

Extemporized new sets in grill topological spaces

G. Selvi¹ and I. Rajasekaran^{2*}

¹Department of Mathematics, Saveetha School of Engineering,. Saveetha Institute of Medical and Technical Science, Chennai - 602 105, Tamil Nadu, India. ORCID iD: 0000-0002-4980-163X ²Department of Mathematics, Tirunelveli Dakshina Mara Nadar Sangam College, T. Kallikulam-627 113, Tirunelveli District, Tamil Nadu, India. ORCID iD: 0000-0001-8528-4396

Received: 08 Jul 2023	•	Accepted: 30 Jul 2023	•	Published Online: 31 Aug 2023
------------------------------	---	-----------------------	---	-------------------------------

Abstract: This aim of this research is to study the modern sort of open sets and introduces and examines a new class of $t^{\#}$ -sets defined in terms of a Grill on X. Such sets' characterization and a few more characteristics are discovered.

Key words: \mathcal{G}_t -open sets, $\mathcal{G}_{\mathcal{R}}$ -open sets, $\mathcal{G}_{t_{\alpha}}$ -open sets and $\mathcal{G}_{\mathcal{R}_{\alpha}}$ -open sets.

1. Introduction

The study of generalised types of closed sets has recently piqued the interest of many Topologists. Levine [4], for instance, pioneered a certain type of generalised closed sets. The definition of a type of generalised closed sets, which has been developed and studied, is in line with the trend.

Choquet [2] was the first to present the idea of a Grill. W.J. Thron has introduced [14] Proximity structure and grills. After him Roy and Mukherjee [11] published an article in on a common topology brought about by a grill topological spaces. In 2010 Hatir and Jafari [3] introduced on a few new sets classes and a fresh grill-based decomposition of continuity and finally M.O.Mustafa and Esmaeel [6] are discussed in their article about topological open grill separation axioms and closed sets in 2021.

Following investigations have shown that grills can be a very helpful tool for looking into a variety of topological issues.

The objective of this paper is to introduce and investigate a sophisticated class of $t^{\#}$ -sets and $t^{\#}_{\alpha}$ -sets defined in respect of a Grill on X. A description of previous sets is obtained along with some of their characteristics.

2. Preliminaries

The closure set and the inner set of D for a topological space (TS) $(X, \tau), D \subseteq X$, and Grill Topological Space (GLTS) are referred to as C(D) and I(D) respectively throughout this work.

Theorem 2.1. [11]

It can be admitted that (X, τ, \mathcal{G}) is a Grill Topological Space (GLTS). For $D, E \subseteq X$, the ensuing properties hold:

1. $D \subseteq E$ indicates that $\Phi(D) \subseteq \Phi(E)$.

[©]Asia Mathematika, DOI: 10.5281/zenodo.8369034 *Correspondence: sekarmelakkal@gmail.com

- 2. $\Phi(D \cup E) = \Phi(D) \cup \Phi(E).$
- 3. $\Phi(\Phi(D)) \subseteq \Phi(D) = C(\Phi(D)) \subseteq C(D)$.
- 4. If $U \in \tau$ then $U \cap \Phi(D) \subseteq \Phi(U \cap D)$.

Theorem 2.2. [11] If D and E are the subsets ox X in a space (X, τ, \mathcal{G}) , the beneath said answers are correct for the set operator ψ .

- 1. $D \subseteq \psi(D)$,
- 2. $\psi(\phi) = \phi \text{ and } \psi(X) = X$,
- 3. If $D \subseteq E$, then $\psi(D) \subseteq \psi(E)$,
- 4. $\psi(D) \cup \psi(E) = \psi(D \cup E)$.
- 5. $\psi(\psi(D)) = \psi(D)$.

Definition 2.1. A subset D of space (X, τ, \mathcal{G}) as

- 1. grill α -open (resp. \mathcal{G}_{α} -open) [1] if $D \subseteq I(\psi(I(D)))$,
- 2. grill pre-open (resp. \mathcal{G}_p -open) [3] if $D \subseteq I(\psi(D))$.
- 3. grill semi-open (resp. \mathcal{G}_s -open) [1] if $D \subseteq \psi(I(D))$.
- 4. grill b-open (resp. \mathcal{G}_b -open) [1] if $D \subseteq I(\psi(D)) \cup \psi(I(D))$.
- 5. grill β -open (resp. \mathcal{G}_{β} -open) [1] if $D \subseteq C(I(\psi(D)))$.

Definition 2.2. [8] A subset D of GLTS (X, τ, \mathcal{G}) is discovered to be

- 1. grill *t*-set (resp. \mathcal{G}_t -set) if $I(D) \subseteq I(\psi(D))$,
- 2. grill \mathcal{R} -set (resp. $\mathcal{G}_{\mathcal{R}}$ -set) if $D = D_1 \cap D_2$, where D_1 is open and D_2 is \mathcal{G}_t -set.

3. On new sets in grill topological space

Definition 3.1. A subset H of a GLTS (X, \mathcal{G}, I) is revealed to be

- 1. grill $t^{\#}$ -set (resp, $\mathcal{G}_{t^{\#}}$ -set) if $I(V) = \psi(I(V))$.
- 2. grill $t_{\alpha}^{\#}$ -set (resp, $\mathcal{G}_{t_{\alpha}^{\#}}$ -set) if $I(V) = \psi(I(\psi(V)))$.
- 3. grill $\mathcal{R}^{\#}$ -set (resp. $\mathcal{G}_{\mathcal{R}^{\#}}$ -set) if $V = R \cap S$, where R is open & S is $\mathcal{G}_{t^{\#}}$ -set.
- 4. grill $\mathcal{R}^{\#}_{\alpha}$ -set (resp. $\mathcal{G}_{\mathcal{R}^{\#}_{\alpha}}$ -set) if $V = R \cap S$, where R is open & S is $\mathcal{G}_{t^{\#}_{\alpha}}$ -set.
- 5. strong grill \mathcal{R} -set (resp. $\mathcal{G}_{S\mathcal{R}}$ -set) if $V = R \cap S$, where S is \mathcal{G}_t -set and R is open, $I(\psi(S)) = \psi(I(S))$.

Remark 3.1. For a GLTS (X, \mathcal{G}, I) ,

- 1. if L is open \implies L is $\mathcal{G}_{\mathcal{R}^{\#}}$ -set.
- 2. if L is $\mathcal{G}_{t^{\#}}$ -set \Longrightarrow L is $\mathcal{G}_{\mathcal{R}^{\#}}$ -set.

Remark 3.2. In every part of the Remark 3.1 the converse part is not necessarily true as given in the next upcoming Examples.

Example 3.1. Let $X = \{2, 4, 6\}$ and $\tau = \{\phi, \{2\}, \{4\}, \{2, 4\}, X\}$. If $\mathcal{G} = \{\{4\}, \{4, 6\}, X\}$.

- 1. $\{6\}$ is $\mathcal{G}_{\mathcal{R}^{\#}}$ -set but not open.
- 2. $\{4\}$ is $\mathcal{G}_{\mathcal{R}^{\#}}$ -set but not $\mathcal{G}_{t^{\#}}$ -set.

Remark 3.3. These correlations are displayed in the representation.

Proposition 3.1. If R and S are $\mathcal{G}_{t^{\#}}$ -sets, then $R \cap S$ is $\mathcal{G}_{t^{\#}}$ -set.

Proof.

Let R and S be $\mathcal{G}_{t^{\#}}$ -sets. $I(R \cap S) \subseteq I(R \cap S) \subseteq \psi(I(R \cap S)) = \psi(I(R) \cap I(S)) \subseteq \psi(I(R)) \cap \psi(I(S)) = I(R) \cap I(S)$ (by guess) = $I(R \cap S)$. Thus $I(R \cap S) = \psi(I(R \cap S))$ and hence $R \cap S$ is $\mathcal{G}_{t^{\#}}$ -set. \Box

Theorem 3.1. The subsequent properties are equivalent for a subsets H of a grill topological space

- 1. B is open,
- 2. B is \mathcal{G}_s -open & $\mathcal{G}_{\mathcal{R}^{\#}}$ -set.

Proof.

(1) implies (2): (1) of Remark 3.1 and (2) of Remark 3.3 come after each other.

(2) implies (1): Shown *B* is $\mathcal{G}_{\mathcal{R}^{\#}}$ -set. So $B = R \cap S$ where *R* is open and $I(S) = \psi(I(S))$. Then $B \subseteq R = I(R)$. Also *B* is \mathcal{G}_s -open implies $B \subseteq \psi(I(B)) \subseteq \psi(I(S)) = I(S)$ by guess. Thus $B \subseteq I(R) \cap I(S) = I(R \cap S) = I(R)$ and hence *B* is open.

Remark 3.4. For a GLTS, the notions of $\mathcal{G}_{\mathcal{R}^{\#}}$ -sets and of \mathcal{G}_s -open sets are autonomous.

Example 3.2. In Example 3.1,

- 1. $\{4, 6\}$ is \mathcal{G}_s -open set but not $\mathcal{G}_{\mathcal{R}^{\#}}$ -set.
- 2. $\{6\}$ is $\mathcal{G}_{\mathcal{R}^{\#}}$ -set but not \mathcal{G}_s -open.

Remark 3.5. For a grill topological space (X, \mathcal{G}, I) ,

1. if L is open \implies L is $\mathcal{G}_{\mathcal{R}_{\alpha}^{\#}}$ -set.

2. if L is $\mathcal{G}_{t_{\alpha}^{\#}}$ -set \implies L is $\mathcal{G}_{\mathcal{R}_{\alpha}^{\#}}$ -set.

Remark 3.6. The converse in the every part of Remark 3.5 is as noted in the next two examples, need not be accurate.

Example 3.3. In Example 3.1,

- 1. {6} is not open but $\mathcal{G}_{\mathcal{R}^{\#}_{\alpha}}$ -set.
- 2. {4} is not $\mathcal{G}_{t^{\#}_{\alpha}}$ -set but $\mathcal{G}_{\mathcal{R}^{\#}_{\alpha}}$ -set.

Proposition 3.2. If R and S are $\mathcal{G}_{t^{\#}}$ -sets of a space (X, \mathcal{G}, I) , then $R \cap S$ is $\mathcal{G}_{t^{\#}}$ -set.

Proof.

Let R and S be $\mathcal{G}_{t_{\alpha}^{\#}}$ -sets. $I(R \cap S) \subseteq I(R \cap S) \subseteq I(\psi(R \cap S)) \subseteq \psi(I(\psi(R \cap S))) \subseteq \psi(I(\psi(R))) \cap \psi(I(\psi(S))) = I(R) \cap I(S)$ (by guess) = $I(R \cap S)$. Then $I(R \cap S) = \psi(I(\psi(R \cap S)))$ and subsequently, $R \cap S$ is $\mathcal{G}_{t_{\alpha}^{\#}}$ -set. \Box

Remark 3.7. The notions of \mathcal{G}_{β} -open sets and $\mathcal{G}_{\mathcal{R}^{\#}_{\alpha}}$ -sets is a grill topological spaces are independent.

Example 3.4. Let $X = \{2, 4, 6, 8\}$ and $\tau = \{\phi, \{8\}, \{2, 6\}, \{2, 6, 8\}, X\}$. If $\mathcal{G} = \{\{6\}, \{6, 8\}, X\}$.

- 1. $\{6,8\}$ is \mathcal{G}_{β} -open set but not $\mathcal{G}_{\mathcal{R}^{\#}_{\alpha}}$ -set.
- 2. {6} is $\mathcal{G}_{\mathcal{R}_{\alpha}^{\#}}$ -set but not \mathcal{G}_{β} -open.

Theorem 3.2. The following properties are equivalent for a subset H of a space (X, \mathcal{G}, I) .

- 1. T is open,
- 2. T is \mathcal{G}_{β} -open and a $\mathcal{G}_{\mathcal{R}_{\alpha}^{\#}}$ -set.

Proof.

(1) implies (2): (1) of Remark 3.5 and (2) of Remark 3.3 come after each other.

(2)implies (1) : Given T is a $\mathcal{G}_{\mathcal{R}^{\#}_{\alpha}}$ -set. So $T = R \cap S$ where R is open and S is $\mathcal{G}_{t^{\#}_{\alpha}}$ -set. Then $T \subseteq R = I(R)$. Also H is \mathcal{G}_{β} -open implies $T \subseteq \psi(I(\psi(T))) \subseteq \psi(I(\psi(S))) = I(S)$ since S is $\mathcal{G}_{t^{\#}_{\alpha}}$ -set.

Thus $T \subseteq I(R) \cap I(S) = I(R \cap S) = I(T)$ and thus T is open.

Remark 3.8. The subsequent relations are true for a subset H of a space (X, \mathcal{G}, I) .

- 1. T is open \implies T is $\mathcal{G}_{\mathcal{R}}$ -set.
- 2. T is \mathcal{G}_t -set T with $I(\psi(T)) = \psi(I(T)) \Rightarrow T$ is $\mathcal{G}_{\mathcal{R}^{\#}}$ -set.

Proof.

Proof follows straight, since the Definition of $\mathcal{G}_{S\mathcal{R}}$ -set.

Remark 3.9. As mentioned in the next example, the converse of Remark 3.8(1) is not true.

Example 3.5. In Example 3.1, the set $\{4, 6\}$ is not open but \mathcal{G}_{SR} -set.

Proposition 3.3. In a space (X, \mathcal{G}, I) , each $\mathcal{G}_{S\mathcal{R}}$ -set is a $\mathcal{G}_{\mathcal{R}}$ -set.

Proof.

Proof follows from the note on that \mathcal{G}_t -set T with $I(\psi(T)) = \psi(I(T))$ is \mathcal{G}_t -set, which is a \mathcal{G}_R -set by of Definition 2.2.

Theorem 3.3. In a subset T of a space (X, \mathcal{G}, I) , the following properties are equivalent:

- 1. T is open;
- 2. T is \mathcal{G}_b -open and \mathcal{G}_{SR} -set.

Proof.

(1) implies (2): (1) of Remark 3.8 and (2) of Remark 3.3 come after each other.

(2) implies (1): Given T is $\mathcal{G}_{S\mathcal{R}}$ -set. So $T = R \cap S$ where R is open and S is \mathcal{G}_t -set with $I(\psi(S)) = \psi(I(S))$. Then $T \subseteq R = I(R)$. Also T is \mathcal{G}_b -open implies $T \subseteq I(\psi(T)) \cup \psi(I(T)) \subseteq I(\psi(S)) \cup \psi(I(S)) = I(S)$ by guess. Thus $T \subseteq I(R) \cap I(S) = I(R \cap S) = I(T)$ and hence T is open.

Acknowledgement

The author is gracious to the referee for his or her enlightening comments and ideas.

References

- [1] A. Al-Omari and T. Noiri, Decomposition of continuity via grilles, Jordan J. Math. Stat., 4(1)(2011), 33-46.
- [2] G. Choquet, Sur les notions de filter et grille, Comptes Rendus Acad. Sci. Pairs., 224(1947), 171-173.
- [3] E. Hatir and S. Jafari, On some new classes of sets and a new decomposition of continuity via grills, J. Ads. Math. Studies, 3(1)(2010), 33-40.
- [4] N. Levine, A decomposition of continuity in topological spaces, Amer Math. Monthly., 68(1961), 36-41.
- [5] M. O. Mustafa and R. B. Esmaeel, Separation axioms with grill-toplogical open set, J. Phys. Conf. Ser., 1879(2)(2021), 022107.
- [6] M. O. Mustafa and R. B. Esmaeel, Some properties in grill-topological open and closed sets, J. Phys. Conf. Ser. 1897(1)(2021), 012038.
- [7] O. Nethaji, R. Asokan and I. Rajasekaran, Novel concept of ideal nanotopological spaces, Asia Mathematika, 3(3)(2019), 84-88.
- [8] I. Rajasekaran, O. Nethaji, S. Jackson and N. Sekar, Some improvised sets in grill topological spaces, Annals of Communications in Mathematics, 5(3)(2022), 207-211
- [9] I. Rajasekaran, On *b-open sets and *b-sets in nano topological spaces, Asia Mathematika, 5(3)(2021), 5-15.
- [10] V. Renukadevi, Relation between ideals and grills, J. Adv. Res. Pure Math. 2(4)(2010), 9-14.
- [11] B. Roy and M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33(2007), 771-786.
- [12] D. Saravanakumar and N. Kalaivani, On grill S_p -open set in grill topological spaces, J. New Theory, 23(2018), 85-92.
- [13] N. Sekar, R. Asokan and I. Rajasekaran, On S_p^{\star} -open sets in ideal nano topological spaces, Asia Mathematika, 6(2)(2022), 39-47.
- [14] W. J. Thron, Proximity structure and grills, Math. Ann., 206(1973), 35-62.