

Locally closed sets and g-locally closed sets in binary topological spaces

O. Nethaji^{1*}and R. Premkumar²

¹PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628 003, Tamil Nadu, India. ORCID iD: 0000-0002-2004-3521 ²Department of Mathematics, Arul Anandar College, Karumathur, Madurai-625 514, Tamil Nadu, India. ORCID iD: 0000-0002-8088-5114

Received: 03 May 2023	•	Accepted: 19 Jul 2023	•	Published Online: 31 Aug 2023
		· · · 1 · · · · · · · · · · · ·		

Abstract: In this paper, we focused on locally closed sets in binary topological spaces and certain properties of these investigated. Also, we studied the binary generalized locally closed sets, binary $g - lc^*$, binary $g - lc^{**}$ and established their various characteristic properties.

Key words: binary locally closed sets, binary g-lc, binary g-lc^{*}, binary g-lc^{**}

1. Introduction and Preliminaries

In 2011, S.Nithyanantha Jothi and P.Thangavelu [8] introduced topology between two sets and also studied some of their properties. Topology between two sets is the binary structure from X to Y which is defined to be the ordered pairs (A, B) where $A \subseteq X$ and $B \subseteq Y$. Recently some researcher developed some new kind of modern topologies for example ([12], [13], and [1]). In this paper, we focused on locally closed sets in binary topological spaces and certain properties of these investigated. Also, we studied the binary generalized locally closed sets, binary $g \cdot lc^*$, binary $g \cdot lc^{**}$ and established their various characteristic properties.

We denote the boundary of (A, B) by bd(A, B).

Let X and Y be any two nonempty sets. A binary topology [8] from X to Y is a binary structure $\mathcal{M} \subseteq \mathbb{P}(X) \times \mathbb{P}(Y)$ that satisfies the axioms namely

- 1. (ϕ, ϕ) and $(X, Y) \in \mathcal{M}$,
- 2. $(A_1 \cap A_2, B_1 \cap B_2) \in \mathcal{M}$ whenever $(A_1, B_1) \in \mathcal{M}$ and $(A_2, B_2) \in \mathcal{M}$, and
- 3. If $\{(A_{\alpha}, B_{\alpha}) : \alpha \in \delta\}$ is a family of members of \mathcal{M} , then $(\bigcup_{\alpha \in \delta} A_{\alpha}, \bigcup_{\alpha \in \delta} B_{\alpha}) \in \mathcal{M}$.

If \mathcal{M} is a binary topology from X to Y then the triplet (X, Y, \mathcal{M}) is called a binary topological space and the members of \mathcal{M} are called the binary open subsets of the binary topological space (X, Y, \mathcal{M}) . The elements of $X \times Y$ are called the binary points of the binary topological space (X, Y, \mathcal{M}) . If Y = X then \mathcal{M} is called a binary topology on X in which case we write (X, \mathcal{M}) as a binary topological space.

Definition 1.1. [8] Let X and Y be any two nonempty sets and let (A, B) and $(C, D) \in \mathbb{P}(X) \times \mathbb{P}(Y)$. We say that $(A, B) \subseteq (C, D)$ if $A \subseteq C$ and $B \subseteq D$.

[©]Asia Mathematika, DOI: 10.5281/zenodo.8368982

^{*}Correspondence: jionetha@yahoo mail.com

Definition 1.2. [8] Let (X, Y, \mathcal{M}) be a binary topological space and $A \subseteq X$, $B \subseteq Y$. Then (A, B) is called binary closed in (X, Y, \mathcal{M}) if $(X \setminus A, Y \setminus B) \in \mathcal{M}$.

Proposition 1.1. [8] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$. Let $(A, B)^{1*} = \cap \{A_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha}) \}$ and $(A, B)^{2*} = \cap \{B_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha}) \}$. Then $((A, B)^{1*}, (A, B)^{2*})$ is binary closed and $(A, B) \subseteq ((A, B)^{1*}, (A, B)^{2*})$.

Proposition 1.2. [8] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$. Let $(A, B)^{1*} = \bigcup \{A_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}$ and $(A, B)^{2*} = \bigcup \{B_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}$.

Definition 1.3. [8] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ is called the binary closure of (A, B), denoted by b - cl(A, B) in the binary space (X, Y, \mathcal{M}) where $(A, B) \subseteq (X, Y)$.

Definition 1.4. [8] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ defined in proposition 1.2 is called the binary interior of of (A, B), denoted by b-int(A, B). Here $((A, B)^{1*}, (A, B)^{2*})$ is binary open and $((A, B)^{1*}, (A, B)^{2*}) \subseteq (A, B)$.

Definition 1.5. [10] A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called a binary semi open set if $(A, B) \subseteq b - cl(b - int(A, B))$.

Definition 1.6. [9] A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called a binary g-closed set if $b - cl(A, B) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary open.

2. Binary Locally Closed Sets

Definition 2.1. A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called binary locally closed if $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary open and (G, H) is binary closed in (X, Y, \mathcal{M}) .

The set of all binary locally closed sets of (X, Y, \mathcal{M}) is denoted by BLC(X, Y).

Proposition 2.1. Let (X, Y, \mathcal{M}) be a binary T_1 -space and let (A, B) be a discrete subset of (X, Y, \mathcal{M}) . Then (A, B) is binary locally closed.

2. Let (X, Y, \mathcal{M}) be binary dense-in-itself and (A, B) be a discrete subset. Then (X, Y) - (A, B) is binary locally closed if and only if (A, B) is binary closed.

Proof. Let (A, B) be a discrete subset of the binary T_1 -space (X, Y, \mathcal{M}) , i.e. for each $(i, j) \in (A, B)$ there is an binary open set $(E, F)_{(X,Y)}$ such that $(E, F)_{(X,Y)} \cap (A, B) = \{(i, j)\}$. If $(E, F) = \{(E, F)_{(X,Y)} | (i, j) \in (A, B)\}$ then it is easily verified that $(A, B) = (E, F) \cap b - cl(A, B)$. This proves (1).

In order to prove (2), observe that in a binary dense-in-itself space any discrete subset has empty interior.

Proposition 2.2. Let (X, Y, \mathcal{M}) be a space and let $(U, V) \in BLC(X, Y)$. If $(A, B) \in (U, V)$ and $(A, B) \in BLC((U, V), \mathcal{M}/(U, V))$ then $(A, B) \in BLC(X, Y)$.

Proposition 2.3. Let (A, B) and (C, D) be binary locally closed subsets of a space (X, Y, \mathcal{M}) . If (A, B) and (C, D) are separated, i.e. if $(A, B) \cap b - cl(C, D) = b - cl((A, B) \cap (C, D)) = (\phi, \phi)$, then $(A, B) \cup (C, D) \in BLC(X, Y)$.

O. Nethaji and R. Premkumar

Proof. Suppose there are binary open sets (P,Q) and (S,T) such that $(A,B) = (P,Q) \cap b - cl(A,B)$ and $(C,D) = (S,T) \cap b - cl(C,D)$. Since (A,B) and (C,D) are separated we may assume that $(P,Q) \cap b - cl(C,D) = (S,T) \cap b - cl(A,B) = (\phi,\phi)$. Consequently $(A,B) \cup (C,D) = ((P,Q) \cup (S,T)) \cap b - cl((A,B) \cup (C,D))$ showing that $(A,B) \cup (C,D) \in BLC(X,Y)$.

Theorem 2.1. Let $\{(U,V)_i | i \in I\}$ be either an binary open cover or a binary locally finite closed cover of a space (X,Y,\mathcal{M}) and let $(A,B) \subseteq (X,Y)$. If $(A,B) \cap (U,V)_i \in BLC((U,V)_i, \mathcal{M}/(U,V)_i)$ for each $i \in I$ then $(A,B) \in BLC(X,Y)$.

Proof. First suppose that $\{(U,V)_i | i \in I\}$ is an binary open cover of (X,Y,\mathcal{M}) . For each $i \in I$, since $(A,B) \cap (U,V)_i \in BLC((U,V)_i, \mathcal{M}/(U,V)_i)$ we may assume that $(A,B) \cap (U,V)_i = (S,T)_i \cap b - cl((A,B) \cap (U,V)_i)$ where $(S,T)_i \in \mathcal{M}$ and $(S,T)_i \subseteq (U,V)_i$. Now $(S,T)_i \cap b - cl(A,B) = (S,T)_i \cap (U,V)_i \cap b - cl(A,B) \subseteq (S,T)_i \cap b - cl((A,B) \cap (U,V)_i) = (A,B) \cap (U,V)_i$. Hence if $(S,T) = \bigcup \{(S,T)_i | i \in I\}$ we have $(S,T) \cap b - cl(A,B) = (A,B)$.

Now suppose that $\{(U,V)_i | i \in I\}$ is a binary locally finite closed cover of (X,Y,\mathcal{M}) . For each $i \in I$, since $(A,B) \cap (U,V)_i \in BLC((U,V)_i, \mathcal{M}/(U,V)_i)$ we have $(A,B) \cap (U,V)_i = (S,T)_i \cap b \cdot cl((A,B) \cap (U,V)_i)$ where $(S,T)_i \in \mathcal{M}$. Let $(x,y) \in (A,B)$. Since $\{(U,V)_i | i \in I\}$ is a binary locally finite closed cover, hence a point-finite and closure-preserving cover, there is a finite subset $I_{(X,Y)} \subseteq I$ such that $(x,y) \in (U,V)_i$ if $I \in I_{(X,Y)}$ and $(x,y) \notin \bigcup \{(U,V)_i | i \in I - I_{(X,Y)}\}$. Moreover, there is an binary open set $(P,Q)_{(X,Y)}$ containing (x,y) such that $(P,Q)_{(X,Y)} \subseteq \bigcap \{(S,T)_i | i \in I_{(X,Y)}\}$ and $(P,Q)_{(X,Y)} \cap ((P,Q)\{(U,V)_i | i \in I - I_{(X,Y)}\}) = (\phi,\phi)$.

If $(P,Q) = \bigcup \{(P,Q)_{(x,y)} | (x,y) \in (A,B)\}$ then clearly $(A,B) \subseteq (P,Q) \cap b - cl(A,B)$. Let $(k,l) \in (P,Q) \cap b - cl(A,B)$. Then $(k,l) \in (P,Q)_{(X,Y)}$ for some $(x,y) \in (A,B)$. Since $(k,l) \in b - cl(A,B) = \bigcup \{b - cl((A,B) \cap (U,V)_i) | i \in I\}$ we have $(k,l) \in b - cl((A,B) \cap (U,V)_j)$ for some $j \in I$. Hence $j \in I_{(X,Y)}$ and $(P,Q)_{(X,Y)} \subseteq (S,T)_j$. Thus $(k,l) \in (S,T)_j \cap b - cl((A,B) \cap (U,V)_j) = (A,B) \cap (U,V)_j \subseteq (A,B)$. It follows that $(A,B) = (P,Q) \cap b - cl(A,B)$.

Theorem 2.2. For a binary T_1 -space (X, Y, \mathcal{M}) the following are equivalent:

- 1. $(A, B) \in BLC(X, Y)$ if and only if $(X, Y) (A, B) \in BLC(X, Y)$.
- 2. BLC(X,Y) is binary closed under finite unions.
- 3. The boundary of each binary open set is a discrete subset.
- 4. The boundary of each binary semi-open set is a discrete subset.
- 5. Every binary semi-open set is binary locally closed.

Proof. $(1) \Leftrightarrow (2)$ is obvious.

 $(2) \Rightarrow (3)$: Let (P,Q) be binary open and let $(x,y) \in bd(P,Q) \cap b \cdot cl(P,Q) \cap ((X,Y) - (P,Q))$. By assumption, if $(A,B) = (P,Q) \cup \{(x,y)\}$ then $(A,B) \in BLC(X,Y)$. Let $(A,B) = (S,T) \cap b \cdot cl(A,B)$ for some binary open set (S,T). One easily verifies that $(S,T) \cap bd(P,Q) = \{(x,y)\}$.

 $(3) \Rightarrow (4)$: Let (A, B) be binary semi-open in (X, Y, \mathcal{M}) and let (P, Q) = b - int(A, B). Then $bd(A, B) \subseteq bd(P, Q)$ and hence bd(A, B) is a discrete subset.

O. Nethaji and R. Premkumar

 $(4) \Rightarrow (5) : \text{Let } (A, B) \text{ be binary semi-open in } (X, Y, \mathcal{M}). \text{ For each } (x, y) \in (A, B) \cap bd(A, B) \text{ there is an binary open set } (P, Q) \text{ such that } (P, Q)_{(X,Y)} \cap bd(A, B) = \{(x, y)\}. \text{ If } (P, Q) = b - int(A, B) \cup [\bigcup\{(P, Q)_{(X,Y)} | (x, y) \in (A, B) \cap bd(A, B)\}] \text{ it is easily verified that } (A, B) = (P, Q) \cap b - cl(A, B).$

 $(5) \Rightarrow (1)$: We will show that any union of an binary open set and a binary closed set is binary locally closed. Let $(C, D) = (E, F) \cup (G, H)$ where (E, F) is binary open and (G, H) is binary closed. We may assume that $(E, F) \cap (G, H) = (\phi, \phi)$. If $(A, B) = (E, F) \cup b \cdot (cl(E, F) \cap (G, H))$ then (A, B) is binary semi-open and hence $(A, B) = (S, T) \cap b \cdot cl(A, B) = (S, T) \cap b \cdot cl(A, B) = (S, T) \cap cl(E, F)$ for some binary open set (S, T). If $(W, Z) = (S, T) \cup ((X, Y) - b \cdot cl(E, F))$ then clearly $(C, D) = (W, Z) \cap b \cdot cl(C, D)$. Thus $(C, D) \in BLC(X, Y)$.

3. Binary g-Locally Closed Sets

Definition 3.1. A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) , is called

- 1. binary Generalized locally closed set (briefly bglc) if $(A, B) = (E, F) \cap (G, H)$, where (E, F) is binary g-open and (G, H) is binary g-closed in (X, Y, \mathcal{M}) .
- 2. $bg-lc^*$ -set if $(A, B) = (E, F) \cap (G, H)$, where (E, F) is binary g-open set and (G, H) is binary closed set in (X, Y, \mathcal{M}) .
- 3. $bg \cdot lc^{**}$ -set if $(A, B) = (E, F) \cap (G, H)$, where (E, F) is binary open set and (G, H) is binary g-closed set in (X, Y, \mathcal{M}) .

The collection of all binary Generalized locally closed sets (resp. $bglc^*$ -sets and $bglc^{**}$ -sets) of (X, Y, \mathcal{M}) will be denoted by BGLC(X, Y) (resp. $BGLC^*(X, Y)$ and $BGLC^{**}(X, Y)$).

Remark 3.1. Every binary g-closed set (resp. binary g-open set) is bglc.

Theorem 3.1. For a subset (A, B) of (X, Y, \mathcal{M}) , the following are equivalent.

- 1. $(A, B) \in BGLC^*(X, Y)$.
- 2. $(A, B) = (E, F) \cap b \cdot cl(A, B)$ for some binary g-open set (E, F).
- 3. b cl(A, B) (A, B) is binary g-closed.
- 4. $(A,B) \cup ((P,Q) b \cdot cl(A,B))$ is binary g-open.

Proof. (1) \Rightarrow (2) Let $(A, B) \in BGLC^*(X, Y)$. Then $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary g-open and (G, H) is binary closed. Since $(A, B) \subseteq (E, F)$ and $(A, B) \subseteq b - cl(A, B)$, $(A, B) \subseteq (E, F) \cap b - cl(A, B)$. Conversely, since $(A, B) \subseteq (G, H)$, $b - cl(A, B) \subseteq (G, H)$, we have $(A, B) = (E, F) \cap (G, H)$ contains $(E, F) \cap b - cl(A, B) \subseteq (A, B)$. That is $(E, F) \cap b - cl(A, B) \subseteq (A, B)$. Therefore we have $(A, B) = (E, F) \cap b - cl(A, B)$.

(2) \Rightarrow (1) Since (E, F) is binary g-open and b - cl(A, B) is binary closed, $(E, F) \cap b - cl(A, B) \in BGLC^*(X, Y)$ by Definition of $BGLC^*(X, Y)$.

 $(2) \Rightarrow (3) \quad (A,B) = (E,F) \cap b - cl(A,B) \text{ implies that } b - cl(A,B) - (A,B) = b - cl(A,B) \cap (E,F)^c \text{ which is binary } g \text{-closed, Since } (E,F)^c \text{ is binary } g \text{-closed.}$

(3) \Rightarrow (2) Let $(E,F) = (b \cdot cl(A,B) - (A,B))^c$. Then by assumption, (E,F) is binary g-open in (X,Y,\mathcal{M}) and $(A,B) = (E,F) \cap b \cdot cl(A,B)$.

 $(3) \Rightarrow (4) \quad (A,B) \cup ((P,Q) - b - cl(A,B)) = (A,B) \cup (b - cl(A,B))^c = (b - cl(A,B) - (A,B))^c \text{ and by assumption } (b - cl(A,B) - (A,B))^c \text{ is binary } g \text{-open and } (A,B) \cup ((P,Q) - b - cl(A,B)) \text{ is binary } g \text{-open.}$

 $(4) \Rightarrow (3)$ Let $(E,F) = (A,B) \cup (b \cdot cl(A,B))^c$. Then $(E,F)^c$ is binary g-closed and $(E,F)^c = b \cdot cl(A,B) - (A,B)$ and therefore $b \cdot cl(A,B) - (A,B)$ is binary g-closed.

Theorem 3.2. For a subset (A, B) of (X, Y, \mathcal{M}) , the following statements are equivalent.

- 1. $(A, B) \in BGLC(X, Y)$.
- 2. $(A, B) = (E, F) \cap b \operatorname{-gcl}(A, B)$ for some binary g-open set (E, F).
- 3. b-gcl(A, B) (A, B) is binary g-closed.
- 4. $(A, B) \cup (b \operatorname{-gcl}(A, B))^c$ is binary g-open.
- 5. $(A, B) \subseteq b$ -gint $((A, B) \cup (b$ -gcl $(A, B))^c)$

Proof. (1) \Rightarrow (2) Let $(A, B) \in BGLC(X, Y)$. Then $(A, B) = (E, F) \cap (G, H)$, where (E, F) is binary g-open and (G, H) is binary g-closed. Since $(A, B) \subseteq (G, H)$, $b \cdot gcl(A, B) \subseteq (G, H)$ and therefore $(E, F) \cap b \cdot gcl(A, B) \subseteq (A, B)$. Also $(A, B) \subseteq (E, F)$ and $(A, B) \subseteq b \cdot gcl(A, B)$ implies $(A, B) \subseteq (E, F) \cap b \cdot gcl(A, B)$ and therefore $(A, B) = (E, F) \cap b \cdot gcl(A, B)$.

 $(2) \Rightarrow (3) \quad (A,B) = (E,F) \cap b - gcl(A,B) \text{ implies } b - gcl(A,B) - (A,B) = b - gcl(A,B) \cap (E,F)^c \text{ which is binary } g \text{-closed since } (E,F)^c \text{ is binary } g \text{-closed.}$

 $(3) \Rightarrow (4) \ A \cup (Ngcl(A))^c = (Ngcl(A) - A)^c \text{ and by assumption } (Ngcl(A) - A)^c \text{ is } Ng\text{-open and so is } A \cup (Ngcl(A))^c.$

 $(4) \Rightarrow (5) \text{ By assumption, } (A, B) \cup (b - gcl(A, B))^c = b - gint((A, B) \cup (b - gcl(A, B))^c) \text{ and hence } (A, B) \subseteq b - gint((A, B) \cup (b - gcl(A, B))^c).$

 $(5) \Rightarrow (1)$ By assumption and since $(A, B) \subseteq b - gcl(A, B), (A, B) = b - gint((A, B) \cup (b - gcl(A, B))^c) \cap b - gcl(A, B) \in BGLC(X, Y).$

Theorem 3.3. Let (A, B) be a subset of (X, Y, \mathcal{M}) . Then $(A, B) \in BGLC^{**}(X, Y)$ if and only if $(A, B) = (E, F) \cap b$ -gcl(A, B) for some binary open set (E, F).

Proof. Let $(A, B) \in BGLC^{**}(X, Y)$. Then $(P, Q) = (E, F) \cap (G, H)$ where (E, F) is binary open and (G, H) is binary g-closed. Since $(P, Q) \subseteq (G, H)$, $b - gcl(A, B) \subseteq (G, H)$. Now $(A, B) = (A, B) \cap b - gcl(A, B) = (E, F) \cap (G, H) \cap b - gcl(A, B) = (E, F) \cap b - gcl(A, B)$. Here the converse part is trivial.

Corollary 3.1. Let (A, B) be a subset of (X, Y, \mathcal{M}) . If $(A, B) \in BGLC^{**}(X, Y)$, then $b \cdot gcl(A, B) - (A, B)$ is binary g-closed and $(A, B) \cup (b \cdot gcl(A, B))^c$ is binary g-open.

Proof. Let $(A, B) \in BGLC^{**}(X, Y)$. Then by Theorem 3.3, $(A, B) = (E, F) \cap b \cdot gcl(A, B)$ for some binary open set (E, F) and $b \cdot gcl(A, B) - (A, B) = b \cdot gcl(A, B) \cap (E, F)^c$ is binary g-closed in (X, Y, \mathcal{M}) . If $(G, H) = b \cdot gcl(A, B) - (A, B)$, then $(G, H)^c = (A, B) \cup (b \cdot gcl(A, B))^c$ and $(G, H)^c$ is binary g-open and therefore $(A, B) \cup (b \cdot gcl(A, B))^c$ is binary g-open.

O. Nethaji and R. Premkumar

References

- O. Nethaji, R. Asokan and I. Rajasekaran, Novel concept of ideal nanotopological spaces, Asia Mathematika, 3(3)(2019), 5-15.
- [2] Carlos Granados, On binary α -open sets and binary α - ω -open sets in binary topological spaces, South Asian Journal of Mathematics, 11(1)(2021), 1-11.
- [3] S.Jayalakshmi and A.Manonmani, Binary regular beta closed sets and binary regular beta open sets in binary topological spaces, The International Journal of Analytical and Experimental Modal Analysis, Vol 12(4)(2020), 494-497.
- [4] N. Levine, Generalized closed sets in topology, Rent. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [5] H. Maki, R. Devi, and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ, Ed., Part (III)(42)(1993), 13-21.
- [6] H. Maki, R. Devi, and K. Balachandran, Associate topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Kochi Univ. Ser. A. Math., (15)(1994), 51-63.
- [7] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. EL-Deeb, α-Open mappings, Acta. Math. Hungar., (41)(1983), 213-218.
- [8] S. Nithyanantha Jothi and P.Thangavelu, Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3)(2011), 95-107.
- S. Nithyanantha Jothi and P. Thangavelu, Generalized binary closed sets in binary topological spaces, Ultra Scientist Vol.26(1)(A)(2014), 25-30.
- [10] S. Nithyanantha Jothi, Binary semi open sets in binary topological spaces, International Journal of Mathematical Archieve, 7(9)(2016), 73-76.
- [11] O. Njastad, On some classes of nearly open sets, Pacific. J. Math., (15)(1965), 961-970.
- [12] I. Rajasekaran and O. Nethaji, An introductory notes to ideal binanotopological spaces, Asia Mathematika, 3(1)(2019), 47-59.
- [13] I. Rajasekaran and O. Nethaji, Unified approch of several sets in ideal nanotopological spaces, Asia Mathematika, 3(1)(2019), 70-78.