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Abstract: In this paper, we prove a common fixed point theorem for a pair of multi-valued mappings satisfying
generalized contraction conditions in the setting of complete b-metric spaces. The proposed theorem expand and
generalize several well-known comparable results in the literature.
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1. Introduction
Fixed point theory plays an important role in applications of many branches of mathematics. It has been
applied in computer sciences, game theory, physical sciences and models in economy. One such fixed points has
started by Banach in 1922, ensures the existence and uniqueness of fixed points for a contraction mapping in
complete metric spaces. After that a series of articles have been dedicated to the improvement of fixed point
theory.
In 1969, Nadler [24] introduced the notion of a multi-valued (set-valued) and was the first author proved Banach
fixed point theorem for a multi-valued mapping in a complete metric space by using the Hausdorff metric. The
theory of multi-valued (set-valued) maps has applications in differential inclusions, economics, control theory,
and fractional differential inclusions.
Afterward, in 1989, Backhtin [7] introduced the concept of b-metric space as a generalization of a metric space.
In 1993, Czerwik [11] first presented a generalization of Banach fixed point theorem in b-metric spaces. Several
researcher generalized and extended fixed point theorems for single and multi-valued contractions mappings on
b-metric space (see[1–5, 8, 9, 15–17, 20, 21, 23, 24, 26] and many others).
In this paper we give fixed point theorems for multi-valued generalized contraction of two maps in b-metric
space.

2. Preliminaries and Terminology

Definition 2.1. [7, 11] Let X be a nonempty set. A function d : X × X → R+ is called a b -metric with
coefficient s ≥ 1 if:

1. d(x, y) = 0 if and only if x = y ;
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2. d(x, y) = d(y, x) , for all x, y ∈ X ;

3. d(x, z) ≤ s[d(x, y) + d(y, z)] , for all x, y, z ∈ X

Then the pair (X, d) is called a b -metric space.

Remark 2.1. It is clear that every metric space is b-metric space with s = 1 , but in general, a b-metric space
need not necessarily be a metric space [12].

Example 2.1. [9] Let Lp([0, 1]) =
{
f : [0, 1] −→ R : ∥f∥Lp([0,1]) < ∞

}
, (0 < p < 1) and

∥f∥Lp([0,1]) =

(∫ 1

0

|f(x)|pdx
) 1

p

.

Denote X = Lp([0, 1]) , define a mapping d : X ×X → R+ by

d(x, y) =

(∫ 1

0

|f(x)− g(x)|pdx
) 1

p

. (1)

for all f, g ∈ X. Then (X, d) is a b-metric space with coefficient s = 2
1
p−1 .

For more examples of b -metric space (see [13, 16, 17, 20] ).

Definition 2.2. [13] Let (X, d) be a b -metric space and {xn} a sequence in X . We say that :

1. {xn} converges to x if d (xn, x) → 0, as n → +∞ ,

2. {xn} is Cauchy sequence if d (xn, xm) → 0, as n,m → +∞ ,

3. (X, d) is complete if every Cauchy sequence in X is convergent.

Each convergent sequence in a b-metric space has a unique limit and it is also a Cauchy sequence.
Moreover, in general, a b -metric is not necessarily continuous [10]. The following example illustrates this claim.

Example 2.2. [13] Let X = N ∪ {∞} . We define a mapping d : X ×X −→ R+ as follows:

d(m,n) =


0 if m = n

| 1m − 1
n | if one of m,n is even and the other is even or ∞

5 if one of m,n is odd and the other is odd or ∞
2 otherwise m = n.

Then (X, d) is a b-metric space with coefficient s = 5
2 . However, let xn = 2n for each n ∈ N. Then

limn→∞ d(2n,∞) = limn→∞
1
2n = 0, that is, xn → ∞, but d (xn, 1) = 2 ↛ 5 = d(∞, 1) as n → ∞ .

Let (X, d) be a complete b -metric space. In the sequel, we use the following notations:
CB(X) = {A : A is a nonempty closed and bounded subset of X} ,
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} ,
δ(A,B) = sup{d(a,B) : a ∈ A} ,
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δ(B,A) = sup{d(b, A) : b ∈ B} ,
H(A,B) = max{δ(A,B), δ(B,A)} = max{supx∈B D(x,A), supx∈A D(x,B)} .
Notice that H is called the Hausdorff metric induced by the metric d .
Forward, we denote by F (T ) the set of all fixed points of a multi-valued mapping T , that is,

F (T ) = {p ∈ X : p ∈ Tp} .

Definition 2.3. A point of x0 ∈ X is said to be a fixed point of the multi-valued mappings T : X −→ CB(X)

if x0 ∈ Tx0 .

Lemma 2.1. [12] Let (X, d) be a complete b-metric space. For any A,B,C ∈ CB(X) and any x, y ∈ X , one
has the following:

1. d(x,B) ≤ d(x, b) , for any b ∈ B .

2. δ(A,B) ≤ H(A,B) .

3. d(x,B) ≤ H(A,B) , for any x ∈ A .

4. H(A,A) = 0 .

5. H(A,B) = H(B,A) .

6. H(A,C) ≤ s[H(A,B) +H(B,C)] .

7. d(x,A) ≤ s[d(x, y) + d(y,A)] .

Lemma 2.2. [13] Let (X, d) be a complete b-metric space and let {xn} be a sequence in X such that

d (xn+1, xn+2) ≤ βd (xn, xn+1) , for all n = 0, 1, 2, . . .

where 0 ≤ β < 1 . Then {xn} is a Cauchy sequence in X .

3. Mains results
Before proving our main results, we need the following Lemma:

Lemma 3.1. Let (X, d) be a complete b-metric space with a coefficient s ≥ 1 , α, γ1, γ2 are nonnegative reals
with 0 ≤ γ1 < γ2 , and S, T : X → CB(X) be multi-valued maps satisfying, for all x, y ∈ X

sαδ(Sx, Ty) ≤ N(x, y)M(x, y), (2)

where

N(x, y) =
max {d(x, y), D(x, Sx) +D(y, Ty), D(x, Ty) +D(y, Sx) + γ1}

δ(x, Sx) + δ(y, Ty) + γ2
, (3)

and

M(x, y) = max

{
d(x, y), D(x, Sx), D(y, Ty),

D(x, Ty) +D(y, Sx)

2s

}
. (4)

Then every fixed point of S is a fixed point of T , and conversely.
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Proof. Suppose that p is a fixed point of S . Using (2) and the definition of δ ,

D(p, Tp) ≤ δ(p, Tp) ≤ δ(Sp, Tp) ≤ 1

sα
N(p, p)M(p, p). (5)

Where,

N(p, p) =
max {d(p, p), D(p, Sp) +D(p, Tp), D(p, Tp) +D(p, Sp) + γ1}

δ(p, Sp) + δ(p, Tp) + γ2

≤ D(p, Tp) + γ1
D(p, Tp) + γ2

= λ < 1,

and,

M(p, p) = max

{
d(p, p), D(p, Sp), D(p, Tp),

D(p, Tp) +D(p, Sp)

2s

}
≤ D(p, Tp).

From 5

D(p, Tp) ≤ λ

sα
D(p, Tp),

since λ

sα
< 1 , which implies that p is also a fixed point of T .

In a similar manner it can be shown that, if p ∈ Tp , then p ∈ Sp .

Now, we prove the main result in this section.

Theorem 3.1. Let (X, d) be a complete b-metric space with a coefficient s ≥ 1 , α, γ1, γ2 are nonnegative reals
with 0 ≤ γ1 < γ2 , and S, T : X → CB(X) be multi-valued maps satisfying (2), (3) and (4). Then
(a) S and T have at least one common fixed point p ∈ X .
(b) For n even, {(ST )n/2x} and {T (ST )n/2x} converge to a common fixed point for each x ∈ X .
(c) If p and q are distinct common fixed points of S and T , then

sαγ2 − γ1
2

≤ d(p, q).

Proof. Part (a), let x0 ∈ X,x1 ∈ Sx0 and define {xn} by

x2n+1 ∈ Sx2n, x2n+2 ∈ Tx2n+1, for all n ≥ 0. (6)

Without loss of generality, we assume that xn ̸= xn+1 for each n . For, if there exist an n0 such that
xn0

̸= xn0+1 , then n0 forms a common fixed point for S and T . More precisely, to see that xn0
is the common

fixed point of S and T, we consider n0 in two cases. First, if n0 = 2n . In this case, we have x2n = x2n+1 ∈ Sx2n ,
that is, x2n is a fixed point of S , hence of T by Lemma 3.1. that is, x2n = x2n+1 is a common fixed point of
S and T . Similarly, if n0 = 2n+ 1 .
Thus, throughout the proof, we suppose that xn ̸= xn+1 for each n . For, if there exists an n0 for which
x2n0

̸= x2n0+1 , then, since x2n0+1 ∈ Sx2n0
, x2n0+1 ∈ F (S) , and by Lemma 3.1, x2n0

∈ F (T ) . Similarly,
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x2n0+1 = x2n0+2 for any n0 implies that x2n0+1 ∈ F (T ) ∩ F (S) .
First we to show that {xn} is a Cauchy sequence in X . For this, choose x2n+1 ∈ Sx2n such that

d(x2n, x2n+1) ≤ δ(Sx2n, Tx2n−1), (7)

Similarly, choose x2n+2 ∈ Tx2n+1 such that

d(x2n+1, x2n+2) ≤ δ(Sx2n, Tx2n+1). (8)

Setting d2n = d(x2n+1, x2n) , the λn are defined by

λn =
dn−1 + dn +

γ1
s

dn−1 + dn + γ2
. (9)

It follows from (3) that

N(x2n, x2n−1) =
max {d2n−1, D(x2n, Sx2n) +D(x2n−1, Tx2n−1), D(x2n, Tx2n−1) +D(x2n−1, Sx2n) + γ1}

δ(x2n, Sx2n) + δ(x2n−1, Tx2n−1) + γ2

≤ max {d2n−1, d2n + d2n−1, 0 + d(x2n−1, x2n+1) + γ1}
d2n + d2n−1 + γ2

≤ max {d2n−1, d2n + d2n−1, s [d2n−1 + d2n] + γ1}
d2n + d2n−1 + γ2

= s
d2n−1 + d2n +

γ1
s

d2n−1 + d2n + γ2
= sλ2n,

(10)

where λ2n =
d2n−1 + d2n +

γ1
s

d2n−1 + d2n + γ2
< 1 , for all n > 0 because 0 ≤ γ1 < γ2 .

It follows from (4) that

M(x2n, x2n−1) = max

{
d(x2n, x2n−1), D(x2n, Sx2n), D(x2n−1, Tx2n−1),

D(x2n, Tx2n−1) +D(x2n−1, Sx2n)

2s

}
≤ max

{
d2n−1, d2n, d2n−1,

0 + d(x2n−1, x2n+1)

2s

}
≤ max

{
d2n−1, d2n,

d2n−1 + d2n
2

}
= max{d2n−1, d2n}.

(11)
Using (2), (10) and (11) in (7) yields

d2n ≤ δ(Sx2n, Tx2n−1) ≤
λ2n

sα−1
max{d2n−1, d2n}.

If d2n > d2n−1 for some n , then from the above inequality we have

d2n ≤ λ2n

sα−1
d2n,
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a contradiction since each xn ̸= xn+1, d2n > 0 and λ2n

sα−1
< 1 , then max{d2n−1, d2n} = d2n−1 for all n > 0 .

Also, by the above inequality we obtain

d2n ≤ λ2n

sα−1
d2n−1. (12)

Similarly, we can prove

d2n+1 ≤ λ2n+1

sα−1
d2n. (13)

Combining (12) and (13), we can conclude that, for all n > 0 ,

dn ≤ λn

sα−1
dn−1 < dn−1. (14)

Next, we show that λn < λn−1 , for all n > 0 .
Then, by inequality (14), we get dn < dn−1 , and also dn−1 < dn−2 , which implies that dn < dn−2 .
Consequently

0 < dn + dn−1 +
γ1
s

< dn−1 + dn−2 +
γ1
s
,

and
0 < dn + dn−1 + γ2 < dn−1 + dn−2 + γ2,

then by dividing, we get

dn + dn−1 +
γ1
s

dn + dn−1 + γ2
<

dn−1 + dn−2 +
γ1
s

dn−1 + dn−2 + γ2

is equivalent to λn < λn−1 , continuing this process, we get

λn < λ1. (15)

Now, from (14) and (15), we have

dn ≤ λ1

sα−1
dn−1. (16)

Let β =
λ1

sα−1
. Then, we have that β ∈ [0, 1) . Hence, by Lemma 2.2, we obtain that {xn} is a Cauchy

sequence in (X, d) . By completeness of (X, d) , there exists p ∈ X such that limn→∞ xn = p .
Next, to show that p ai a fixed of T . For this, using triangular inequality, we have

D(p, Tp) ≤ s[d(p, x2n+1) +D(x2n+1, Tp)]

≤ s[d(p, x2n+1) + δ(Sx2n, Tp)].
(17)

It follows from (3) that

N(x2n, p) =
max {d(x2n, p), D(x2n, Sx2n) +D(p, Tp), D(x2n, Tp) +D(p, Sx2n) + γ1}

δ(x2n, Sx2n) + δ(p, Tp) + γ2

≤ max {d(x2n, p), d(x2n, x2n+1) + d(p, Tp), d(x2n, Tp) + d(p, x2n+1) + γ1}
d(x2n, x2n+1) + d(p, Tp) + γ2

.

(18)
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It follows from (4) that

M(x2n, p) = max

{
d(x2n, p), D(x2n, Sx2n), D(p, Tp),

D(x2n, Tp) +D(p, Sx2n)

2s

}
≤ max

{
d(x2n, p), d(x2n, x2n+1), D(p, Tp),

d(x2n, Tp) + d(p, x2n+1)

2s

}
.

(19)

Substituting (18) and (19) into (17), using (2), and taking the limit of both sides as n −→ ∞ , one obtains

D(p, Tp) ≤ 1

sα−1

d(p, Tp) + γ1
d(p, Tp) + γ2

D(p, Tp),

as 1

sα−1

d(p, Tp) + γ1
d(p, Tp) + γ2

< 1 , which implies D(p, Tp) = 0 . Hence, we get that p ∈ F (T ) . From Lemma

3.1,p ∈ F (S) . Accordingly, we conclude that S and T have a common fixed point p .
To prove (b), merely observe that, from (6) and the fact that x0 is arbitrary, we may write.

xn+1 ∈ (ST )n/2x and xn+2 ∈ T (ST )n/2x.

(c). Suppose that p and q are distinct common fixed points of S and T .
Then

d(p, q) ≤ δ(Sp, Tq). (20)

It follows from (3) that

N(p, q) =
max {d(p, q), 0, D(p, Tq) +D(q, Sp) + γ1}

δ(p, Sp) + δ(q, T q) + γ2

≤ max {d(p, q), d(p, q) + d(q, p) + γ1}
d(p, Sp) + d(q, T q) + γ2

=
2d(p, q) + γ1

γ2
.

It follows from (4) that

M(p, q) =max

{
d(p, q), 0, 0,

D(p, Tq) +D(q, Sp)

2s

}
= d(p, q).

Using (2) and substituting it into (20) gives

d(p, q) ≤ 2d(p, q) + γ1
sαγ2

d(p, q).

which yields the result. This completes the proof.

Corollary 3.1. Let (X, d) be a complete b-metric space with a coefficient s ≥ 1 , α, γ1, γ2 are nonnegative
reals with 0 ≤ γ1 < γ2 , and T : X → CB(X) be a multivalued map satisfying for all x, y ∈ X

sαδ(Tx, Ty) ≤ N(x, y)M(x, y), (21)
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where

N(x, y) =
max {d(x, y), D(x, Tx) +D(y, Ty), D(x, Ty) +D(y, Tx) + γ1}

δ(x, Tx) + δ(y, Ty) + γ2
, (22)

and

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2s

}
. (23)

Then
(a) T has at least one fixed point.
(b) {Tnx} converge to a fixed point of T .
(c) If p and q are distinct fixed points of T , then

sαγ2 − γ1
2

≤ d(p, q).

Proof. Take S = T in Theorem 3.1.

Corollary 3.2. Let (X, d) be a complete b-metric space and T : X → CB(X) be a multivalued map satisfying
for all x, y ∈ X

sαd(Tx, Ty) ≤
(
d(x, Ty) + d(y, Tx) + γ1
d(x, Tx) + d(y, Ty) + γ2

)
d(x, y), (24)

Then
(a) T has at least one fixed point.
(b) {Tnx} converge to a fixed point of T .
(c) If p and q are distinct fixed points of T , then

sαγ2 − γ1
2

≤ d(p, q).

Proof. Take S = T in (2), N(x, y) =
d(x, Ty) + d(y, Tx) + γ1
d(x, Tx) + d(y, Ty) + γ2

in (3) and M(x, y) = d(x, y) in (4), from

Theorem 3.1.

Example 3.1. Let X = {− 1
2 , 0,

1
2} and let d : X −→ R+ defined by

d(−1

2
, 0) = 1, d(−1

2
,−1

2
) = 4, d(0,

1

2
) = 2,

d(−1

2
,−1

2
) = d(0, 0) = d(

1

2
,
1

2
) = 0,

d(x, y) = d(y, x), for all x, y ∈ X.

(X, d) is a complete b-metric space with coefficient s =
4

3
, and α = 1, γ1 = 1, γ2 = 2 . Let T : X −→ X be

defined by

Tx =

{
− 1

2 , x = − 1
2 ,

1
2 .

0, x = 0.

8
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and we have

d(T (−1

2
), T (0) = d(−1

2
, 0) = 1

≤ 3

4

(
d(− 1

2 , T (0)) + d(0, T (− 1
2 )) + 1

d(− 1
2 , T (−

1
2 )) + d(0, T (0)) + 2

)
d(−1

2
, 0)

=
9

8
,

and

d(T (
1

2
), T (0) = d(−1

2
, 0) = 1

≤ 3

4

(
d( 12 , T (0)) + d(0, T ( 12 )) + 1

d( 12 , T (
1
2 )) + d(0, T (0)) + 2

)
d(

1

2
, 0)

= 1,

and

d(T (0), T (−1

2
)) = d(0,−1

2
) = 1

≤ 3

4

d(0, T (−1

2
)) + d((−1

2
), T (0)) + 1

d(0, T (0)) + d(−1

2
, T (−1

2
)) + 2

 d(0,−1

2
)

=
9

8
,

and also

d(T (0), T (
1

2
)) = d(0,−1

2
) = 1

≤ 3

4

(
d(0, T ( 12 ))) + d( 12 , T (0)) + 1

d( 12 , T (
1
2 )) + d(0, T (0)) + 2

)
d(0,

1

2
)

= 1.

Therefore, T satisfies all the conditions of Corollary3.2. Then T has two distinct fixed points {− 1
2 , 0} and

5
6 ≤ d(− 1

2 , 0) = 1 .

Corollary 3.3. Let (X, d) be a complete b-metric space with a coefficient s ≥ 1 , α, γ1, γ2 are nonnegative
reals with 0 ≤ γ1 < γ2 , and S, T : X → CB(X) be multi-valued maps satisfying, for all x, y ∈ X

sαd(Sx, Ty) ≤ N(x, y)M(x, y), (25)

where

N(x, y) =
max {d(x, y), d(x, Sx) + d(y, Ty), d(x, Ty) + d(y, Sx) + γ1}

d(x, Sx) + dy, Ty) + γ2
, (26)

and

M(x, y) = max

{
d(x, y), d(x, Sx), d(y, Ty),

d(x, Ty) + d(y, Sx)

2s

}
. (27)

9
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Then
(a) S and T have at least one common fixed point p ∈ X .
(b) For n even, {(ST )n/2x} and {T (ST )n/2x} converge to a common fixed point for each x ∈ X .
(c) If p and q are distinct common fixed points of S and T , then

sαγ2 − γ1
2

≤ d(p, q).

Proof. Take N(x, y) =
max {d(x, y), d(x, Sx) + d(y, Ty), d(x, Ty) + d(y, Sx) + γ1}

d(x, Sx) + dy, Ty) + γ2
in (3)

and M(x, y) = max

{
d(x, y), d(x, Sx), d(y, Ty),

d(x, Ty) + d(y, Sx)

2s

}
in (4), from Theorem 3.1.

Example 3.2. Let X = {0, 1
2 ,

5
2}, and let d : X ×X → [0,+∞) be a mapping satisfies the following condition

for all x, y ∈ X :

1. d(x, y) = 0, where x = y .

2. d(0, 1
2 ) = d( 12 , 0) = 1, d(0, 5

2 ) = d( 52 , 0) = 3, d( 12 ,
5
2 ) = d( 52 ,

1
2 ) = 6 .

Then, (X, d) is a complete b-metric space with coefficient s = 3
2 > 1. and let CB(X) = {0, 1

2} . Consider
mappings T, S : X → CB(X) define by

T (0) = 0, T

(
1

2

)
=

1

2
, T

(
5

2

)
= 0,

S(0) = 0, S

(
1

2

)
=

1

2
, S

(
5

2

)
= 0.

Let α = 1, γ1 = 0, γ2 = 1 . Now, we verify that the mappings S and T satisfy the condition (25) of Corollary
3.3. We have the following cases:
Case 1. d(Tx, Sy) = 0, it is obvious.
Case 2. d(Tx, Sy) ̸= 0, we have the following four cases to be considered.
Case 2.1. x = 0, y = 1

2 , we can get sαd(Tx, Sy) = 3
2 , then

3

2
≤ 2

= 2× 1

= N(x, y)M(x, y),

thus, the inequality (25 ) holds.
Case 2.2. x = 1

2 , y = 5
2 , we can get sαd(Tx, Sy) = 3

2 , then

3

2
≤ 21

2

=
7

4
× 6

= N(x, y)M(x, y),

10
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thus, the inequality (25 ) holds.
Case 2.3. x = 1

2 , y = 0, we can get sαd(Tx, Sy) = 3
2 , then

3

2
≤ 2

= 2× 1

= N(x, y)M(x, y),

thus, the inequality (25 ) holds.
Case 2.4. x = 5

2 , y = 1
2 , we can get sαd(Tx, Sy) = 3

2 , then

3

2
≤ 21

2

=
7

4
× 6

= N(x, y)M(x, y),

thus, the inequality (25 ) holds.
Therefore, all the conditions of Corollary 3.3 are satisfied and, further, {0, 1

2} is two common fixed point of the

mappings S and T , and sαγ2−γ1

2 = 3
4 ≤ d(0, 1

2 ) = 1 .

Remark 3.1. By choosing :
s = 1, γ1 = 0 and γ2 = 1 in Corollary 3.2, we get Theorem 1 of [21].
s = 1, γ1 = 0 and γ2 = 1 in Corollary 3.3, we get Theorem 2.1 of [25].
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