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Abstract: In this paper, we prove a unique common fixed point theorem for occasionally weakly compatible self-
mappings satisfying a generalized contractive type condition in CMS(Cone Metric Space). Our results are generalizing
and improving some of the well known comparable results existing in the literature.
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1. Introduction and preliminaries

The fixed point theory is an important area of non-linear analysis. Recently Huang and Zhang [1] generalized
the concept of a metric space into a cone metric space and they replaced the real numbers by an ordered Banach
space and also proved some of the fixed point theorems in cone metric space with different types of contractive
conditions.Later on Many authors extended these results in many ways and generalized in different ways (see
for e.g., [3–11]). Recently Bhatt and Chandra [2] obtained some fixed point results in occasionally weakly
compatible mappings in cone metric space. In this paper we obtained unique common fixed point result for
occasionally weakly compatible condition in CMS.

We recall some definitions of cone metric spaces and some of their properties [1].

Definition 1.1. Let M be a real Banach space and Q be a subset of M .The set Q is called a cone if and only
if

(a) Q is closed, nonempty and Q ̸= {0} ;
(b) a, b ∈ R ,a, b ≥ 0 ,u, v ∈ Q =⇒ au+ bv ∈ Q ;
(c) u ∈ Q and −u ∈ Q =⇒ u = 0 .

Definition 1.2. Let Q be a cone in a Banach space M define partial ordering ≤ with respect to Q by u ≤ v if
and only if u−v ∈ Q .We shall write u < v to indicate u ≤ v but u ̸= v while u≪ v will stand for u−v ∈ intQ

, where intQ denotes the interior of the set Q . This cone Q is called an order cone.

Definition 1.3. Let M be a Banach Space and Q ⊂M be an order cone .The order cone Q is called normal
if there exists K > 0 such that for all u, v ∈M ,

0 ≤ u ≤ v implies ∥ u ∥≤ K ∥ v ∥ .

The least positive number K satisfying the above inequality is called the normal constant of Q .
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Definition 1.4. Let X be a nonempty set of M .Suppose that the map d : X ×X −→M satisfies :
(d1) 0 ≤ d(u, v) for all u, v ∈ X and d(u, v) = 0 if and only if u = v ;
(d2) d(u, v) = d(v, u) for all u, v ∈ X ;
(d3) d(u, v) ≤ d(u, z) + d(v, z) for all u, v, z ∈ X .

Then d is called a cone metric on X and (X, d) is called a CMS(Cone Metric Space).
It is obvious that the CMS(Cone Metric Spaces) generalize metric spaces.

Definition 1.5. Let (X, d) be a cone metric space.We say that {xn} is
(i) a Cauchy sequence if for every c in M with 0 ≪ c , there is N such that for all n,m > N ,

d(xn, xm)≪ c ;
(ii) a convergent sequence if for any 0 ≪ c , there is an N such that for all n > N , d(xn, x) ≪ c , for

some fixed x in X . We denote this xn −→ x (n −→∞).
A CMS(Cone Metric Space) X is said to be complete if every Cauchy sequence in X is convergent in X .

Definition 1.6 (9). Let M and N be self-mappings of a set X . If q = Mu = Nu for some u in X , then u

is called a coincidence point of M and N , and q is called a point of coincidence of M and N .

Proposition 1.1. Let M and N be occasionally weakly compatible self-mappings of a set X if and only if
there is a point u in X which is coincidence point of M and N at which M and N are commute.

Lemma 1.1. Let X be a set, M , N are occasionally weakly compatible self-mappings of X . If M and N

have a unique point of coincidence q = Mu = Nu , then q is the unique common fixed point of M and N .

Definition 1.7. Let ϕ : R+ ←→ R+ be a function satisfying the condition ϕ(t) < t for each t > 0 .

2. Main Results
Now we prove the main theorem

Theorem 2.1. Let (X, d) be a cone metric space and M be a normal cone. Suppose that p and q are two
self- mappings of X and satisfy the following conditions:

d(pu, pv) ≤ ϕ(Max{[d(qu, qv) + d(qu, pv)

2
], d(qv, pu), d(qv, pv)}) for all u, v ∈ X. (1)

And p and q are occasionally weakly compatible. (2)

Then p and q have a unique common fixed point.

Proof. Given (by (2)) p and q are occasionally weakly compatible, then there exists point α ∈ X , pqα = qpα .
We claim that, pα is the unique common fixed point of p and q . First we ascertain that pα is a fixed point of
p . For if, ppα ̸= pα , then by (1) we get that .

d(pα, ppα) ≤ ϕ(Max{[d(qα, qpα) + d(qα, ppα)

2
], d(qpα, pα), d(qpα, ppα)}),

= ϕ(Max{[d(pα, pqα) + d(pα, ppα)

2
], d(pqα, pα), d(pqα, ppα)}),
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= ϕ(Max{[d(pα, ppα) + d(pα, ppα)

2
], d(ppα, pα), d(ppα, ppα)}),

= ϕ(Max{d(pα, ppα), d(ppα, pα), 0}),

= ϕ(d(pα, ppα)),

≤ d(pα, ppα)),

, which is a contradiction.

Therefore, ppα = pα and ppα = pqα = qpα = pα . Thus pα is a common fixed point of p and q .

Uniqueness: suppose that α , β ∈ X such that pα = qα = α and pβ = qβ = β and α ̸= β . Then
by (1) we get that

d(α, β) = d(pα, pβ) ≤ ϕ(Max{[d(qα, qβ) + d(qα, pβ)

2
], d(qβ, pα), d(qβ, pβ)}),

= ϕ(Max{[d(α, β) + d(α, β)

2
], d(β, α), d(β, β)}),

= ϕ(Max{d(α, β), d(β, α), 0)}),

= ϕ(d(α, β), d(β, α), 0)),

≤ d(α, β)

„ which is a contradiction.

Therefore, α = β . Therefore, p and q have a unique common fixed point. This completes the proof of
the theorem.

Remark 2.1. Our results are more general then the results of [2].
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