

Lightly $\hat{\hat{g}}$ -closed sets in intuitionistic fuzzy topological spaces

P. Deepika^{1*}, M. Rameshpandi² and R. Premkumar³
¹Department of Mathematics, Sri Adichunchanagairi Women's College,
Kumuli Main Road, Cumbum-625 516, Tamil Nadu, India. ORCID iD: 0000-0003-3813-0700
²Department of Mathematics, P.M.T. College, Usilampatti,
Madurai District, Tamil Nadu, India. ORCID iD: 0000-0002-5882-1990
³Department of Mathematics, Arul Anandar College, Karumathur,
Madurai-625 514, Tamil Nadu, India. ORCID iD: 0000-0002-8088-5114

Received: 28 Jun 2023	•	Accepted: 30 Jul 2023	•	Published Online: 31 Aug 2023
------------------------------	---	-----------------------	---	-------------------------------

Abstract: In this paper we introduce intuitionistic fuzzy lightly \hat{g} -closed sets and intuitionistic fuzzy lightly \hat{g} -open sets and study some of their properties with suitable examples are given.

Key words: Intuitionistic fuzzy topology, Intuitionistic fuzzy $\hat{\hat{g}}$ -closed set and Intuitionistic fuzzy $L\hat{\hat{g}}$ -closed set

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [17] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [4] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. Recently many fuzzy topological concepts have been extended to intuitionistic fuzzy topological spaces. Further, several researchers find real-life applications in fuzzy topological spaces, soft fuzzy topological spaces and intuitionistic fuzzy topological space for example [2], [8], [9] and [13] and so on. In this paper we introduce intuitionistic fuzzy lightly \hat{g} -closed sets and intuitionistic fuzzy lightly \hat{g} -open sets and study some of their properties.

2. Preliminaries

Throughout this paper (X, τ) (briefly, X) will denote an intuitionistic fuzzy topological space or IFTS (X, τ) . If H < X, cl(H) = C(H) and int(H) = I(H) will, respectively, denote the closure and interior of H in IFTS (X, τ) . We given some definitions and note some fundamental results necessary for our present study.

Definition 2.1. An IFS A in an IFTS (X, τ) is said to be an

- 1. intuitionistic fuzzy regular closed set(IFRCS in short) if A = cl(int(A)), [6]
- 2. intuitionistic fuzzy semi closed set (IFSCS in short) if $int(cl(A)) \subseteq A$, [3]
- 3. intuitionistic fuzzy α -closed set (IF α CS in short) if cl(int(cl(A))) \subseteq A, [7]
- 4. intuitionistic fuzzy semi pre closed set (IFSPCS in short) if $int(cl(int(A))) \subseteq A$. [16]

Definition 2.2. An IFS A in (X, τ) is said to be an

©Asia Mathematika, DOI: 10.5281/zenodo.8369010

*Correspondence: deepiprabha11@gmail.com

P. Deepika, M. Rameshpandi and R. Premkumar

- 1. intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in $(X, \tau), [14]$
- 2. intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) , [11]
- 3. intuitionistic fuzzy semi generalized closed set (IFSGCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSOS in (X, τ) , [15]
- 4. intuitionistic fuzzy generalized semi pre closed set (IFGSPCS in short) if spcl(A) \subseteq U whenever A \subseteq U and U is an IFOS in (X, τ), [10]
- 5. intuitionistic fuzzy α generalized closed set (IF α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in (X, τ). [12]

The complements of the above mentioned intuitionistic fuzzy closed sets are called their respective intuitionistic fuzzy open sets.

Denote IFSGO(X), the set of all intuitionistic semi-generalized open sets of X.

3. IF lightly \hat{g} -closed sets

Definition 3.1. Let H be an IFS in an IFTS (X, τ) is called an intuitionistic fuzzy lightly \hat{g} -closed set (briefly, IFL \hat{g} CS) if $H \subseteq G$, G is an IFSGOS $\Rightarrow C(I(H)) \subseteq G$.

The collection of all intuitionistic fuzzy lightly \hat{g} -closed sets in X is denoted by IFL \hat{g} C(X).

Example 3.1. Consider $X = \{m, n\}$ with $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.6, 0.7), (0.4, 0.3) \rangle$. Then $\theta_A(m) = 0.6, \theta_A(n) = 0.7, \beta_A(m) = 0.4$ and $\beta_A(n) = 0.3$. Let be an IFS $H = \langle \alpha, (0.4, 0.3), (0.6, 0.7) \rangle = A^c$. This verifies that H is an IFL \hat{g} CS.

2. Consider $X = \{m, n\}$ with $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.6, 0.7), (0.4, 0.3) \rangle$. Then $\theta_A(m) = 0.6, \theta_A(n) = 0.7, \beta_A(m) = 0.4$ and $\beta_A(n) = 0.3$. Let be an IFS $H = \langle \alpha, (0.7, 0.8), (0.3, 0.2) \rangle$. This verifies that H is not an IFL \hat{g} CS.

Proposition 3.1. Let H be in an IFTS (X, τ) , the following statements are true.

- 1. If H is an IFCS then H is an IFL $\hat{\hat{g}}$ CS.
- 2. If H is an $IF\hat{g}CS$ then H is an $IFL\hat{g}CS$.
- 3. If H is an IFRCS then H is an IFL $\hat{\hat{g}}$ CS.

Proof. Let H be an IFCS in (X, τ) . Let G be an IFSGOS such that $H \subseteq G$. Since $C(H) = H, C(I(H)) \subseteq C(H) = H$. Then $C(I(H)) \subseteq H \subseteq G$ whenever $H \subseteq G$ and G is IFSGOS. It is follows that H is an IFL \hat{g} CS in X.

2. Let H be an IF \hat{g} CS in (X, τ) . Let G be an IFSGOS such that $H \subseteq G$. Since H is an IF \hat{g} CS, $C(H) \subseteq G$. Since $C(I(H)) \subseteq C(H)$, then $H \subseteq G$, G is an IFSGOS $\Rightarrow C(I(H)) \subseteq G$. This verifies that H is an IFL \hat{g} CS in X. 3. Let H be an IFRCS in (X, τ) . Let G be an IFSGOS in (X, τ) such that $H \subseteq G$. Since H is an IFRCS, $C(I(H)) = H \subseteq G$. Thus we have $H \subseteq G$, G is an IFSGOS $\Rightarrow C(I(H)) \subseteq G$. Which verifies that H is an IFL \hat{g} CS.

Remark 3.1. The following example shows that converse of Proposition 3.1 is not true in general.

Example 3.2. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.3, 0.4), (0.7, 0.6) \rangle$. Then $\theta_A(m) = 0.3, \theta_A(n) = 0.4, \beta_A(m) = 0.7$ and $\beta_A(n) = 0.6$. Let be an IFS $H = \langle \alpha, (0.2, 0.3), (0.8, 0.7) \rangle$ is an IFL \hat{g} CS but not an IFCS.

- 2. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.4, 0.3), (0.6, 0.7) \rangle$. Then $\theta_A(m) = 0.4, \theta_A(n) = 0.3, \beta_A(m) = 0.6$ and $\beta_A(n) = 0.7$. Let be an IFS $H = \langle \alpha, (0.3, 0.2), (0.7, 0.8) \rangle$. This verifies that H is an IFL \hat{g} CS but not an IF \hat{g} CS.
- 3. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.6, 0.7), (0.4, 0.3) \rangle$. Then $\theta_A(m) = 0.6, \theta_A(n) = 0.7, \beta_A(m) = 0.4$ and $\beta_A(n) = 0.3$. Let be an IFS $H = \langle \alpha, (0.4, 0.3), (0.6, 0.7) \rangle$. This verifies that H is an IFL \hat{g} CS but not an IFRCS.

Proposition 3.2. If H is an $IFL\hat{g}CS$ in an $IFTS(X,\tau)$, then I(H) is an IFGSPCS.

Proof. Let H be an IFL \hat{g} CS in (X, τ) . Let G be IFOS in X such that $H \subseteq G$. Then $I(H) \subseteq I(G) = G$. It is known that every IFOS is an IFSGOS. Since H is IFL \hat{g} CS in X, $C(I(H)) \subseteq G$. We have $I(C(I(H))) \subseteq I(G) = G$ and $I(H) \subseteq G$. It implies that $spcl(I(H)) = I(H) \cup I(C(I(I(H)))) = I(H) \cup I(C(I(H))) \subseteq G \cup G = G$. Thus I(H) is an IFGSPCS in X.

Remark 3.2. The following example shows that converse of Proposition 3.2 is not true in general.

Example 3.3. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.7, 0.6), (0.3, 0.4) \rangle$. Then $\theta_A(m) = 0.7, \theta_A(n) = 0.6, \beta_A(m) = 0.3$ and $\beta_A(n) = 0.4$. Let be an IFS $H = \langle \alpha, (0.8, 0.7), (0.2, 0.3) \rangle$. This verifies that $I(H) = \langle \alpha, (0.7, 0.6), (0.3, 0.4) \rangle = A$ is an IFGSPCS but H is not an IFL \hat{g} CS in X.

Remark 3.3. The following example shows that the family of IFGCS and the family of $IFL\hat{g}CS$ are independent of each other.

Example 3.4. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.2, 0.3), (0.7, 0.6) \rangle$. Then $\theta_A(m) = 0.2, \theta_A(n) = 0.3, \beta_A(m) = 0.7$ and $\beta_A(n) = 0.6$. Let be an IFS $H = \langle \alpha, (0.8, 0.7), (0.1, 0.2) \rangle$. This verifies that H is an IFGCS but H is not an IFL \hat{g} CS in X.

Example 3.5. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.6, 0.7), (0.3, 0.2) \rangle$. Then $\theta_A(m) = 0.6, \theta_A(n) = 0.7, \beta_A(m) = 0.3$ and $\beta_A(n) = 0.2$. Let be an IFS $H = \langle \alpha, (0.4, 0.3), (0.5, 0.6) \rangle$. This verifies that H is an IFL \hat{g} CS but H is not an IFGCS in X.

Remark 3.4. The following example shows that the family of IFSCS and the family of $IFL\hat{g}CS$ are independent of each other.

Example 3.6. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.3, 0.4), (0.6, 0.5) \rangle$. Then $\theta_A(m) = 0.3, \theta_A(n) = 0.4, \beta_A(m) = 0.6$ and $\beta_A(n) = 0.5$. Let be an IFS $H = \langle \alpha, (0.4, 0.5), (0.5, 0.4) \rangle$. This verifies that H is an IFSCS but H is not an IFL \hat{g} CS in X.

2. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.4, 0.3), (0.5, 0.6) \rangle$. Then $\theta_A(m) = 0.4, \theta_A(n) = 0.3, \beta_A(m) = 0.5$ and $\beta_A(n) = 0.6$. Let be an IFS $H = \langle \alpha, (0.3, 0.2), (0.6, 0.7) \rangle$. This verifies that H is an IFL \hat{g} CS but H is not an IFSCS in X.

Theorem 3.1. An IFS H of an IFTS (X, τ) . If H is both IFCS and IF α GCS and IFO(X) = IFSGO(X), then H is an IFL \hat{g} CS in X.

Proof. Let H be an IFS in an IFTS (X, τ) . Given H is both IFCS and IF α GCS. Since H is an IF α GCS, we have $\alpha C(H) \subseteq G$ whenever $H \subseteq G$ and G is an IFOS in X. Since H is an IFCS, we have $C(I(H)) \subseteq C(I(C(H))) \subseteq H \cup C(I(C(H))) = \alpha C(H)$. We have $C(I(H)) \subseteq G$ whenever $H \subseteq G$ and G is an IFOS in X. Also given IFO(X) = IFSGO(X), then $C(I(H)) \subseteq G$ whenever $H \subseteq G$ and G is an IFSGOS in X. Hence H is an IFL $\hat{\hat{g}}$ CS in X.

Theorem 3.2. An IFS H of an IFTS (X, τ) . If H is both IFOS and IFL \hat{g} CS, then H is an IFGCS in X.

Proof. Since H is an IFOS in (X, τ) . Then H = I(H). Let G be an IFOS in X such that $H \subseteq G$. Then $H \subseteq G$ and G is an IFSGOS in X. Since H is IFL \hat{g} CS in (X, τ) . We have $C(I(H)) = C(H) \subseteq G$. This proves that H is an IFGCS in X.

Theorem 3.3. An IFS H of an IFTS (X, τ) . If H is both IFOS and IFL \hat{g} CS, then H is an IFCS in X.

Proof. Since H is an IFOS and an IFL \hat{g} CS in (X, τ) . Then $H \subseteq H$ and H is an IFSGOS in X. Given H is an IFL \hat{g} CS in X, $C(I(H)) \subseteq H$. Also given H is an IFOS, $C(H) \subseteq H$. Thus C(H) = H and H is an IFCS in X.

Corollary 3.1. An IFS H of an IFTS (X, τ) . If H is both IFOS and IFL \hat{g} CS, then H is both IFROS and IFRCS in X.

Proof. Since H is both IFOS and IFL \hat{g} CS in (X, τ) . By Theorem 3.3, H is an IFCS. Since H is both IFOS and IFCS, C(I(H)) = C(H) = H and I(C(H)) = I(H) = H. Thus H is both IFROS and IFRCS in X.

4. IF lightly $\hat{\hat{g}}$ -open sets

Definition 4.1. An IFS H of an IFTS (X, τ) is called an intuitionistic fuzzy lightly \hat{g} -open set (briefly, IFL \hat{g} OS) if its complement H^c is an IFL \hat{g} CS in (X, τ) .

The family of all intuitionistic fuzzy lightly $\hat{\hat{g}}$ -open sets in X is denoted by IFL $\hat{\hat{g}}O(X)$.

Example 4.1. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.6, 0.7), (0.4, 0.3) \rangle$. Then $\theta_A(m) = 0.6, \theta_A(n) = 0.7, \beta_A(m) = 0.4$ and $\beta_A(n) = 0.3$. Let be an IFS $H = \langle \alpha, (0.4, 0.3), (0.6, 0.7) \rangle = A^c$. This verifies that H is an IFL \hat{g} OS. 2. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.6, 0.7), (0.4, 0.3) \rangle$. Then $\theta_A(m) = 0.6, \theta_A(n) = 0.7, \beta_A(m) = 0.4$ and $\beta_A(n) = 0.3$. Let be an IFS $H = \langle \alpha, (0.3, 0.2), (0.7, 0.8) \rangle$. This verifies that H is not an IFL $\hat{\hat{g}}$ OS.

Theorem 4.1. An IFS H of an IFTS (X, τ) is $IFL\hat{g}OS \iff G \subseteq I(C(H))$ whenever $G \subseteq H$ and G is an IFSGCS.

Proof. Necessity: Given H is an IFL \hat{g} OS in X. Then H^c is an IFL \hat{g} CS. Let G be an IFSGCS such that $G \subseteq H$. Then G^c is an IFSGOS such that $H^c \subseteq G^c$. Since H^c is an $IFL\hat{g}$ CS, then $C(I(H^c)) \subseteq G^c$. Thus $G \subseteq I(C(H))$.

Sufficiency: Assuming that $G \subseteq I(C(H))$ whenever $G \subseteq H$ and G is IFSGCS. Then G^c is an IFSGOS such that $H^c \subseteq G^c$ and $(I(C(H)))^c \subseteq G^c$. This implies $C(I(H^c)) \subseteq G^c$. Hence H^c is an $IFL\hat{g}CS$. This proves that H is an IFL $\hat{g}OS$.

Proposition 4.1. In an IFTS (X, τ) , every an IFOS is an IFL $\hat{\hat{g}}$ OS.

Proof. Since H is an IFOS in (X, τ) . Then H^c is an IFCS in X. By Proposition 3.1(1), since every IFCS is an IFL $\hat{\hat{g}}$ CS in X. Therefore H^c is an IFL $\hat{\hat{g}}$ CS in X. Which proves that H is an IFL $\hat{\hat{g}}$ OS in X.

Remark 4.1. The following example shows that converse of Proposition 4.1 is not true in general.

Example 4.2. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.3, 0.4), (0.6, 0.7) \rangle$. Then $\theta_A(m) = 0.3, \theta_A(n) = 0.4, \beta_A(m) = 0.6$ and $\beta_A(n) = 0.7$. Let be an IFS $H = \langle \alpha, (0.8, 0.7), (0.2, 0.3) \rangle$. Which is an IFL \hat{g} OS but not an IFOS.

Proposition 4.2. In an IFTS (X, τ) , every an $IF\hat{g}OS$ is an $IFL\hat{g}OS$.

Proof. Let A be an IF \hat{g} OS in (X, τ). Then A^c is an IF \hat{g} CS in X. By Proposition 3.1(2), we have every IF \hat{g} CS is an IFL \hat{g} CS in X. Therefore A^c is an IFL \hat{g} CS in X. Hence A is an IFL \hat{g} OS in X.

Remark 4.2. The following example shows that converse of Proposition 4.2 is not true in general.

Example 4.3. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.4, 0.3), (0.6, 0.7) \rangle$. Then $\theta_A(m) = 0.4, \theta_A(n) = 0.3, \beta_A(m) = 0.6$ and $\beta_A(n) = 0.7$. Let be an IFS $H = \langle \alpha, (0.7, 0.8), (0.3, 0.2) \rangle$. Which follows that H is an IFL \hat{g} CS but not an IF \hat{g} CS.

Proposition 4.3. In an IFTS (X, τ) , every IFROS is an IFL $\hat{\hat{g}}$ OS.

Proof. Let A be an IFROS in (X, τ) . Then A^c is an IFRCS in X. By Proposition 3.1(3), we have every IFRCS is an IFL \hat{g} CS in X. Therefore A^c is an IFL \hat{g} CS in X. Hence A is an IFL \hat{g} OS in X.

Remark 4.3. The following example shows that converse of Proposition 4.3 is not true in general.

Example 4.4. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.6, 0.7), (0.4, 0.3) \rangle$. Then $\theta_A(m) = 0.6, \theta_A(n) = 0.7, \beta_A(m) = 0.4$ and $\beta_A(n) = 0.3$. Let be an IFS $H = \langle \alpha, (0.6, 0.7), (0.4, 0.3) \rangle$. Which follows that H is an IFL \hat{g} OS but not an IFROS. **Proposition 4.4.** An IFL \hat{g} OS H of an IFTS (X, τ) . Then C(H) is an IFGSPOS.

Proof. Let H be an IFL \hat{g} OS in (X, τ) . Then H^c is an IFL \hat{g} CS in X. By Theorem 3.2, then $I(H^c)$ is an IFGSPCS in X. Hence $(I(H^c))^c = C((H^c)^c) = C(H)$ is an IFGSPOS in X.

Remark 4.4. The following example shows that converse of Proposition 4.4 is not true in general.

Example 4.5. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.7, 0.6), (0.3, 0.4) \rangle$. Then $\theta_A(m) = 0.7, \theta_A(n) = 0.6, \beta_A(m) = 0.3$ and $\beta_A(n) = 0.4$. Let be an IFS $H = \langle \alpha, (0.2, 0.3), (0.8, 0.7) \rangle$. Then $C(H) = \langle \alpha, (0.3, 0.4), (0.7, 0.6) \rangle = A^c$ is an IFGSPOS but H is not an IFL \hat{g} OS in X.

Remark 4.5. The following example shows that an IFGSPOS is not an IFL \hat{g} OS in general.

Example 4.6. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.3, 0.4), (0.7, 0.6) \rangle$. Then $\theta_A(m) = 0.3, \theta_A(n) = 0.4, \beta_A(m) = 0.7$ and $\beta_A(n) = 0.6$. Let be an IFS $H = \langle \alpha, (0.2, 0.3), (0.8, 0.7) \rangle$. This verifies that H is an IFGSPOS but H is not an IFL \hat{g} OS in X.

Remark 4.6. The following example shows that the family of IFGOS and the family of IFL \hat{g} OS are independent of each other.

Example 4.7. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.2, 0.3), (0.7, 0.6) \rangle$. Then $\theta_A(m) = 0.2, \theta_A(n) = 0.3, \beta_A(m) = 0.7$ and $\beta_A(n) = 0.6$. Let be an IFS $H = \langle \alpha, (0.1, 0.2), (0.8, 0.7) \rangle$. This verifies that H is an an IFGOS but H is not an IFL \hat{g} OS in X.

Example 4.8. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.6, 0.7), (0.3, 0.2) \rangle$. Then $\theta_A(m) = 0.6, \theta_A(n) = 0.7, \beta_A(m) = 0.3$ and $\beta_A(n) = 0.2$. Let be an IFS $H = \langle \alpha, (0.5, 0.6), (0.4, 0.3) \rangle$. This verifies that H is an IFL \hat{g} OS but H is not an IFGOS in X.

Remark 4.7. The following example shows that the family of IFSOS and the family of $IFL\hat{g}OS$ are independent of each other.

Example 4.9. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.3, 0.4), (0.6, 0.5) \rangle$. Then $\theta_A(m) = 0.3, \theta_A(n) = 0.4, \beta_A(m) = 0.6$ and $\beta_A(n) = 0.5$. Let be an IFS $H = \langle \alpha, (0.5, 0.4), (0.4, 0.5) \rangle$. This verifies that H is an IFSOS but H is not an IFL \hat{g} OS in X.

Example 4.10. Consider $X = \{m, n\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ is an IFT on X, where $A = \langle \alpha, (0.4, 0.3), (0.5, 0.6) \rangle$. Then $\theta_A(m) = 0.4, \theta_A(n) = 0.3, \beta_A(m) = 0.5$ and $\beta_A(n) = 0.6$. Let be an IFS $H = \langle \alpha, (0.6, 0.7), (0.3, 0.2) \rangle$. This verifies that H is an IFL \hat{g} OS but H is not an IFSOS in X.

Theorem 4.2. An IFS H of an IFTS (X, τ) . If H is both an IFOS and an IF α GOS and IFO(X) = IFSGO(X), then H is an IFL \hat{g} OS in X.

Proof. Since H be an IFS in an IFTS (X, τ) . Since H is both an IFOS and an IF α GOS. Then H^c is both IFCS and IF α GCS. Also given IFO(X) = IFSGO(X). By Theorem 3.1, then H^c is an IFL $\hat{\hat{g}}$ CS in X. This proves that H is an IFL $\hat{\hat{g}}$ OS in X.

Theorem 4.3. An IFS H of an IFTS (X, τ) . If H is both IFCS and IFL \hat{g} OS, then H is an IFGOS in X.

Proof. Since H is an IFS in an IFTS (X, τ) . Since H is both IFCS and IFL \hat{g} OS. Hence H^c is both IFOS and IFL \hat{g} CS. By Theorem 3.2, then H is an IFGCS in X. This proves that H is an IFGOS in X.

Theorem 4.4. An IFS H of an IFTS (X, τ) . If H is both IFCS and IFL \hat{g} OS, then H is an IFOS in X.

Proof. Since H is an IFS in an IFTS (X, τ) . Since H is both IFCS and IFL \hat{g} OS. Therefore H^c is both IFOS and IFL \hat{g} CS. By Theorem 3.3, then H is an IFCS in X. This proves that H is an IFOS in X.

Corollary 4.1. An IFS H of an IFTS (X, τ) . If H is both IFCS and IFL \hat{g} OS, then H is both IFROS and IFRCS in X.

Proof. Since H is both IFCS and IFL \hat{g} OS in (X, τ) . Then by Corollary 3.1, H is an IFOS. Since H is both IFOS and IFCS, H is both IFROS and IFRCS in X.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy S ets and Systems, 20(1986), 87-96.
- [2] Atiqe Ur Rahman, Muhammad Saeed, Saba Zahid, Application in decision making based on fuzzy parameterized hypersoft set theory, Asia Mathematika 5(1)(2021), 19-27.
- [3] K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, Jour. Math. Anal. Appl., 82(1981), 14-32.
- [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1997), 81-89, doi: 10.1016/S0165-0114(96)00076-0.
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [6] H. Gurcay, D. Coker and Es. A. Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, The J. Fuzzy Math., 5(1997), 365-378.
- [7] K. Hur and Y. B. Jun, On intuitionistic fuzzy alpha continuous mappings, Honam Math. J, 25(2003), 131-139.
- [8] Mohammed M. Khalaf, Modeling treatments prediction of coronary artery disease based on fuzzy soft expert system, Asia Mathematika, 4(2)(2020), 1-108.
- [9] Mohammed M. Khalaf, Strongly semi- $(\mathcal{T}, \mathcal{T}^*_{\mathcal{R}^*})$ -L-fuzzy nano continuity, strongly semi- $(\mathcal{T}, \mathcal{T}^*_{\mathcal{R}^*})$ -L-fuzzy nano retracts and decision making, Asia Mathematika, 4(3)(2020), 24-40.
- [10] R. Santhi and D. Jayanthi, Intuitionistic fuzzy generalized semipreclosed mappings, NIFS, 16(2010), 28-39.
- [11] R. Santhi and K. Sakthivel, Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.
- [12] R. Santhi and K. Arun Prakash, On intuitionistic fuzzy semi generalized closed sets and its applications, Int. J. Contemp. Math. Sci., 5(2010), 1677-1688.
- [13] I. Silambarasa, Some new operations and their properties on q-rung orthopair fuzzy matrices, Asia Mathematika, 5(1)(2021), 119-133.
- [14] S. S. Thakur and Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(2008), 559-572.
- [15] S. S. Thakur and Jyoti Pandey Bajpai, Intuitionistic fuzzy ω -closed sets and intuitionistic fuzzy ω -continuity, International Journal of Contemporary Advanced Mathematics, 1(2010), 1-15.

P. Deepika, M. Rameshpandi and R. Premkumar

- [16] Young Bae Jun and Seok-Zun Song, Intuitionistic fuzzy semi preopen sets and intuitionistic semi pre continuous mappings, J. Appl. Math. & Computing, 19(2005), 467-474.
- [17] L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.