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Generalized optimal algebraic bounds for the exponential function
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Abstract: We present new generalized lower and upper bounds for the natural exponential function. These bounds are
algebraic in nature and each involve a parameter a. Each bound is optimal as a → 0.
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1. Introduction
The well-known inequality

ex ≥ 1 + x (1)

holds for all real numbers. If we restrict ourselves to the positive values of x then by change of variable it can
be written as

ex ≤ 1

1− x
; 0 < x < 1. (2)

For 1 ≤ a ≤ 2, the inequalities

ex ≤ 1− 1

a
+

1

a

[
1 +

(
1− 1

a

)
x

1− x
a

]a

≤ 1

1− x
; 0 < x < 1

 (3)

were established by Kim [7]. It is a generalization and refinement of (2). Other tighter bounds are:

(1 + ax)
1
a

√
1+ax < ex < (1 + ax)

1
a

√
1+ax+ 1

12a
2x2

; a > 0, x > 0. (4)

The double inequality (4) was appeared in [1]. It is observed that the smaller the value of a is, the
sharper the bounds in (4) are. Recently, Bougoffa and Krasopoulos [5] proved that the inequalities

(1 + x)
a(a+1)x2

(1+x)a+1+(1+x)−a−(x+2) < ex < (1 + x)
a

a+1

[
(1+x)a+1−1
(1+x)a−1

]
; x > 0 (5)
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are optimal as a → 0 and sharper than the corresponding inequalities in (4). For some other bounds we refer
the reader to [1–9] and references therein. The bounds of ex in (4) and (5) are sharper but transcendental in
nature. On the other hand the bounds of ex in (1)–(3) are algebraic and simple, but they are not sharper.
Algebraic bounds are always computationally efficient and can find applications in diverse areas. In this paper,
our aim is to present generalized sharp bounds for ex that are algebraic and optimal and also the alternatives
to the bounds in (4) and (5).

2. Main results
In this section, we state and prove our main results. The first one states

Proposition 2.1. Let a > 0 and n = 0, 1, 2, 3, · · · . Then for x ≥ 0, we have

ϕ(x) ≤ ex (6)

where ϕ(x) = (1+ax)n+ 1
a

(1+a)(1+2a)···(1+na) +
(1+a)(1+2a)···(1+na)−1
(1+a)(1+2a)···(1+na) + ϕ1(x)

and

ϕ1(x) =

{
0 n = 0, 1∑n−1

k=1
(1+a)(1+2a)···(1+ka)−1

(n−k)!(1+a)(1+2a)···(1+ka)x
n−k n = 2, 3, · · · .

Proof. For x = 0, the inequalities (6) clearly hold as equalities. For x > 0, we prove the proposition by principle
of mathematical induction. In fact, for n = 0, we have

(1 + ax)
1
a < ex (7)

which is true and can be obtained from (1) after replacing x by ax. For n = 1, by integrating (7) as∫ x

0

(1 + at)
1
a dt <

∫ x

0

etdt,

we see that

(1 + ax)1+
1
a

(1 + a)
+

a

1 + a
< ex. (8)

Similarly, for n = 2, integration of (8) gives∫ x

0

(1 + at)1+
1
a

(1 + a)
dt+

a

1 + a

∫ x

0

dt <

∫ x

0

etdt,

i.e.,

(1 + ax)2+
1
a

(1 + a)(1 + 2a)
+

(1 + a)(1 + 2a)− 1

(1 + a)(1 + 2a)
+

ax

(1 + a)
< ex. (9)

We assume the statement to be true for n = m > 2, i.e., the following is true.

(1 + ax)m+ 1
a

(1 + a)(1 + 2a) · · · (1 +ma)
+

(1 + a)(1 + 2a) · · · (1 +ma)− 1

(1 + a)(1 + 2a) · · · (1 +ma)

+

m−1∑
k=1

(1 + a)(1 + 2a) · · · (1 + ka)− 1

(m− k)!(1 + a)(1 + 2a) · · · (1 + ka)
xm−k < ex.

(10)
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Now integrating (10) from 0 to x, we get

(1 + ax)m+1+ 1
a

(1 + a)(1 + 2a) · · · (1 + (m+ 1)a)
+

(1 + a)(1 + 2a) · · · (1 + (m+ 1)a)− 1

(1 + a)(1 + 2a) · · · (1 + (m+ 1)a)

+

m∑
k=1

(1 + a)(1 + 2a) · · · (1 + ka)− 1

(m+ 1− k)!(1 + a)(1 + 2a) · · · (1 + ka)
xm+1−k < ex.

This implies that the statement is true for n = m+ 1. By induction we infer that the statement is true for all
n = 0, 1, 2, · · · .

In the proof of above theorem the inequalities (7)–(9) are particular cases and each succeeding inequality
is sharper than the preceding one. Next we give generalized upper bounds for ex in the following proposition.

Proposition 2.2. Let n = 0, 1, 2, · · · . and a > 0 be such that a ̸= 1, a ̸= 1/2, · · · , a ̸= 1/n. Then for
x ∈ [0, 1/a) we have

ex ≤ ψ(x) (11)

where ψ(x) = (1−a)(1−2a)···(1−na)−1
(1−a)(1−2a)···(1−na) + 1

(1−a)(1−2a)···(1−na)

(
1

1−ax

) 1
a−n

+ φ1(x)

and

ψ1(x) =

{
0 n = 0, 1∑n−1

k=1
(1−a)(1−2a)···(1−ka)−1

(n−k)!(1−a)(1−2a)···(1−ka)x
n−k n = 2, 3, · · · .

Proof. Equalities hold for x = 0. If a > 0 and x > 0 then for log(1 − ax) to be defined 1 − ax should be
positive. i.e. x < 1/a. Now, by series expansion we have

log(1− ax) = −ax− a2x2

2
− a3x3

3
− · · · .

Therefore, log(1− ax) < −ax or 1− ax < e−ax which yields

ex <

(
1

1− ax

) 1
a

. (12)

The inequality (12) is the particular case of (11) for n = 0. This inequality can also be obtained from (1) by
making change of variable. Proceeding as in the case of proof of Proposition 2.1, the statement of Proposition
2.2 can be easily proved by induction.

The particular cases of Proposition 2.2 for n = 1, 2 are respectively given as

ex <
−a

(1− a)
+

1

(1− a)

(
1

1− ax

) 1
a−1

(13)

and

ex <
(1− a)(1− 2a)− 1

(1− a)(1− 2a)
+

1

(1− a)(1− 2a)

(
1

1− ax

) 1
a−2

− ax

(1− a)
(14)
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where a and x are as defined in the Proposition 2.2.

Lastly, it is worth noting that the bounds established in this paper are optimal as a→ 0, because of the
limits

lim
a→0

ϕ(x) = lim
a→0

(1 + ax)n+
1
a = ex

and

lim
a→0

ψ(x) = lim
a→0

1

(1− a)(1− 2a) · · · (1− na)

(
1

1− ax

) 1
a−n

= ex.
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