, which is used here to get Âδ =
{
k : ω̂∗

k ≥ vn−α, k = 1, . . . , p
}
, where

ω̂∗
k is the estimated index to measure the connection between missing indicator δ and covariate Xk , details

can be seen in [19], v and n are the pre-set threshold values. Since v and n are difficult to be determined

in advance in the actual operation process, [1] proposed that the estimates of the screening index ω̂∗
k can be

sorted in descending order, and the top
[
n/ log(n)

]
are selected to constitute the estimated set of important

predictors, where [·] is the rounding function, dδ =
[
n/ log (n)

]
. The estimated set of important predictors

that affect the value of δ is Âδ =
{
k : among the largest dδ of ω̂∗

k

}
. According to the Theorem 2 of [19],

under some regularity conditions, P (Aδ ⊆ Âδ) → 1. It means using the MACQFS feature screening method

can select the important predictors which are related to δ .

Based on the estimated set of important predictors for missing indicator δ , we can estimate P
(
δ = 1

∣∣X) =
P
(
δ = 1

∣∣XÂδ

)
by some nonparametric estimation methods. However, although using the MACQFS method

to screen the original covariates can compress the original covariate dimension p to the dimension dδ =[
n/ log (n)

]
< n , there may still be high dimension for the possible nonparametric estimation. Assuming

that P
(
δ = 1

∣∣XÂδ

)
= exp

(
XT

Âδ
β
)
/
(
1 + exp

(
XT

Âδ
β
))

is a logistic model, SCAD ([20]) can be used to per-

form another variable selection on the covariates and get the estimates set Âδ . After re-selection of variables,

new important predictor variable estimation sets Â∗
δ for missing indicator δ and β̂SCAD are obtained, and then

P̂
(
δ = 1

∣∣X) = P̂
(
δ = 1

∣∣XÂδ

)
= P̂

(
δ = 1

∣∣XÂ∗
δ

)
can be obtained. Another difficulty is that Q̂τ (Y ) is hard

to be obtained because of the missing data of Y . The method proposed by [21] will be used to estimate the

quantile of the response variable. The core of this method is non-parametric verification.

Since the number of values for τ ∈ (0, 1) is infinite, the impact of the predictor variable on the response

variable Y at different quantiles may differ. If we only consider the method under a certain τ quantile

alone, we will lose lots of information, so we use the idea of model average. Take the quantile sequence

0 < τ1 < · · · < τm < 1. We regard the local important predictor sets under different quantiles as multiple

candidate models and form an important global predictor set by weighted combination.

Define the set of locally significant predictors and the set of unimportant predictors as

Aτs =
{
k : Qτs

(
y
∣∣X) depends on Xk, k = 1, . . . , p for some y ∈ Ψy

}
,

Lτs =
{
k : Qτs

(
y
∣∣X) does not depend on Xk, k = 1, . . . , p for any y ∈ Ψy

}
.

We can estimate Aτs as

Âτs =
{
k :
∥∥∥d̂∗k,τs∥∥∥ ≥ cn−α, k = 1, . . . , p

}
,

where
∥∥∥d̂∗k,τs∥∥∥ =

1

n

n∑
i=1

d̂∗2k,τs (Xik) and

d̂∗k,τs (t) = n−1
n∑

i=1

δi

P̂
(
δi = 1

∣∣XÂ∗
δ

)[τ − I
{
Yi < Q̂τs (Y )

}]
I (Xik < t) .
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To comprehensively consider the influence of predictors on the response variable at different τ quantiles,

combined with the idea of model average, we weighted the local important predictor variable screening indicators

to form the global important predictor variable screening indicators

Rk =

m∑
s=1

ω∗
τsI
(
Xk ∈ Aτs

)
.

Regarding the model average weights ω∗
τs , s = 1, . . . ,m , such as [22], considering the local important predictor

set Aτs in the m local important variable sets, we get

ω∗
τs =

ω̃∗
τs∑m

s=1ω̃
∗
τs

, ω̃∗
τs =

1∣∣Aτs

∣∣Σk∈Aτs

∥∥d∗k,τs∥∥ ,
where ∥dk,τs∥ = E{dk,τs(Xk)

2} . The estimate of the globally significant predictor screening metrics is

R̂k =

m∑
s=1

ω̂∗
τsI
(
Xk ∈ Âτs

)
,

where

ω̂∗
τs =

ˆ̃ω∗
τs∑m

s=1
ˆ̃ω∗
τs

, ˆ̃ω∗
τs =

1∣∣Âτs

∣∣Σk∈Âτs

∥∥∥d̂∗k,τs∥∥∥ .
Regarding the globally important predictor variable screening indicator Rk , there may be two situations

when the estimated value is large: (1) Its corresponding predictor Xk exists in multiple sets of locally important

predictors; (2) Even if Xk does not exist in multiple sets of locally important predictors, the set of important

local predictors which is located in is more important according to the model average weight. The above two

situations show that when the estimated value of Rk is large, the corresponding predictor variable Xk has a

more significant impact on the response variable so that the predictor variables can be screened by R̂k . The

set of globally significant predictor estimates is

Â =
{
k : R̂k ≥ cn−α, k = 1, . . . , p

}
,

where c and α are pre-set threshold values. Also, we can select the largest d = [n/ log(n)] variables as

Â =
{
k : among the largest d of R̂k

}
.

The above screening method based on the model average and the inverse probability weights is called MMACQ.

2.2. Sure screening properties

In order to study the theoretical properties of the MMACQ method, the following conditions are required.

• C1. There exists constants c > 0, M > 0, and α ∈ [0, 1/4), such that

∞ > M ≥ max
k∈Aτ

∥d∗k∥ ≥ min
k∈Aτ

∥d∗k∥ ≥ 2cn−α and min
k∈A

Rk ≥ 2cn−α.
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• C2. In the neighborhood of Qτ (Y ), F (y) is second-order differentiable. The density function f(y) of Y

is uniformly bounded away from 0 and infinity, and f ′(y) is also uniformly bounded.

• C3. There exists a constant ℓ1 > 0 , which is the lower limit of Pi , that is 0 < ℓ1 ≤ Pi ≤ 1.

Remark: The condition (C1) ensures that the marginal utility of carrying predictor information does not

decay too quickly. Condition (C2) is a necessary condition for quantile regression. In condition (C3), ℓ1

is a small positive number, and the purpose is to ensure that the denominator of δi/Pi is not 0, where

Pi = P (δi = 1|XAδ
, θ), θ is the parameter.

Theorem 2.1. (Sure screening property) Under conditions (C1)-(C3), there are positive constants c1 and c2 ,

such that

P

(
max
1≤k≤p

∣∣∣ ∥∥∥d̂∗k∥∥∥− ∥d∗k∥
∣∣∣ ≥ cn−α

)
≤ O

{
p exp

(
−c1n3−2α

)
+ p exp

(
−c2n1−2α

)}
.

Because of mink∈Aτ
∥d∗k∥ ≥ 2cn−α , we can further get

P
(
Aτ ⊆ Âτ

)
≥ 1−O

(
an exp(−c1n3−2α) + an exp

(
−c2n1−2α

))
,

where an = |Aτ | represents the number of elements in the important variable set Aτ .

Theorem 2.2. (Minimum Model Size) Under the conditions (C1)-(C3), there are positive constants c3 , c4 ,

c5 , c6 , such that

P

(
max
1≤k≤p

∣∣∣R̂k −Rk

∣∣∣ ≥ cn−α

)
≤O

{
pnm exp

(
−c3n3−2α

)
+ pmn exp

(
−c4n1−2α

)}
+O

(
an,mmp exp

(
−c5n3−2α

)
+ an,mmp exp

(
−c6n1−2α

))
.

(1)

Because of min
k∈A

Rk ≥ 2cn−α , we can further get

P
(
A ⊆ Â

)
≥ 1−O

{
Annm exp

(
−c3n3−2α

)
+Anmn exp

(
−c4n1−2α

)}
−O

(
Anan,mm exp

(
−c5n3−2α

)
+Anan,mm exp

(
−c6n1−2α

))
,

(2)

where An =
∣∣A∣∣ represents the number of elements in the important variable set A , an,m is the maximum value

of the set {an,τs , 1 ≤ s ≤ m} , an,τs =
∣∣Aτs

∣∣ represents the number of elements in the important variable set

Aτs .

Combined with the definition of ultrahigh dimensional data, it is considered that the dimension p of the

predictor variable increases exponentially with the increase of the sample size n , that is, p = o
(
exp

(
nγ
))

.

Assuming the number of quantiles m = O
(
nβ
)
, where β > 0, when 0 < γ < log

(
n1−2α − log(nβ+1)

)
and

0 < β <
(
n1−2α − log(n)− 1

)
/ log(n), the right side of the formula (1) tends to 0, which is P (A ⊆ Â) → 1. It

shows that when the conditions (C1)-(C3) are satisfied, the important variable estimation set obtained by the

MMACQ method contains the real important variable set with a probability tends to 1. The proofs of these

theorems are detailed in Supplementary Material.
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3. Numerical examples

3.1. Monte Carlo Simulations

In this section, Monte Carlo numerical simulation will be used to test the screening performance of the average

feature screening method MMACQ for the ultrahigh dimensional model with responses missing at random

proposed in Section 2 of this paper.

To compare the difference between the screening method that comprehensively considers multiple quan-

tiles, that is, the MMACQ feature screening method, and the screening method that only considers a given

quantile, this section uses the important local variable defined in Section 2 to screen the index
∥∥∥d̂∗k,τs∥∥∥ , in the

case of given quantiles τ = 0.5 and τ = 0.35, the set of predictors is screened respectively, and the screening

processes under the above two quantiles are called MCQ(0.5) and MCQ(0.35). To make the screening results

more convincing, this section proposes to compare the MMACQ method with the MCQ(0.5) and MCQ(0.35)

screening processes mentioned above, as well as the CC screening process (feature screening after removing all

samples with missing responses), F screening (feature screening under full data), and the MAR feature screening

method proposed by [16] for comparison.

According to the definition of the global screening index in the MMACQ feature screening method, in the

simulation process, we set the quantile sequence as {0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95} ,
which is m = 10. We use the logistic model p(δ = 1|X,β) = exp(X⊤β)/(1 + exp(X⊤β)) to generate the

missing index δ , where β is a p − dimensional parameter vector, and by selecting the appropriate parameter

β , the missing rate of the response variable can be controlled at around 50% and 70%. In order to reduce the

randomness of data generated during the Monte Carlo numerical simulation, the results in this section are based

on 500 repeated experiments. During all experiments, the size of the estimated set of important predictors

is d = [n/ log(n)] . Set each example sample size n and predictor dimension p to be (n, p) = (200, 1000)

and (n, p) = (200, 5000), respectively. In order to visually compare the screening performance of the above 6

screening processes, define Pa , the proportion of which all active predictors being selected into the submodel

with size d over 500 replications.

Example 3.1 (Linear Model). Consider the linear regression model

Yi = 3.5X1i + 2X2i + 2.5X3i + 3X4i + εi,

where the predictor variable Xi = (X1i, X2i, . . . , Xpi)
T
, (i = 1, . . . , n) is generated from a multivariate normal

distribution with mean 0, cov(Xji, Xki) = ρ|j−k| , (j, k = 1, . . . , p) . Let ρ be 0.3 , 0.6 , 0.9 , respectively. The

residuals εi follow a standard normal distribution. In order to test whether the above six screening processes

can screen out predictors with heavy-tailed features, let X1i obey the t distribution with 3 degrees of freedom,

and let Xpi be the t(3)+ 1 distribution. Selecting β = (2, 3, 0, . . . , 0) and β = (4, 6, 0, . . . , 0,−5.5) , the random

missing rates of the response variables are 50% and 70%, respectively. The screening results are shown in Tables

1-2.

As shown in Tables 1-2, The MMACQ feature screening method is more effective in screening, and

its screening performance is constantly improving with the strengthening of the correlation of the predictor

variables. The MMACQ feature screening method is the most stable method when the response variable is

missing at 50% and 70%, respectively, and its screening results are closest to those of the F method. The CC

method cannot effectively screen out all important predictors because of the loss of information with missing
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Table 1. The selecting rates Pa in Example 3.1 when (n, p) = (200, 1000)

ρ method
50% 70%

X1 X2 X3 X4 Pa X1 X2 X3 X4 Pa

0.3

MMACQ 1.000 0.940 1.000 1.000 0.940 1.000 0.940 0.940 0.935 0.850
MCQ(0.5) 0.990 0.590 0.990 0.995 0.575 1.000 0.755 0.945 0.940 0.690
MCQ(0.35) 1.000 0.930 1.000 1.000 0.930 1.000 0.925 0.920 0.900 0.805

MAR 0.985 0.815 1.000 1.000 0.800 1.000 0.895 0.950 0.930 0.810
CC 0.995 0.195 0.995 1.000 0.195 0.995 0.280 0.985 0.985 0.270
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.6

MMACQ 0.990 0.995 0.995 0.995 0.985 0.990 0.995 1.000 0.990 0.975
MCQ(0.5) 0.950 0.920 0.990 0.990 0.860 0.980 0.975 1.000 0.985 0.945
MCQ(0.35) 0.985 0.995 0.995 0.995 0.980 0.990 0.995 1.000 0.975 0.960

MAR 0.955 0.975 0.995 0.995 0.935 0.985 0.980 1.000 0.980 0.945
CC 0.930 0.855 1.000 1.000 0.785 0.930 0.770 1.000 1.000 0.705
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.9

MMACQ 0.985 1.000 1.000 1.000 0.985 1.000 1.000 1.000 1.000 1.000
MCQ(0.5) 0.790 0.995 1.000 1.000 0.785 0.980 1.000 1.000 1.000 0.980
MCQ(0.35) 0.930 1.000 1.000 1.000 0.930 0.995 1.000 1.000 1.000 0.995

MAR 0.890 1.000 1.000 1.000 0.890 0.990 1.000 1.000 1.000 0.990
CC 0.765 1.000 1.000 1.000 0.765 0.765 1.000 1.000 1.000 0.765
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2. The selecting rate Pa in Example 3.1 when (n, p) = (200, 5000)

ρ method
50% 70%

X1 X2 X3 X4 Pa X1 X2 X3 X4 Pa

0.3

MMACQ 0.995 0.905 0.990 0.975 0.885 0.995 0.925 0.900 0.860 0.745
MCQ(0.5) 0.970 0.405 0.950 0.965 0.360 0.985 0.620 0.905 0.885 0.515
MCQ(0.35) 1.000 0.850 0.980 0.985 0.835 0.990 0.890 0.890 0.785 0.640

MAR 0.995 0.720 0.955 0.975 0.690 0.995 0.770 0.905 0.845 0.595
CC 0.990 0.095 0.995 1.000 0.085 0.950 0.100 0.870 0.950 0.095
F 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 0.995

0.6

MMACQ 0.995 0.995 1.000 1.000 0.990 1.000 0.985 0.980 0.985 0.970
MCQ(0.5) 0.950 0.875 0.990 0.985 0.820 0.990 0.955 0.980 0.990 0.930
MCQ(0.35) 0.985 0.985 0.995 1.000 0.965 0.995 0.980 0.980 0.975 0.950

MAR 0.975 0.980 0.995 0.995 0.945 1.000 0.975 0.980 0.985 0.965
CC 0.875 0.605 1.000 1.000 0.515 0.785 0.545 0.955 0.975 0.355
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.9

MMACQ 1.000 1.000 1.000 1.000 1.000 0.985 1.000 1.000 1.000 0.985
MCQ(0.5) 0.710 0.985 0.995 0.995 0.700 0.925 0.995 1.000 0.995 0.915
MCQ(0.35) 0.940 1.000 1.000 1.000 0.940 0.980 1.000 1.000 1.000 0.980

MAR 0.910 1.000 1.000 1.000 0.555 0.620 0.985 1.000 0.990 0.600
CC 0.560 0.995 1.000 1.000 0.555 0.620 0.985 1.000 0.990 0.600
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

data being deleted. When the dimension increases with a fixed sample size, the feature screening performance

turns worse. But the proposed MMACQ shows the best performance.

Example 3.2 (Linear model with outliers). Use the same model settings as Example 3.1, and let 95% of the

residuals follow a standard normal distribution, and the other 5% follow a normal distribution with a mean of

2 and a variance of 3. The screening results are shown in Tables 3-4. From Tables 3-4, we can see that under

the outlier situation, the proposed MMACQ procedure shows the best performance which is similar to the results

of Example 3.1.

Example 3.3 (Nonlinear Model). Consider the nonlinear model

Yi = 3X
1/3
1i + 3.5I(X2i < 0) + 2.5X3i + 3X4i + εi,

where the covariate Xi = (X1i, . . . , Xpi)
T ,(i = 1, . . . , n) obeys a multivariate normal distribution with mean 0

and covariance cov(Xji, Xki) = ρ|j−k| ,(j, k = 1, . . . , p) . Let ρ be 0.3, 0.6 and 0.9, respectively. The residual
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Table 3. The selecting rate Pa in Example 3.2 when (n, p) = (200, 1000)

ρ method
50% 70%

X1 X2 X3 X4 Pa X1 X2 X3 X4 Pa

0.3

MMACQ 0.995 0.900 0.985 0.990 0.875 1.000 0.965 0.960 0.960 0.905
MCQ(0.5) 0.995 0.560 0.960 0.970 0.540 0.995 0.790 0.960 0.945 0.730
MCQ(0.35) 0.995 0.885 0.985 0.985 0.860 1.000 0.935 0.955 0.885 0.820

MAR 1.000 0.790 0.975 0.985 0.765 1.000 0.920 0.965 0.940 0.865
CC 1.000 0.225 1.000 1.000 0.225 0.975 0.280 0.970 0.970 0.235
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.6

MMACQ 1.000 0.985 1.000 1.000 0.985 1.000 0.990 0.990 0.995 0.980
MCQ(0.5) 0.935 0.935 1.000 1.000 0.875 0.995 0.955 0.985 0.990 0.945
MCQ(0.35) 1.000 0.985 1.000 1.000 0.985 1.000 0.990 0.990 0.995 0.985

MAR 0.990 0.980 1.000 1.000 0.970 1.000 0.975 0.990 0.990 0.960
CC 0.985 0.850 1.000 1.000 0.835 0.945 0.775 0.990 1.000 0.725
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.9

MMACQ 0.995 1.000 1.000 1.000 0.995 0.995 0.995 1.000 1.000 0.990
MCQ(0.5) 0.795 1.000 1.000 1.000 0.795 0.950 1.000 1.000 1.000 0.950
MCQ(0.35) 0.965 1.000 1.000 1.000 0.965 0.975 0.995 1.000 1.000 0.970

MAR 0.935 1.000 1.000 1.000 0.935 0.975 1.000 1.000 1.000 0.975
CC 0.735 1.000 1.000 1.000 0.735 0.805 0.990 1.000 1.000 0.795
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4. The selecting rate Pa in Example 3.2 when (n, p) = (200, 5000)

ρ method
50% 70%

X1 X2 X3 X4 Pa X1 X2 X3 X4 Pa

0.3

MMACQ 1.000 0.940 0.985 0.990 0.915 0.990 0.940 0.870 0.860 0.715
MCQ(0.5) 0.985 0.380 0.945 0.980 0.360 0.985 0.620 0.880 0.885 0.490
MCQ(0.35) 0.995 0.920 0.980 0.985 0.895 0.990 0.875 0.855 0.785 0.625

MAR 0.990 0.720 0.980 0.975 0.695 0.985 0.800 0.855 0.855 0.605
CC 0.985 0.090 1.000 1.000 0.075 0.930 0.125 0.855 0.890 0.090
F 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000 0.990

0.6

MMACQ 1.000 1.000 1.000 1.000 1.000 0.985 0.985 0.980 0.975 0.960
MCQ(0.5) 0.925 0.890 0.990 1.000 0.820 0.980 0.950 0.980 0.970 0.925
MCQ(0.35) 0.990 0.990 1.000 1.000 0.980 0.990 0.975 0.980 0.965 0.950

MAR 0.975 0.960 1.000 1.000 0.935 1.000 0.955 0.975 0.965 0.950
CC 0.835 0.655 1.000 1.000 0.530 0.850 0.490 0.965 0.985 0.385
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.9

MMACQ 0.995 1.000 1.000 1.000 0.995 0.995 0.990 0.990 0.990 0.985
MCQ(0.5) 0.685 0.965 0.995 0.995 0.650 0.970 0.990 0.985 0.995 0.955
MCQ(0.35) 0.940 1.000 1.000 1.000 0.940 0.985 0.985 0.985 0.990 0.970

MAR 0.885 0.995 0.995 1.000 0.880 0.995 0.980 0.980 0.990 0.975
CC 0.525 1.000 1.000 1.000 0.525 0.605 0.980 0.995 0.990 0.590
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

εi follows a standard normal distribution. To test the sensitivity of the above six screening processes to heavy-

tailed features, let X1i be generated from a t distribution with 3 degrees of freedom, and Xpi follow a t(3) + 1

distribution. The missing rates are the same to Example 1. The screening results are shown in Tables 5-6.

Tables 5-6 show that MMACQ consistently selects all significant variables with a probability higher than

0.85 under the nonlinear model assumptions, indicating that the performance of our proposed MMACQ feature

screening method is the best compared with other methods.

4. Conclusion

This paper combines the inverse probability weighting technique, conditional quantile, and model averaging

ideas to propose the MMACQ feature screening method in the context of ultrahigh dimensional data with

random missing response variable. We confirm under certain conditions that the MMACQ feature screening

method satisfies the sure screening property, implying that the method can make the set of significant predictor

variables filtered with probability converging to 1 so that all true significant predictor variables are included.
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Table 5. The selecting rate Pa in Example 3.3 when (n, p) = (200, 1000)

ρ method
50% 70%

X1 X2 X3 X4 Pa X1 X2 X3 X4 Pa

0.3

MMACQ 0.985 0.970 1.000 0.990 0.945 0.995 0.970 0.990 0.970 0.935
MCQ(0.5) 0.940 0.840 0.995 0.970 0.770 0.970 0.865 0.980 0.970 0.825
MCQ(0.35) 0.990 0.975 1.000 0.985 0.950 0.995 0.970 0.990 0.930 0.900

MAR 0.985 0.980 1.000 0.980 0.945 1.000 0.965 0.980 0.915 0.875
CC 0.915 0.445 1.000 1.000 0.375 0.825 0.490 0.995 0.990 0.370
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.6

MMACQ 0.960 0.995 1.000 1.000 0.960 0.985 0.995 1.000 1.000 0.980
MCQ(0.5) 0.675 0.980 0.995 1.000 0.650 0.935 0.995 1.000 0.995 0.935
MCQ(0.35) 0.945 0.995 1.000 1.000 0.940 0.985 0.995 1.000 1.000 0.980

MAR 0.945 1.000 1.000 1.000 0.945 0.995 0.995 1.000 1.000 0.990
CC 0.470 0.965 1.000 1.000 0.440 0.615 0.910 1.000 0.995 0.535
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.9

MMACQ 0.930 1.000 1.000 1.000 0.930 0.990 1.000 1.000 1.000 0.990
MCQ(0.5) 0.270 1.000 1.000 1.000 0.270 0.930 1.000 1.000 1.000 0.930
MCQ(0.35) 0.755 1.000 1.000 1.000 0.755 0.975 1.000 1.000 1.000 0.975

MAR 0.815 1.000 1.000 1.000 0.815 0.975 1.000 1.000 1.000 0.975
CC 0.150 1.000 1.000 1.000 0.150 0.330 1.000 1.000 1.000 0.330
F 0.990 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000 1.000

Table 6. The selecting rate Pa in Example 3.3 when (n, p) = (200, 5000)

ρ method
50% 70%

X1 X2 X3 X4 Pa X1 X2 X3 X4 Pa

0.3

MMACQ 0.995 0.975 1.000 0.980 0.950 0.990 0.955 0.990 0.905 0.855
MCQ(0.5) 0.920 0.655 0.995 0.965 0.600 0.945 0.825 0.990 0.915 0.735
MCQ(0.35) 0.995 0.970 1.000 0.970 0.935 0.985 0.960 0.980 0.785 0.755

MAR 0.995 0.975 1.000 0.985 0.955 0.985 0.960 0.970 0.755 0.710
CC 0.805 0.195 1.000 0.990 0.140 0.675 0.170 0.995 0.905 0.085
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.6

MMACQ 0.975 1.000 1.000 0.995 0.970 0.995 0.985 1.000 1.000 0.980
MCQ(0.5) 0.780 0.990 1.000 0.990 0.970 0.925 0.985 1.000 0.990 0.905
MCQ(0.35) 0.960 1.000 1.000 0.995 0.955 0.995 0.985 1.000 0.980 0.965

MAR 0.980 1.000 1.000 0.995 0.975 0.990 0.985 1.000 0.985 0.960
CC 0.450 0.885 1.000 1.000 0.365 0.365 0.760 0.995 0.995 0.220
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.9

MMACQ 0.960 1.000 1.000 1.000 0.960 0.975 1.000 1.000 1.000 0.975
MCQ(0.5) 0.385 0.995 1.000 1.000 0.385 0.785 1.000 1.000 1.000 0.785
MCQ(0.35) 0.875 1.000 1.000 1.000 0.875 0.960 1.000 1.000 1.000 0.960

MAR 0.935 1.000 1.000 1.000 0.935 0.960 1.000 1.000 0.995 0.955
CC 0.175 1.000 1.000 1.000 0.175 0.160 1.000 1.000 1.000 0.160
F 0.995 1.000 1.000 1.000 0.995 0.995 1.000 1.000 1.000 0.995

Since the quantile is insensitive to data with outliers and data with heavy-tailed distribution characteristics, the

screening results of the MMACQ method should not be affected by it. The Monte Carlo numerical simulation

verifies this conjecture.
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5. Supplementary material: Technical Proofs

Let π
(
X, θ

)
= P

(
δ = 1

∣∣XAδ
, θ
)
, π
(
X, θ

)
represents a function with parameter θ that is used to estimate

P
(
δ = 1

∣∣XAδ
, θ
)
. Pi = π

(
XAδi, θ

)
= P

(
δi = 1

∣∣XAδi, θ
)

represents the probability that the ith sample

response variable is not missing. P̂i = π
(
XÂδi

, θ̂
)
represents the sample estimate of Pi = π (XAδi, θ). To

facilitate the proof, we introduce the following lemmas.
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Lemma 5.1. There exists a constant v1 > 0 such that
∥∥∥P 2

i − P̂ 2
i

∥∥∥ ≤ v1Op(n
−1/2) .

Proof. From the theoretical properties of the SCAD variable selection method, we obtained that under certain

regularity conditions, P
(
Aδ = Â∗

δ

)
= 1. According to the properties of logistic regression coefficient estimation,

it can be obtained that there are constants v > 0 and v1 > 0, such that∥∥∥P 2
i − P̂ 2

i

∥∥∥ =
∣∣∣π (XAδi, θ)− π

(
XÂδi

, θ̂
) ∣∣∣∣∣∣π (XAδi, θ) + π

(
XÂδi

, θ̂
) ∣∣∣

≤ v
∣∣∣π′ (XAδi, ξ)

(
θ − θ̂

) ∣∣∣ ≤ v1Op

(
n−1/2

)
.

Lemma 5.2. There exists a constant v2 > 0 such that
∣∣∣Pi − P̂i

∣∣∣ ≤ v2Op

(
n−1/2

)
.

Proof. The proof is similar to the proof of Lemma 5.1.

Proof of Theorem 1. Similar to the proof of Theorem 1 by [4], let

d̃∗k (t) = n−1
n∑

i=1

δi
Pi

[
τ − I {Yi < Qτ (Y )}

]
I (Xik < t) .

Define
∥∥∥d̃∗k∥∥∥ = n−1

n∑
i=1

d̃∗k (Xik)
2
=

(n− 1) (n− 2)

n2

(
1

n− 2
D̃∗

k1 + D̃∗
k2

)
, where

D̃∗
k1 =

2

n (n− 1)

∑
i<j

1

2

{ δi
P 2
i

[
τ − I {Yi < Qτ (Y )}

]2
I (Xik < Xjk)

+
δj
P 2
j

[
τ − I {Yj < Qτ (Y )}

]2
I (Xjk < Xik)

}
=

2

n (n− 1)

∑
i<j

φ1 (Xik, Yi, δi, Pi;Xjk, Yj , δj , Pj ;Qτ ) ,

D̃∗
k2 =

6

n (n− 1) (n− 2)

∑
i<j<l

1

3

{
δiδj
PiPj

[
τ − I{Yi < Qτ (Y )}

][
τ − I{Yj < Qτ (Y )

]}
I (Xik < Xjk)

· I (Xjk < Xik) +
δjδl
PjPl

[
τ − I {Yj < Qτ (Y )}

][
τ − I {Yl < Qτ (Y )}

]
I (Xjk < Xlk) I (Xlk < Xjk)

+
δlδi
PlPi

[
τ − I {Yl < Qτ (Y )}

][
τ − I {Yi < Qτ (Y )}

]
I (Xlk < Xik) I (Xik < Xlk)}

=
6

n (n− 1) (n− 2)

∑
i<j<l

φ2 (Xik, Yi, δi, Pi;Xjk, Yj , δj , Pj ;Xlk, Yl, δl, Pl;Qτ ) ,

where φ1 (·) and φ2 (·) are the kernel functions of the U-statistics D̃∗
k1 and D̃∗

k2 , respectively. By definition∥∥∥d̂∗k∥∥∥ =
(n− 1) (n− 2)

n2

(
1

n− 2
D̂∗

k1 + D̂∗
k2

)
, (3)

65



PENG LAI, MINGYUE WANG, YUFEI GAO and FENGLI SONG

where the composition of D̂∗
k1 and D̂∗

k2 is the same as D̃∗
k1 and D̃∗

k2 , but Pi , Pj , Pl , Qτ (Y ) need to be

changed into P̂i , P̂j , P̂l , Q̂τ (Y ).

First look at
∣∣∣D̂∗

k1−D̃∗
k1

∣∣∣ . Taking full advantage of the triangle inequality, there exist constants v∗2 , v3 > 0

such that the following inequality holds

∣∣∣D̂∗
k1 − D̃∗

k1

∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣∣ δiP̂ 2
i

[
τ2 + (1− 2τ) Q̂i]−

δi
P 2
i

[
τ2 + (1− 2τ)Qi

]∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣∣ δiP̂ 2
i

(1− 2τ)
(
Q̂i −Qi

) ∣∣∣∣∣+
∣∣∣∣∣P 2

i − P̂ 2
i

P 2
i P̂

2
i

δi

[
τ2 + (1− 2τ)Qi

]∣∣∣∣∣
≤

∣∣∣1− 2τ
∣∣∣

n

n∑
i=1

δi
P 2
i

∣∣∣∣ (Q̂i −Qi

) ∣∣∣∣+ v3Op

(
n−1/2

)
,

where Qi ≜ I {Yi < Qτ (Y )} , Q̂i ≜ I
{
Yi < Q̂τ (Y )

}
.

Note that for ∀ε > 0, there is

sup
t′:|t′−t|≤ε

∣∣∣I {Y < t′} − I {Y < t}
∣∣∣ ≤ I {t− ε ≤ Y < t+ ε} .

From Theorem 2.2 of [21], we can get
∣∣∣Q̂τ (Y )−Qτ (Y )

∣∣∣ = O
(
n−1/2

)
. Let

v4 = 1 + 4
∣∣1− 2τ

∣∣ ∫ 1

P
f (Qτ (Y ) , XAδ

) dXAδ
,

where P = P
(
δ = 1

∣∣∣XAδ

)
. For any η > 0, under event

{∣∣∣Q̂τ (Y )−Qτ (Y )
∣∣∣ ≤ ηn−αv−1

4

}
, we can get

∣∣∣D̂∗
k1 − D̃∗

k1

∣∣∣ ≤ ∣∣1− 2τ
∣∣

n

n∑
i=1

δi
P 2
i

∣∣∣I {Yi < Q̂τ (Y )
}
− I {Yi < Qτ (Y )}

∣∣∣+ v3O
(
n−1/2

)

≤
∣∣1− 2τ

∣∣
n

n∑
i=1

δi
P 2
i

I
{
Qτ (Y )− ηn−αv−1

4 ≤ Yi < Qτ (Y ) + ηn−αv−1
4

}
+ v3Op

(
n−1/2

)
.

Let

µ1 = E

[
δ

P 2
I
{
Qτ (Y )− ηn−αv−1

4 ≤ Yi < Qτ (Y ) + ηn−αv−1
4

}]

= E

{
1

P
E

[
I
(
Qτ (Y )− ηn−αv−1

4 ≤ Yi < Qτ (Y ) + ηn−αv−1
4

) ∣∣∣∣∣XAδ

]}
.

The Taylor expansion of µ1 is

µ1 = 2ηn−αv−1
4

∫
f
{
Qτ (Y ) , XAδ

}
P

dXAδ
+

ηn−2αv−2
4

2

∫ f ′
Y |XAδ

{Q∗
τ (Y )} − f ′

Y |XAδ

{
Q+

τ (Y )
}

P
f
(
XAδ

)
dXAδ

,
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where Q∗
τ (Y ) and Q+

τ (Y ) are both in the ηn−αv−1
4 neighborhood of Qτ (Y ). There exists a constant v5 > 0

that can make ∣∣∣∣∣
∫

1

P

[
f ′Y |XAδ

{Q∗
τ (Y )} − f ′Y |XAδ

{
Q+

τ (Y )
} ]
f (XAδ

) dXAδ

∣∣∣∣∣ ≤ v5.

Choose appropriate n or η to make
∣∣1− 2τ

∣∣ηn−αv5 ≤ 2v4 . When τ ̸= 1/2, we can get

ηn−α∣∣1− 2τ
∣∣ − µ1 =

ηn−α∣∣1− 2τ
∣∣ − ηn−2αv−2

4

2

∫ f ′Y |XAδ
{Q∗

τ (Y )} − f ′Y |XAδ
{Q+

τ (Y )}
P

· f(XAδ
)dXAδ

− 2ηn−αv−1
4

∫
1

P
f {Qτ (Y ) , XAδ

} dXAδ

≥ ηn−α∣∣1− 2τ
∣∣ · v4 − 1

v4
− 2ηn−αv−1

4

∫
1

P
f {Qτ (Y ) , XAδ

} dXAδ

= 2ηn−αv−1
4

∫
1

P
f {Qτ (Y ) , XAδ

} dXAδ
.

When n satisfies n ≥ (v3/η)
2/(1−2α)

, it can be deduced by combining the above formula

P
(∣∣∣D̂∗

k1 − D̃∗
k1

∣∣∣ ≥ 2ηn−α
)

≤ P

(∣∣∣∣∣
∣∣1− 2τ

∣∣
n

n∑
i=1

δi
P 2
i

I
{
Qτ (Y )− ηn−αv−1

4 ≤ Yi < Qτ (Y ) + ηn−αv−1
4

}
+ v3O

(
n−1/2

) ∣∣∣∣∣ ≥ 2ηn−α

)

≤ P

(∣∣∣∣∣n−1
n∑

i=1

δi
P 2
i

I
{
Qτ (Y )− ηn−αv−1

4 ≤ Yi < Qτ (Y ) + ηn−αv−1
4

} ∣∣∣∣∣− µ1

≥ 2ηn−αv−1
4

∫
1

P
f {Qτ (Y ) , XAδ} dXAδ

)
.

From Hoeffding’s inequality, we can get

P
(∣∣∣D̂∗

k1 − D̃∗
k1

∣∣∣ ≥ 2ηn−α
)
≤ exp

[
− 8η2

(∫
p−1f (Qτ (Y ) , XAδ

) dXAδ

)2

n1−2αv−2
4

]
.

When τ = 1/2,

∣∣∣D̂∗
k1 − D̃∗

k1

∣∣∣ ≤ ∣∣1− 2τ
∣∣

n

n∑
i=1

δi
P 2
i

∣∣∣ (Q̂i −Qi

) ∣∣∣+ v3Op

(
n−1/2

)
= v3Op

(
n−1/2

)
.

P
(∣∣∣D̂∗

k1 − D̃∗
k1

∣∣∣ ≥ 2ηn−α
)
= 0 is always established because of α ∈

[
0, 1/4

)
, so no matter what value τ takes,

we have

P
(∣∣∣D̂∗

k1 − D̃∗
k1

∣∣∣ ≥ 2ηn−α
)
≤ exp

[
− 8η2

(∫
p−1f (Qτ (Y ) , XAδ

) dXAδ

)2

n1−2αv−2
4

]
. (4)

Similarly, for
∣∣∣D̂∗

k2 − D̃∗
k2

∣∣∣ , there exists some constant v8 > 0, we can obtain

P
(∣∣∣D̂∗

k2 − D̃∗
k2

∣∣∣ ≥ 2ηn−α
)
≤ exp

[
− 8η2f2 (Qτ (Y )) v−2

8 n1−2α
]
. (5)
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Combining equations (3)-(5), we can get

P

(∣∣∣∣ ∥∥∥d̂∗k∥∥∥− ∥∥∥d̃∗k∥∥∥ ∣∣∣∣ ≥ 4ηn−α

)
≤ P

(∣∣∣D̂∗
k1 − D̃∗

k1

∣∣∣ ≥ 2ηn1−α
)
+ P

(∣∣∣D̂∗
k2 − D̃∗

k2

∣∣∣ ≥ 2ηn−α
)

≤ exp

[
− 8η2

(∫
P−1f (Qτ (Y ) , XAδ ) dXAδ

)2

n3−2αv−2
4

]

+exp

[
− 8η2f2 (Qτ (Y ) v−2

8 n1−2α) ]. (6)

It is noted that ∥d∗k∥ = E {φ2 (Xik, Yi, δi, Pi;Xjk, Yj , δj , Pj ;Xlk, Yl, δl, Pl;Qτ )} = E
(
D̃∗

k2

)
. Using

Marcov’s inequality, it can be obtained that for any ε > 0 and t > 0 we have

P
{
D̃∗

k2 − ∥d∗k∥ ≥ ε
}
≤ exp (−tε) exp (−t ∥d∗k∥)E

{
exp

(
tD̃∗

k2

)}
.

Following the proof process of [4], as described in Section 5.1.6 of [23], D̃∗
k2 can be rewritten as

D̃∗
k2 =

1

n!

∑
n!

D∗
2 (X1k, Y1, δ1, P1; . . . ;Xnk, Yn, δn, Pn;Qτ ) ,

where
∑

n! represents the sum of all possible permutations in (1, 2, . . . , n), and each D∗
2 (X1k, Y1, δ1, P1; . . . ;

Xnk, Yn, δn, Pn;Qτ ) is an independent and identically distributed random variable with mean ϕ ≡
[
n/3

]
. Let

ψ (t) = E
[
exp {tφ2 (Xik, Yi, δi, Pi;Xjk, Yj , δj , Pj , Xlk, Yl, δl, Pl;Qτ )}

]
,

then using Jensen’s inequality we can get

E
{
exp

(
tD̃∗

k2

)}
= E

{
exp

[
t(n!)−1

∑
n!

D∗
2

(
X1k, Y1, δ1, P1; . . . ;Xnk, Yn, δn, Pn;Qτ

)]}
≤ ψϕ

(
t/ϕ
)
.

And then we can get

P
{
D̃∗

k2 − ∥d∗k∥ ≥ ε
}
≤ exp (−tε) exp (−t ∥d∗k∥)ψϕ (t/ϕ)

≤ exp (−tε)Eϕ
(
exp

{
ϕ−1t

[
φ2 (Xik, Yi, δi, Pi;Xjk, Yj , δj , Pj ;Xlk, Yl, δl, Pl;Qτ )− ∥d∗k∥

]})
.

According to Lemma 1 in [3], we can get

E
(
exp

{
ϕ−1t

[
φ2 (Xik, Yi, δi, Pi;Xjk, Yj , δj , Pj ;Xlk, Yl, δl, Pl;Qτ )− ∥dk∥

]})
≤ exp

{(
ϕ−1t

)2
(2/ℓ1)

2
/8
}
= exp

{
t2/
(
2ϕ2ℓ21

)}
.

Therefore

P
{∣∣∣D̃∗

k2 − ∥d∗k∥
∣∣∣ ≥ ε

}
≤ exp

([
− tε+ t2/

(
2ϕℓ21

) ])
.
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Choose t = ℓ21ϕε , ℓ2 = ℓ21/2, we can get P
{
D̃∗

k2 − ∥d∗k∥ ≥ ε
}
≤ exp

(
− ε2ϕℓ2

)
. From the symmetry of the U

statistic, we can further obtain

P
{∣∣∣D̃∗

k2 − ∥d∗k∥
∣∣∣ ≥ ε

}
≤ 2 exp

(
−ε2ϕℓ2

)
.

Similarly, it can be proved that:

P
{∣∣∣D̃∗

k1 − E
(
D̃∗

k1

) ∣∣∣ ≥ ε
}
≤ 2 exp

(
−ε2ϕℓ2

)
.

Obviously, 0 ≤ ∥d∗k∥ = E
(
D̃∗

k2

)
≤ E

(∣∣D̃∗
k2

∣∣) ≤ 1/ℓ21 and 0 ≤ E
(
D̃∗

k1

)
≤ E

(∣∣D̃∗
k1

∣∣) ≤ 1/ℓ21 . Furthermore, we

can get

0 ≤ max
1≤s≤2

sup
p

max
1≤k≤p

E
(
D̃∗

ks

)
≤ 1/ℓ21.

Let ε = ηn−α , when n is large enough, there are (3n− 2)n−2E
(
D̃∗

k2

)
< ηn−α and (n− 1)n−2E

(
D̃∗

k1

)
<

ηn−α , and then we can get

P
(∣∣∣ ∥∥∥d̃∗k∥∥∥− ∥d∗k∥

∣∣∣ ≥ 4ηn−α
)
≤ 2 exp

(
−ℓ3η2n3−2α

)
+ 2 exp

(
−ℓ4η2n1−2α

)
. (7)

Combining equations (6) and (7), it can be deduced that:

P

(∣∣∣∣ ∥∥∥d̂∗k∥∥∥− ∥d∗k∥
∣∣∣∣ ≥ 8ηn−α

)
≤ 3 exp

(
−ℓ5n3−2α

)
+ 3 exp

(
−ℓ6n1−2α

)
, (8)

where

ℓ5 = min

{
8η2

(∫
P−1f (Qτ (Y ) , XAδ ) dXAδ

)2

v−2
4 , ℓ3η

2

}
, ℓ6 = min

{
8η2f2 (Qτ (Y )) v−2

8 , ℓ4η
2} .

It can be obtained from (8), let c = 8η , there exist positive constants c1 and c2 , such that

P

(
max
1≤k≤p

∣∣∣∣ ∥∥∥d̂∗k∥∥∥− ∥d∗k∥
∣∣∣∣ ≥ cn−α

)
≤ O

{
p exp

(
−c1n3−2α

)
+ p exp

(
−c2n1−2α

)}
.

If Aτ ̸⊂ Âτ , there exists k
∗ ∈ Aτ and k∗ ̸∈ Âτ . According to the conditions, k∗ ̸∈ Âτ indicates

∥∥∥d̂∗k∗

∥∥∥ < cn−α ,

and then mink∈Aτ
∥d∗k∥ ≥ 2cn−α can get

∣∣∣∣ ∥∥∥d̂∗k∗

∥∥∥− ∥d∗k∗∥
∣∣∣∣ > cn−α , so there is:

P
(
Aτ ̸⊂ Âτ

)
= P

(∣∣∣∣ ∥∥∥d̂∗k∗

∥∥∥− ∥d∗k∗∥
∣∣∣∣ > cn−α

)
≤ P

(
max
k∈Aτ

∣∣∣∣ ∥∥∥d̂∗k∗

∥∥∥− ∥d∗k∗∥
∣∣∣∣ ≥ cn−α

)
.

Therefore

P
(
Aτ ⊆ Âτ

)
= 1− P

(
Aτ ̸⊂ Âτ

)
≥ 1− P

(
max
k∈Aτ

∣∣∣∣ ∥∥∥d̂∗k∗

∥∥∥− ∥d∗k∗∥
∣∣∣∣ ≥ cn−α

)
≥ 1−O

(
an exp

(
−c1n3−2α

)
+ an exp

(
−c2n1−2α

))
,

where an =
∣∣Aτ

∣∣ represents the number of elements in set Aτ .

So far, Theorem 1 has been proved.
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Proof of Theorem 2. Next, we prove Theorem 2, which is similar to [22].

P
(∣∣∣R̂k −Rk

∣∣∣ ≥ cn−α
)
= P

∣∣∣∣∣m
−1∑m

s=1
ˆ̃ω∗
τsI
(
Xk ∈ Âτs

)
m−1

∑m
s=1

ˆ̃ω∗
τs

−
m−1∑m

s=1 ω̃
∗
τsI (Xk ∈ Aτs)

m−1
∑m

s=1 ω̃
∗
τs

∣∣∣∣∣ ≥ cn−α


≤ P

(∣∣∣∣∣m−1∑m
s=1

ˆ̃ω∗
τs

∣∣∣∣∣
−1∣∣∣∣∣m−1∑m

s=1
ˆ̃ω∗
τsI
(
Xk ∈ Âτs

)
−m−1∑m

s=1 ω̃
∗
τsI (Xk ∈ Aτs)

∣∣∣∣∣ ≥ cn−α

2

)

+ P


∣∣∣m−1∑m

s=1 ω̃
∗
τsI
(
Xk ∈ Aτs

)∣∣∣∣∣∣m−1
∑m

s=1 ω̃
∗
τs

∣∣∣∣∣∣m−1
∑m

s=1
ˆ̃ω∗
τs

∣∣∣
∣∣∣∣∣m−1∑m

s=1
ˆ̃ω∗
τs −m−1∑m

s=1 ω̃
∗
τs

∣∣∣∣∣ ≥ cn−α

2

 := S3 + S4.

According to the definition ω̃∗
τs =

∣∣Aτs

∣∣−1∑
k∈Aτs

∥∥∥d∗k,τs∥∥∥ , combined with the condition (C1), we can

get:

∞ > M ≥ sup
s

1∣∣Aτs

∣∣ ∑
k∈Aτs

∥dk,τs∥ = sup
s
ω̃τs ≥ inf

s
ω̃τs = inf

s

1∣∣Aτs

∣∣ ∑
k∈Aτs

∥dk,τs∥ ≥ 2cn−α =M1.

Let M2 =M1 − δ , δ is a constant and satisfy δ ∈ (0, 1). After calculation, we can get

P

(∣∣∣∣m−1∑m
s=1

ˆ̃ω∗
τs

∣∣∣∣ ≤M2

)
≤ P

(∣∣∣∣m−1∑m
s=1

ˆ̃ω∗
τs −m−1∑m

s=1 ω̃
∗
τs

∣∣∣∣ ≥ δ

)
≤

m∑
s=1

P

(∣∣∣∣ ˆ̃ω∗
τs − ω̃∗

τs

∣∣∣∣ ≥ δ

)
.

First, we calculate S3 .

S3 = P

∣∣∣∣∣m−1
m∑
s=1

ˆ̃ω∗
τs

∣∣∣∣∣
−1∣∣∣∣∣m−1

m∑
s=1

ˆ̃ω∗
τsI
(
Xk ∈ Âτs

)
−m−1

m∑
s=1

ω̃∗
τsI
(
Xk ∈ Aτs

)∣∣∣∣∣ ≥ cn−α

2


≤ P

(∣∣∣∣∣ 1m
m∑
s=1

ˆ̃ω∗
τs

∣∣∣∣∣ ≤M2

)
+ P

(∣∣∣∣∣ 1m
m∑
s=1

ˆ̃ω∗
τsI
(
Xk ∈ Âτs

)
− 1

m

m∑
s=1

ω̃∗
τsI
(
Xk ∈ Aτs

)∣∣∣∣∣ ≥ M2cn
−α

2

)
,

70



PENG LAI, MINGYUE WANG, YUFEI GAO and FENGLI SONG

and

P

(∣∣∣∣∣ 1m
m∑
s=1

ˆ̃ω∗
τsI
(
Xk ∈ Âτs

)
− 1

m

m∑
s=1

ω̃∗
τsI

(
Xk ∈ Aτs

)∣∣∣∣∣ ≥ M2cn
−α

2

)

≤ P
(∣∣∣∣∣ 1m

m∑
s=1

ˆ̃ω∗
τsI
(
Xk ∈ Âτs

)
− ˆ̃ω∗

τsI
(
Xk ∈ Âτs

)∣∣∣∣∣
+

∣∣∣∣∣ 1m
m∑
s=1

ˆ̃ω∗
τsI
(
Xk ∈ Aτs

)
− ω̃∗

τsI
(
Xk ∈ Aτs

)∣∣∣∣∣ ≥ M2cn
−α

2

)

≤
m∑
s=1

P

(∣∣∣∣∣ ˆ̃ω∗
τsI
(
Xk ∈ Âτs

)
− ˆ̃ω∗

τsI
(
Xk ∈ Âτs

)∣∣∣∣∣ ≥ M2cn
−α

4
,Aτs = Âτs

)

+

m∑
s=1

P

(∣∣∣∣∣ ˆ̃ω∗
τsI
(
Xk ∈ Âτs

)
− ˆ̃ω∗

τsI
(
Xk ∈ Âτs

)∣∣∣∣∣ ≥ M2cn
−α

4
,Aτs ̸= Âτs

)

+

m∑
s=1

P

(∣∣∣∣∣ ˆ̃ω∗
τs − ω̃∗

τs

∣∣∣∣∣ ≥ M2cn
−α

4

)

≤ 0 +

m∑
s=1

P
(
Aτs ̸= Âτs

)
+

m∑
s=1

P

(∣∣∣∣∣ ˆ̃ω∗
τs − ω̃∗

τs

∣∣∣∣∣ ≥ M2cn
−α

4

)
.

From Theorem 1, it can be obtained that there exist positive constants ℓ7 and ℓ8 such that:

P

(∣∣∣∣∣ ∥∥∥d̂∗k,τs∥∥∥− ∥∥d∗k,τs∥∥
∣∣∣∣∣ ≥ cn−α

)
≤ 3 exp

(
−ℓ7n3−2α

)
+ 3 exp

(
−ℓ8n1−2α

)
,

P
(
Aτs ⊆ Âτs

)
≥ 1−O

(
an,τs exp

(
−c1n3−2α

)
+ an,τs exp

(
−c2n1−2α

))
,

where an,τs =
∣∣Aτs

∣∣ , represents the number of elements in the local important variable set Aτs .

According to the definition of the local important variable screening index and

{
Âτs ̸⊂ Aτs

}
=

{
∃j∗ ∈

Âτs , s.t.j
∗ ̸∈ Aτs

}
, we can get

j∗ ̸∈ Aτs ⇒
∥∥d∗j∗,τs∥∥ = 0, j∗ ∈ Âτs ⇒

∥∥∥d̂∗j∗,τs∥∥∥ ≥ cn−α.

Then there is

∣∣∣∣∣ ∥∥∥d̂∗j∗,τs∥∥∥− ∥∥d∗j∗,τs∥∥
∣∣∣∣∣ ≥ cn−α , so that we can get

P
(
Âτs ̸⊆ Aτs

)
= P

(∣∣∣∣∣ ∥∥∥d̂∗j∗,τs∥∥∥− ∥∥d∗j∗,τs∥∥
∣∣∣∣∣ ≥ cn−α

)

≤ P

(
max

k

∣∣∣∣∣ ∥∥∥d̂∗k,τs∥∥∥− ∥∥d∗k,τs∥∥
∣∣∣∣∣ ≥ cn−α

)

≤ O
(
an,τs exp

(
−ℓ7n3−2α

)
+ an,τs exp

(
−ℓ8n1−2α

))
.
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By further derivation, we can get:

P
(
Âτs ⊆ Aτs

)
= 1− P

(
Âτs ̸⊂ Aτs

)
≥ 1−O

(
an,τs exp

(
−ℓ7n3−2α

)
+ an,τs exp

(
−ℓ8n1−2α

))
.

There exist positive constants c3 and c4 :

P
(
Aτs = Âτs

)
= P

((
Aτs ⊆ Âτs

)
∩
(
Âτs ⊆ Aτs

))
= P

(
Aτs ⊆ Âτs

)
+ P

(
Âτs ⊆ Aτs

)
− P

((
Aτs ⊆ Âτs

)
∪
(
Âτs ⊆ Aτs

))
≥ 1−O

(
an,τs exp

(
−c1n3−2α

)
+ an,τs exp

(
−c2n1−2α

))
+ 1−O

(
an,τs exp

(
−ℓ7n3−2α

)
+ an,τs exp

(
−ℓ8n1−2α

))
− 1

= 1−O
(
an,τs exp

(
−c3n3−2α

)
+ an,τs exp

(
−c4n1−2α

))
.

Therefore we can get

S3 ≤
∑m

s=1P
(∣∣∣ ˆ̃ω∗

τs − ω̃∗
τs

∣∣∣ ≥ δ
)
+
∑m

s=1P

(∣∣∣ ˆ̃ω∗
τs − ω̃∗

τs

∣∣∣ ≥ M2cn
−α

4

)
+O

(
an,mm exp

(
−c3n3−2α

)
+ an,mm exp

(
−c4n1−2α

))
,

where an,m is the maximum value of the set {an,τs , 1 ≤ s ≤ m} .

Next, we consider S4

S4 = P

∣∣∣∣∣
∣∣∣m−1

∑m
s=1 ω̃

∗
τsI (Xk ∈ Aτs)

∣∣∣∣∣∣m−1
∑m

s=1 ω̃
∗
τs

∣∣∣∣∣∣m−1
∑m

s=1
ˆ̃ω∗
τs

∣∣∣
∣∣∣∣∣m−1∑m

s=1
ˆ̃ω∗
τs −m−1∑m

s=1 ω̃
∗
τs

∣∣∣∣∣ ≥ cn−α

2



= P

∣∣∣∣∣
∣∣∣m−1

∑m
s=1 ω̃

∗
τsI
(
Xk ∈ Aτs

)∣∣∣∣∣∣m−1
∑m

s=1 ω̃
∗
τs

∣∣∣∣∣∣m−1
∑m

s=1
ˆ̃ω∗
τs

∣∣∣
∣∣∣∣∣m−1∑m

s=1
ˆ̃ω∗
τs −m−1∑m

s=1 ω̃
∗
τs

∣∣∣∣∣ ≥ cn−α

2
,

∣∣∣∣∣m−1∑m
s=1

ˆ̃ω∗
τs

∣∣∣∣∣ ≤M2



+ P

∣∣∣∣∣
∣∣∣m−1

∑m
s=1 ω̃

∗
τsI
(
Xk ∈ Aτs

)∣∣∣∣∣∣m−1
∑m

s=1 ω̃
∗
τs

∣∣∣∣∣∣m−1
∑m

s=1
ˆ̃ω∗
τs

∣∣∣
∣∣∣∣∣m−1∑m

s=1
ˆ̃ω∗
τs −m−1∑m

s=1 ω̃
∗
τs

∣∣∣∣∣ ≥ cn−α

2
,

∣∣∣∣∣m−1∑m
s=1

ˆ̃ω∗
τs

∣∣∣∣∣ > M2


≤
∑m

s=1 P
(∣∣∣ ˆ̃ω∗

τs − ω̃∗
τs

∣∣∣ ≥ δ
)
+
∑m

s=1 P

(∣∣∣ ˆ̃ω∗
τs − ω̃∗

τs

∣∣∣ ≥ M2cn
−α

2

)
.
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Observe that S3 and S4 are mainly related to P
(∣∣∣ ˆ̃ω∗

τs − ω̃∗
τs

∣∣∣ ≥ δ
)
, so next calculate P

(∣∣∣ ˆ̃ω∗
τs − ω̃∗

τs

∣∣∣ ≥ cn−α
)
.

P
(∣∣∣ ˆ̃ω∗

τs − ω̃∗
τs

∣∣∣ ≥ cn−α
)
= P

(∣∣∣∣∣∣∣∣Âτs

∣∣∣−1∑
k∈Âτs

∥∥∥d̂∗k,τs∥∥∥− ∣∣∣Aτs

∣∣∣−1∑
k∈Aτs

∥∥d∗k,τs∥∥
∣∣∣∣∣ ≥ cn−α

)

= P

(∣∣∣∣∣∣∣Âτs

∣∣∣−1∑
k∈Âτs

∥∥∥d̂∗k,τs∥∥∥− ∣∣∣Aτs

∣∣∣−1∑
k∈Aτs

∥∥d∗k,τs∥∥ ∣∣∣∣ ≥ cn−α,Aτs ⊂ Âτs

)
+ P

(∣∣∣∣∣∣∣Âτs

∣∣∣−1∑
k∈Âτs

∥∥∥d̂∗k,τs∥∥∥− ∣∣∣Aτs

∣∣∣−1∑
k∈Aτs

∥∥d∗k,τs∥∥ ∣∣∣∣ ≥ cn−α,Aτs ̸⊂ Âτs

)

≤ P

(∣∣∣Aτs

∣∣∣−1∑
k∈Aτs

∣∣∣∣ ∥∥∥d̂∗k,τs∥∥∥− ∥∥d∗k,τs∥∥ ∣∣∣∣ ≥ cn−α

2

)

+ P

(∣∣∣Âτs

∣∣∣−1∑
k∈Âτs\Aτs

∣∣∣∣ ∥∥∥d̂∗k,τs∥∥∥− ∥∥d∗k,τs∥∥ ∣∣∣∣ ≥ cn−α

2

)
+ P

(
Aτs ̸⊂ Âτs

)
≤
∑

k∈Aτs
P

(∣∣∣∣ ∥∥∥d̂∗k,τs∥∥∥− ∥∥∥d∗k,τs∥∥∥ ∣∣∣∣ ≥ cn−α

2

)
+
∑

k∈Âτs\Aτs
P

(∣∣∣∣ ∥∥∥d̂∗k,τs∥∥∥− ∥∥∥d∗k,τs∥∥∥ ∣∣∣∣ ≥ cn−α

2

)
+ P

(
Aτs ̸⊂ Âτs

)
.

Because max1≤s≤m

∣∣Âτs

∣∣ ≤ n , δ ∈ (0, 1) and δ < M1 , choose the appropriate c and n , we can make cn−α ≤ δ ,

then we can deduce

P
(∣∣∣R̂k −Rk

∣∣∣ ≥ cn−α
)

≤ 4n
∑m

s=1P

(∣∣∣∣ ∥∥∥d̂∗k,τs∥∥∥− ∥∥d∗k,τs∥∥ ∣∣∣∣ ≥ δ

2

)
+ 4

m∑
s=1

P
(
Aτs ̸⊂ Âτs

)
+O

(
an,mm exp

(
−c3n3−2α

)
+ an,mm exp

(
−c4n1−2α

))
+ 4n

m∑
s=1

P

(∣∣∣∣ ∥∥∥d̂∗k,τs∥∥∥− ∥∥d∗k,τs∥∥ ∣∣∣∣ ≥ M2cn
−α

8

)

≤ 8n

m∑
s=1

P

(∣∣∣∣ ∥∥∥d̂∗k,τs∥∥∥− ∥∥d∗k,τs∥∥ ∣∣∣∣ ≥ M2cn
−α

8

)
+ 4

m∑
s=1

P
(
Aτs ̸⊂ Âτs

)
+O

(
an,mm exp

(
−c3n3−2α

)
+ an,mm exp

(
−c4n1−2α

))
.

Further we can get that there exist positive constants c5 and c6 , such that

P
(∣∣∣R̂k −Rk

∣∣∣ ≥ cn−α
)
≤ 8nm

{
3 exp

(
−c5n3−2α

)
+ 3 exp

(
−c6n1−2α

)}
+ 4mO

(
an,m exp

(
−c1n3−2α

)
+ an,m exp

(
−c2n1−2α

))
+O

(
an,mm exp

(
−c3n3−2α

)
+ an,mm exp

(
−c4n1−2α

))
.
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Therefore, we have

P

(
max
1≤k≤p

∣∣∣R̂k −Rk

∣∣∣ ≥ cn−α

)
≤ O

{
pmn exp

(
−c7n3−2α

)
+ pmn exp

(
−c8n1−2α

)}
+O

(
an,mmp exp

(
−c9n3−2α

)
+ an,mmp exp

(
−c10n1−2α

))
+O

(
an,mmp exp

(
−c11n3−2α

)
+ an,mmp exp

(
−c12n1−2α

))
.

If A ̸⊂ Â , there exist k∗ ∈ A and k∗ ̸∈ Â . According to the conditions, k∗ ̸∈ Â indicates R̂k∗ < cn−α ,

and then min
k∈A

Rk ≥ 2cn−α can get
∣∣∣R̂k∗ −Rk∗

∣∣∣ > cn−α , so that

P
(
A ̸⊂ Â

)
= P

(∣∣∣R̂k∗ −Rk∗

∣∣∣ > cn−α
)
≤ P

(
max
k∈A

∣∣∣R̂k −Rk

∣∣∣ > cn−α

)
.

So

P
(
A ⊆ Â

)
= 1− P

(
A ̸⊂ Â

)
≥ 1− P

(
max
k∈A

∣∣∣R̂k −Rk

∣∣∣ > cn−α

)
≥ 1−O

{
Annm exp

(
−c7n3−2α

)
+Annm exp

(
−c8n1−2α

)}
−O

(
Anan,mm exp

(
−c9n3−2α

)
+Anan,mm exp

(
−c10n1−2α

))
−O

(
Anan,mm exp

(
−c11n3−2α

)
+Anan,mm exp

(
−c12n1−2α

))
,

where An =
∣∣A∣∣ represents the number of elements in the important variable set A.

So far, Theorem 2 has been proved.
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