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Abstract: We define and study the concepts of nano weakly g# -closed sets by using the concept of nano g# -closed set
in nano topological spaces. Further, we discuss the notions such as nano weakly g# -continuous functions, nano weakly
g# -open functions and nano weakly g# -closed functions in this paper.
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1. Introduction
Lellis Thivagar, et al [6] was the main brain behind developing the concept of nano topology. It is constructed
in terms of lower and upper approximations and boundary region of a subset of a universe. The elements of
the nano topology are called the nano open sets. He further established the weak forms of nano topology, nano
extremally disconnected space, nano topology in Č ech rough closure space, nano topology via neutrosophic sets
so on. Recently several researcher were introduced and studied the new sets and functions in nano topological
spaces for example[[10], [2] and [17]]. In this paper is to introduce and study the concepts of nano weakly
g# -closed sets by using the concept of nano g# -closed set in nano topological spaces. Further, we discuss the
some notions such as nano weakly g# -continuous functions, nano weakly g# -open functions and nano weakly
g# -closed functions with suitable examples are given.

2. Preliminaries
Definition 2.1. [15] Let U be a non-empty finite set of objects called the universe and R be an equivalence
relation on U named as the indiscernibility relation. Elements belonging to the same equivalence class are said
to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as
X with respect to R and it is denoted by LR(X) . That is, LR(X) =

∪
x∈U{R(x) : R(x) ⊆ X} , where R(x)

denotes the equivalence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X
with respect to R and it is denoted by UR(X) . That is, UR(X) =

∪
x∈U{R(x) : R(x) ∩X ̸= ϕ} .
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3. The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as
not - X with respect to R and it is denoted by BR(X) . That is, BR(X) = UR(X)− LR(X) .

Definition 2.2. [6] Let U be the universe, R be an equivalence relation on U and τR(X) = {U, ϕ, LR(X), UR(X), BR(X)}
where X ⊆ U . Then τR(X) satisfies the following axioms:

1. U and ϕ ∈ τR(X) ,

2. The union of the elements of any sub collection of τR(X) is in τR(X) ,

3. The intersection of the elements of any finite subcollection of τR(X) is in τR(X) .

Thus τR(X) is a topology on U called the nano topology with respect to X and (U, τR(X)) is called the
nano topological space. The elements of τR(X) are called nano-open sets (briefly n-open sets). The complement
of a n -open set is called n -closed.

We denote a nano topological space (or) space by (U,N ) , where N = τR(X) . The nano-interior and
nano-closure of a subset A of U are denoted by nint(A) and ncl(A) , respectively.

Definition 2.3. A subset H of a space (U,N ) is called

1. nano semi open [6] if H ⊆ ncl(nint(H)) .

2. nano regular-open [6] if H = nint(ncl(H)) .

3. nano β -open [18] if H ⊆ ncl(nint(ncl(H))) .

4. nano b -open [13] if H ⊆ nint(ncl(H)) ∪ ncl(nint(H)) .

5. nano π -open [1] if the finite union of nano regular-open sets.

6. nano α -open set [6] if H ⊆ nint(ncl(nint(H))) .

The complements of the above used sets are called their respective closed sets.

Definition 2.4. A subset H of a space (U,N ) is called

1. nano g -closed [3] if ncl(H) ⊆ G , whenever H ⊆ G and G is nano open.

2. nano πg -closed [16] if ncl(H) ⊆ G , whenever H ⊆ G and G is nano π -open.

3. nano gα -closed [8] if nαcl(H) ⊆ G whenever H ⊆ G and G is nano α -open.

4. nano αg -closed set [8] if n -αcl(H) ⊆ G whenever H ⊆ G and G is nano open.

5. nano sg -closed set [4] if nscl(H) ⊆ G , whenever H ⊆ G and G is nano semi open.

The complements of the above used sets are called their respective open sets.

Definition 2.5. A subset H of a nano topological space (U,N ) is called

1. nano regular closed [6] if H = ncl(nint(H)) .

2. nano semi open set [6] if H ⊆ ncl(nint(H)) .

3. nano rg -closed [20] if ncl(H) ⊆ G whenever H ⊆ G and G is n -regular open.
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4. nano dense [19] if ncl(H) = U ,

5. nano nowhere dense [7] if nint(ncl(H)) = ϕ .

6. nano codense [11] if U −H is n -dense.

Definition 2.6. A subset H of a space (U,N ) is called

1. nwg -closed set [9] if ncl(nint(H) ⊆ V whenever H ⊆ V and V is nano open.

2. nrwg -closed set [9] if ncl(nint(H)) ⊆ U whenever H ⊆ U and U is regular open.

3. nwIrg -closed set [12] if (nint(E))∗ ⊆ F whenever E ⊆ F and F is a n -regular open set in U .

4. ng# -closed set [5] if ncl(H) ⊆ G whenever H ⊆ G and G is nαg -open in U .

In future nano topological spaces (U, τR(X)) is referred as a space (U, τR(X)) .

3. Nano weakly g# -closed sets

We introduce the definition of nano weakly g# -closed sets in nano topological spaces and study the relationships
of such sets.

Definition 3.1. A subset E of a space (U, τR(X)) is called a nano weakly g# -closed (briefly, nwg# -closed)
set if ncl(nint(E)) ⊆ G whenever E ⊆ G and G is nαg -open in U .

Proposition 3.1. Each ng# -closed set is nwg# -closed in a space (U, τR(X)) .

Remark 3.1. The converse of Proposition 3.1 is need not be true as seen from the following example.

Example 3.1. Let U = {h1, h2, h3} with U/R = {{h1, h2}, {h3}} and X = {h1, h2} . Then τR(X) =

{ϕ, {h1, h2}, U} . Then the subset {h1} is nwg# -closed set but not a ng# -closed in (U, τR(X)) .

Proposition 3.2. Each nwg# -closed set is nwg -closed in a space (U, τR(X)) .

Proof. Let E be any nwg# -closed set and G be any nano open set containing E . Then G is an nαg -open set
containing E . We have ncl(nint(E)) ⊆ G . Thus, E is nwg -closed.

Remark 3.2. The converse of Proposition 3.2 is need not be true as seen from the following example.

Example 3.2. Let U = {h1, h2, h3} with U/R = {{h1}, {h2, h3}} and X = {h1} . Then τR(X) = {ϕ, {h1}, U} .
Then the subset {h1, h2} is nwg -closed set but not nwg# -closed in (U, τR(X)) .

Proposition 3.3. Each nwg# -closed set is nwπg -closed in a space (U, τR(X)) .

Proof. Let E be any nwg# -closed set and G be any nπ -open set containing E . Then G is a nsg -open set
containing E . We have ncl(nint(E)) ⊆ G . Thus, E is nwπg -closed.

Remark 3.3. The converse of Proposition 3.3 is need not be true as seen from the following example.

Example 3.3. In Example 3.2, then the subset {h1, h3} is nwπg -closed but not nwg# -closed.

Proposition 3.4. Each nwg# -closed set is nrwg -closed in a space (U, τR(X)) .
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Proof. Let E be any nwg# -closed set and G be any nano regular open set containing E . Then G is an
nαg -open set containing E . We have ncl(nint(E)) ⊆ G . Thus, E is nrwg -closed.

Remark 3.4. The converse of Proposition 3.4 is need not be true as seen from the following example.

Example 3.4. In Example 3.2, then the subset {h1} is nrwg -closed but not nwg# -closed.

Theorem 3.1. If a subset E of a space U is both nano closed and ng -closed, then it is nwg# -closed in U .

Proof. Let E be a ng -closed set in U and G be any nano open set containing E . Then G ⊇ ncl(E) ⊇
ncl(nint(ncl(E))) . Since E is nano closed, G ⊇ ncl(nint(E)) and hence nwg# -closed in U .

Theorem 3.2. If a subset E of a space U is both nano open and nwg# -closed, then it is nano closed.

Proof. Since E is both nano open and nwg# -closed, E ⊇ ncl(nint(E)) = ncl(E) and hence E is nano closed
in U .

Corollary 3.1. If a subset E of a space U is both nano open and nwg# -closed, then it is both nano regular
open and nano regular closed in U .

Theorem 3.3. Let U be a space and E ⊆ U be nano open. Then, E is nwg# -closed if and only if E is
ng# -closed.

Proof. Let E be ng# -closed. By Proposition 3.1, it is nwg# -closed. Conversely, let E be nwg# -closed. Since
E is nano open, by Theorem 3.2, E is nano closed. Hence E is ng# -closed.

Theorem 3.4. If a set E of U is nwg# -closed, then ncl(nint(E)) − E contains no non-empty nαg -closed
set.

Proof. Let H be an nαg -closed set such that H ⊆ ncl(nint(E)) − E . Since Hc is nαg -open and E ⊆ Hc ,
from the definition of nwg# -closedness it follows that ncl(nint(E)) ⊆ Hc . i.e., H ⊆ (ncl(nint(E)))c . This
implies that H ⊆ (ncl(nint(E))) ∩ (ncl(nint(E)))c = ϕ .

Proposition 3.5. If a subset E of a space U is nano nowhere dense, then it is nwg# -closed.

Proof. Since nint(E) ⊆ nint(ncl(E)) and E is nano nowhere dense, nint(E) = ϕ . Therefore ncl(nint(E)) = ϕ

and hence E is nwg# -closed in U .

Remark 3.5. The converse of Proposition 3.5 need not be true as seen in the following example.

Example 3.5. Let U = {h1, h2, h3} with U/R = {{h1}, {h2, h3}} and X = {h1, h2} . Then τR(X) =

{ϕ, {h1}, {h2, h3}, U} . Then the subset {h1} is nwg# -closed set but not nano nowhere dense in U .

Remark 3.6. The following examples show that the concepts of nwg# -closedness and the concepts of nano
semi-closedness are independent of each other.

Example 3.6. In Example 3.1, then the subset {h1, h3} is nwg# -closed set but not nano semi-closed in U .

Example 3.7. Let U = {h1, h2, h3} with U/R = {{h1}, {h2}, {h3}} and X = {h1, h2} . Then τR(X) =

{ϕ, {h1}, {h2}, {h1, h2}, U} . Then the subset {h1} is nano semi-closed set but not nwg# -closed in U .
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Remark 3.7. From the above discussions and known results, we obtain the following diagram, where E → F

represents E implies F but not conversely.

Diagram

nano closed→ nwg#-closed→ nwg-closed→ nwπg-closed→ nrwg-closed

Definition 3.2. A subset E of a space U is called nwg# -open set if Ec is nwg# -closed in U .

Proposition 3.6.1. Every ng# -open set is nwg# -open but not conversely.

2. Every ng -open set is nwg# -open but not conversely.

Theorem 3.5. A subset E of a space U is nwg# -open if H ⊆ nint(ncl(E)) whenever H ⊆ E and H is
nαg -closed.

Proof. Let E be any nwg# -open. Then Ec is nwg# -closed. Let H be an nαg -closed set contained in E .
Then Hc is an nαg -open set containing Ec . Since Ec is nwg# -closed, we have ncl(nint(Ec)) ⊆ Hc . Therefore
H ⊆ nint(ncl(E)) .

Conversely, we suppose that H ⊆ nint(ncl(E)) whenever H ⊆ E and H is nαg -closed. Then Hc is
an nαg -open set containing Ec and Hc ⊇ (nint(ncl(E)))c . It follows that Hc ⊇ ncl(nint(Ec)) . Hence Ec is
nwg# -closed and so E is nwg# -open.

Definition 3.3. Let f : (U, τR(X)) → (V, τ ′R(Y )) be a function. Then f is said to be nano contra g# -
continuous if the inverse image of every nano open set in V is ng# -closed set in U .

Theorem 3.6. The following are equivalent for a function f : (U, τR(X)) → (V, τ ′R(Y )) ,

1. f is nano contra g# -continuous.

2. the inverse image of every nano closed set of V is ng# -open in U .

Proof. Let G be any nano closed set of V . Since V \G is nano open, then by (1), it follows that f−1(V \G) =

U\f−1(G) is ng# -closed. This shows that f−1(G) is ng# -open in U .
Converse part is similar.

4. Nano weakly g# -continuous functions

Definition 4.1. Let U and V be two nano topological spaces. A function f : (U, τR(X)) → (V, τ ′R(Y )) is
called nano weakly g# -continuous (briefly, nwg# -continuous) if f−1(G) is a nwg# -open set in U for each
nano open set G of V .

Example 4.1. Let U = {h1, h2, h3} with U/R = {{h1}, {h2, h3}} and X = {h1, h2} . Then τR(X) =

{ϕ, {h1}, {h2, h3}, U} in U . Let V = {h1, h2, h3} with V/R = {{h1}, {h2}, {h3}} and Y = {h1} . Then
τ ′R(Y ) = {ϕ, {h1}, V } in V . The function f : (U, τR(X)) → (V, τ ′R(Y )) defined by f(h1) = h2 , f(h2) = h3 and
f(h3) = h1 is nwg# -continuous, because every subset of V is nwg# -closed in U .

Theorem 4.1. Each ng# -continuous function is nwg# -continuous.
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Proof. It follows from Theorem 3.1.
The converse of Theorem 4.1 need not be true as seen in the following example.

Example 4.2. Let U = {h1, h2, h3} with U/R = {{h1}, {h2, h3}} and X = {h1, h2} . Then τR(X) =

{ϕ, {h1}, {h2, h3}, U} in U . Let V = {h1, h2, h3} with V/R = {{h1}, {h2}, {h3}} and Y = {h2} . Then
τ ′R(Y ) = {ϕ, {h2}, V } in V . Let f : (U, τR(X)) → (V, τ ′R(Y )) be the identity function. Then f is nwg# -
continuous but not ng# -continuous.

Theorem 4.2. A function f : (U, τR(X)) → (V, τ ′R(Y )) is nwg# -continuous if and only if f−1(G) is a
nwg# -closed set in U for each nano closed set G of V .

Proof. Let G be any nano closed set of V . According to the assumption f−1(Gc) = U\f−1(G) is nwg# -open
in U , so f−1(G) is nwg# -closed in U .

The converse can be proved in a similar manner.

Definition 4.2. A space U is said to be nano locally g# -indiscrete if every ng# -open set of U is nano closed
in U .

Theorem 4.3. Let f : (U, τR(X)) → (V, τ ′R(Y )) be a function. If f is nano contra g# -continuous and U is
nano locally g# -indiscrete, then f is nano continuous.

Proof. Let H be a nano closed in V . Since f is nano contra g# -continuous, f−1(H) is ng# -open in U . Since
U is nano locally g# -indiscrete, f−1(H) is nano closed in U . Hence f is nano continuous.

Theorem 4.4. Let f : (U, τR(X)) → (V, τ ′R(Y )) be a function. If f is nano contra g# -continuous and U is
nano locally g# -indiscrete, then f is nwg# -continuous.

Proof. Let f : (U, τR(X)) → (V, τ ′R(Y )) be nano contra g# -continuous and U is nano locally g# -indiscrete.
By Theorem 4.3, f is nano continuous, then f is nwg# -continuous.

Proposition 4.1. If f : (U, τR(X)) → (V, τ ′R(Y )) is perfectly nano continuous and nwg# -continuous, then it
is nR -map.

Proof. Let H be any nano regular open subset of V . According to the assumption, f−1(H) is both nano open
and nano closed in U . Since f−1(H) is nano closed, it is nwg# -closed. We have f−1(H) is both nano open
and nwg# -closed. Hence, by Corollary 3.1, it is nano regular open in U , so f is nR -map.

Definition 4.3. A space U is called ng# -compact if every cover of U by ng# -open sets has finite subcover.

Definition 4.4. A space U is nano weakly g# -compact (briefly, nwg# -compact) if every nwg# -open cover
of U has a finite subcover.

Remark 4.1. Each nwg# -compact space is ng# -compact.

Theorem 4.5. Let f : (U, τR(X)) → (V, τ ′R(Y )) be surjective nwg# -continuous function. If U is nwg# -
compact, then V is nano compact.
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Proof. Let {Ei : i ∈ I} be an nano open cover of V . Then {f−1(Ei) : i ∈ I} is a nwg# -open cover in U . Since
U is nwg# -compact, it has a finite subcover, say {f−1(E1) , f−1(E2) ,...., f−1(En)} . Since f is surjective {E1 ,
E2 ,...., En} is a finite subcover of V and hence V is nano compact.

Definition 4.5. A space U is nano weakly g# -connected (briefly, nwg# -connected) if U cannot be written
as the disjoint union of two non-empty nwg# -open sets.

Theorem 4.6. If a space U is nwg# -connected, then U is nano almost connected (resp. ng# -connected).

Proof. It follows from the fact that each nano regular open set (resp. ng# -open set) is nwg# -open.

Theorem 4.7. For a space U , the following statements are equivalent:

1. U is nwg# -connected.

2. The empty set ϕ and U are only subsets which are both nwg# -open and nwg# -closed.

3. Each nwg# -continuous function from U into a discrete space V which has at least two points is a constant
function.

Proof. (1) ⇒ (2) . Let K ⊆ U be any proper subset, which is both nwg# -open and nwg# -closed. Its
complement U\K is also nwg# -open and nwg# -closed. Then U = K ∪ (U\K) is a disjoint union of two
non-empty nwg# -open sets which is a contradiction with the fact that U is nwg# -connected. Hence, K = ϕ

or U .
(2) ⇒ (1) . Let U = E∪F where E∩F = ϕ , E ̸= ϕ , F ̸= ϕ and E,F are nwg# -open. Since E = U\F ,

E is nwg# -closed. According to the assumption E = ϕ , which is a contradiction.
(2) ⇒ (3) . Let f : (U, τR(X)) → (V, τ ′R(Y )) be a nwg# -continuous function where V is a discrete

space with at least two points. Then f−1({a}) is nwg# -closed and nwg# -open for each a ∈ V and U =

∪{f−1({a}) : a ∈ V } . According to the assumption, f−1({a}) = ϕ or f−1({a}) = U . If f−1({a}) = ϕ for all
a ∈ V , f will not be a function. Also there is no exist more than one a ∈ V such that f−1({a}) = U . Hence,
there exists only one a ∈ V such that f−1({a}) = U and f−1({a1}) = ϕ where a ̸= a1 ∈ V . This shows that
f is a constant function.

(3) ⇒ (2) . Let K ̸= ϕ be both nwg# -open and nwg# -closed in U . Let f : (U, τR(X)) → (V, τ ′R(Y ))

be a nwg# -continuous function defined by f(K) = {c} and f(U\K) = {d} where c ̸= d . Since f is constant
function we get K = U .

Theorem 4.8. Let f : (U, τR(X)) → (V, τ ′R(Y )) be a nwg# -continuous surjective function. If U is nwg# -
connected, then V is nano connected.

Proof. We suppose that V is not nano connected. Then V = E∪F where E∩F = ϕ , E ̸= ϕ , F ̸= ϕ and E,F

are nano open sets in V . Since f is nwg# -continuous surjective function, U = f−1(E) ∪ f−1(F ) are disjoint
union of two non-empty nwg# -open subsets. This is contradiction with the fact that U is nwg# -connected.
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5. Nano weakly g# -open functions and nano weakly g# -closed functions

Definition 5.1. Let U and V be spaces. A function f : (U, τR(X)) → (V, τ ′R(Y )) is called nano weakly
g# -open (briefly, nwg# -open) if f(G) is a nwg# -open set in V for each nano open set G of U .

Definition 5.2. Let U and V be spaces. A function f : (U, τR(X)) → (V, τ ′R(Y )) is called nano weakly
g# -closed (briefly, nwg# -closed) if f(G) is a nwg# -closed set in V for each nano closed set G of U .

It is clear that an open function is nwg# -open and a nano closed function is nwg# -closed.

Theorem 5.1. Let U and V be spaces. A function f : (U, τR(X)) → (V, τ ′R(Y )) is nwg# -closed if and only
if for each subset G of V and for each nano open set H containing f−1(G) there exists a nwg# -open set S

of V such that G ⊆ S and f−1(S) ⊆ H .

Proof. Let G be any subset of V and let H be an nano open subset of U such that f−1(G) ⊆ H . Then
S = V \f(U\H) is nwg# -open set containing G and f−1(S) ⊆ H .

Conversely, let P be any nano closed subset of U . Then f−1(V \f(P )) ⊆ U\P and U\P is nano open.
According to the assumption, there exists a nwg# -open set S of V such that V \f(P ) ⊆ S and f−1(S) ⊆ U\P .
Then P ⊆ U\f−1(S) . From V \S ⊆ f(P ) ⊆ f(U\f−1(S)) ⊆ V \S it follows that f(P ) = V \S , so f(P ) is
nwg# -closed in V . Therefore f is a nwg# -closed function.

Remark 5.1. The composition of two nwg# -closed functions need not be a nwg# -closed as we can see from
the following example.

Example 5.1. Let U = {h1, h2, h3} with U/R = {{h1}, {h2, h3}} and X = {h1} . Then τR(X) = {ϕ, {h1}, U} .
Let V = {h1, h2, h3} with V/R = {{h1}, {h2, h3}} and Y = {h1, h2} . Then τ ′R(Y ) = {ϕ, {h1}, {h2, h3}, V } . Let
W = {h1, h2, h3} with W/R = {{h1, h2}, {h3}} and Z = {h1, h2} . Then τ ′′R(Z) = {ϕ, {h1, h2}, Z} . We define
f : (U, τR(X)) → (V, τ ′R(Y )) by f(h1) = h3 , f(h2) = h2 and f(h3) = h1 and let g : (V, τ ′R(Y )) → (W, τ ′′R(Z))

be the identity function. Hence both f and g are nwg# -closed functions. For a closed set K = {h2, h3} ,
(g ◦ f)(K) = g(f(K)) = g({h1, h2}) = {h1, h2} which is not nwg# -closed in W . Hence the composition of two
nwg# -closed functions need not be a nwg# -closed.

Theorem 5.2. Let U , V and W be spaces. If f : (U, τR(X)) → (V, τ ′R(Y )) is a nano closed function and
g : (V, τ ′R(Y )) → (W, τ ′′R(Z)) is a nwg# -closed function, then g◦f : (U, τR(X)) → (W, τ ′′R(Z)) is a nwg# -closed
function.

Definition 5.3. A function f : (U, τR(X)) → (V, τ ′R(Y )) is called a nano weakly g# -irresolute (briefly, nwg# -
irresolute) if f−1(G) is a nwg# -open set in U for each nwg# -open set G of V .

Example 5.2. Let U = {h1, h2, h3} with U/R = {{h2}, {h1, h3}} and X = {h2, h3} . Then N =

{ϕ, {h2}, {h1, h3}, U} . Let V = {h1, h2, h3} with V/R = {{h2}, {h1, h3}} and Y = {h2} . Then N ′ =

{ϕ, {h2}, V } . Let f : (U, τR(X)) → (V, τ ′R(Y )) be the identity function. Then f is nwg# -irresolute.

Remark 5.2. The following examples show that the concepts of nαg -irresoluteness and the concepts of nwg# -
irresoluteness are independent of each other.
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Example 5.3. Let U = {h1, h2, h3} with U/R = {{h1, h2}, {h3}} and X = {h1, h2} . Then τR(X) =

{ϕ, {h1, h2}, U} . Let V = {h1, h2, h3} with V/R = {{h1}, {h2}, {h3}} and Y = {h1} . Then τ ′R(Y ) =

{ϕ, {h1}, V } . Let f : (U, τR(X)) → (V, τ ′R(Y )) be the identity function. Then f is nwg# -irresolute but not
nαg -irresolute.

Example 5.4. Let U = {h1, h2, h3} with U/R = {{h1}, {h2}, {h3}} and X = {h1, h2} . Then τR(X) =

{ϕ, {h1}, {h2}, {h1, h2}, U} . Let V = {h1, h2, h3} with V/R = {{h1, h2}, {h3}} and Y = {h1, h2} . Then
τ ′R(Y ) = {ϕ, {h1, h2}, V } . Let f : (U, τR(X)) → (V, τ ′R(Y )) be the identity function. Then f is nαg -irresolute
but not nwg# -irresolute.

Theorem 5.3. Let f : (U, τR(X)) → (V, τ ′R(Y )) and g : (V, τ ′R(Y )) → (W, τ ′′R(Z)) be functions such that
g ◦ f : (U, τR(X)) → (W, τ ′′R(Z)) is nwg# -closed function. Then the following statements hold:

1. if f is nano continuous and injective, then g is nwg# -closed.

2. if g is nwg# -irresolute and surjective, then f is nwg# -closed.

Proof. (1). Let S be a nano closed set of V . Since f−1(S) is nano closed in U , we can conclude that
(g ◦ f)(f−1(S)) is nwg# -closed in W . Hence g(S) is nwg# -closed in W . Thus g is a nwg# -closed function.

(2). It can be proved in a similar manner as (1).
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