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Abstract: In this paper, we introduce the notion of triple sets. They can be considered as a bridge between double and
intuitionistic sets or as their specific combination. Triple sets have some features of both these classes and thus they
are able to model two aspects of uncertainty. On the one hand, they express the modal idea of necessity and possibility.
On the other, they refer to the fact that while some objects may be accepted by decision maker (that is, considered as
being true) and some can be rejected (thus treated as false), it is still possible that there are some neutral objects. We
define some basic algebraic operations on triple sets and analyze their properties (comparing them e.g. with intuitionistic
logic). We compare two approaches to the notion of complement (negation in the logical sense). We point out that some
natural extensions of this framework should be studied too.
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1. Introduction
Intuitionistic sets were introduced by Coker in [2]. One could say that they are crisp version of intuitionistic
fuzzy sets that had been studied earlier by Atanassov (e.g. in [1]). The idea of intuitionistic sets is simple:
such set on a non-empty universe X is an ordered pair of the form A = (AT , AF ) where both AT and AF

are ordinary subsets of X of with the assumption that their intersection is empty. This idea is reasonable and
interesting because we can define various algebraic operations on intuitionistic sets (they will be presented in
the next section). In particular, these operations (together with the concept of intuitionistic complement, empty
set and universal set) are defined in such a way that both the law of excluded middle and the law of consistency
do not hold. We assume that AT denotes truth set of A , while AF is its falsity component. As for the objects
that are beyond the union of AT and AF , these are just neutral elements.

Nowadays the whole theory of intuitionistic sets is very wide and complex. In particular, intuitionistic
topological spaces (see [3]) are constantly investigated by many authors all over the world. However, double sets
are studied too (e.g. in [6] their classical and soft versions have been described in the context of topology). Here
the idea is that A = (A1, A2) , where A1 ⊆ A2 which means that A1 contains those objects that are necessary
or crucial while A2 consists of all those elements that are just optionary or possible. As for the complement
of A2 , it is the set of those elements that are not under consideration. The whole double set describes certain
point of view.

In this paper we connect both these concepts, introducing triple sets. We show how to calculate their
unions and intersections. We signalize the fact that it is possible to discuss triple topological spaces and other
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(weaker or just different) spaces. For example, recently anti-topological spaces have been studied by some
authors (see [5] or [8]) but in the framework of classical P (X) .

2. Preliminary notions

First, let us formulate the definitions of intuitionistic set and double set in a formal way.

Definition 2.1. [2] Assume that X is a non-empty universe, while AT and AF are its subsets such that their
intersection is empty. Then we say that an ordered pair A = (AT , AF ) is an intuitionistic set on X .

Definition 2.2. [2] Let A and B be two intuitionistic sets on some universe X . Then we define their union
as A ∪B = (A ∪B,A ∩B) and their intersection as A ∩B = (A ∩B,A ∪B) . We define complement of A as
Ac = (AF , AT ) , empty intuitionistic set as ∅ = (∅, X) and universal intuitionistic set as X = (X, ∅) .

Definition 2.3. [6] Assume that X is a non-empty universe, while A1 and A2 are its subsets such that A1 is
contained in A2 . Then we say that an ordered pair A = (A1, A2) is a double (or flou) set on X .

Definition 2.4. [6] Let A and B be two double sets on some universe X . Then we define their union as
A∪B = (A1 ∪A2, B1 ∪B2) and their intersection as A∩B = (A1 ∩A2, B1 ∩B2) . We define complement of A

as Ac = (Ac
2, A

c
1) , empty double set as ∅ = (∅, ∅) and universal double set as X = (X,X) .

The definitions above are classical and of course they are taken from the literature. The next definition
will be new. It will be presented in the next section.

3. Triple sets
3.1. Triple sets with quasi-complement

The notion presented below has some features of double sets and some aspects of intuitionistic sets. Let us
formalize this intuition.

Definition 3.1. Assume that X is a non-empty universe, while A1 , A2 and A3 are its subsets such that A1 is
contained in A2 and A3 has empty intersection with A2 . Then we say that an ordered triple A = (A1, A2, A3)

is a triple set on X .

The most natural interpretation (already suggested in Introduction) says that A1 is a collection of
necessary elements, A2 gathers those elements that are not necessary but still possible or conditionally accepted,
while A3 is a collection of those objects that are explicitly rejected or forbidden. Thus, X − (A2 ∪A3) gathers
neutral elements that are not evaluated.

Definition 3.2. Let A and B be two triple sets on some universe X . Then we define their union as
A ∪ B = (A1 ∪ B1, A2 ∪ B2, A3 ∩ B3) and their intersection as A ∩ B = (A1 ∩ B1, A2 ∩ B2, A3 ∪ B3) . We
define quasi-complement of A as Ac = (Ac

2, A
c
1, A1) , empty triple set as ∅ = (∅, ∅, X) and universal triple set

as X = (X,X, ∅) . We use the symbol PT (X) to denote the set of all triple sets on X .

One can easily check that both union and intersection are defined in a proper manner: they produce new
triple sets. Note that it is possible to define ”strong intersection” as A ∧B = (A1 ∩B1, A2 ∩B2, A3 ∩B3) . We
leave the study of algebraic properties of this operation for future research.
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Remark 3.1. Note that quasi-complement was defined in a specific way. We see that this unary opera-
tion returns new triple set but it does not depend on A3 . For example, let X = {a, b, c, d, e, f, g} and
A = ({a, b}, {a, b, c}, {f, g}) , B = ({a, b}, {a, b, c}, {e}) . Clearly, these triple sets are different. How-
ever, in the light of our definition, they have identical quasi-complements. We see that Ac = Bc =

({d, e, f, g}, {c, d, e, f, g}, {a, b}) . Hence, the well-known tautology (Ac)c = A does not hold. In this partic-
ular case we have (Ac)c = (Bc)c = ({a, b}, {a, b, c}, {d, e, f, g}) . This set is different than A and different than
B .

Note, however, that ((Ac)c)c = ((Bc)c)c = ({d, e, f, g}, {c, d, e, f, g}, {a, b}) = Ac . This will be generalized
later.

We think that the feature of quasi-complement that was mentioned in the last remark will be interesting
in the context of hypothetical triple topological spaces (and their generalization, e.g. triple minimal structures,
triple weak structures etc.). In classical topological spaces each closed set has its unique open counterpart
because closed sets are defined as complements of open sets. This relationship is one-to-one. As we can see,
in our case this property is broken. We hope that this will lead us (in our further investigations) to some
interesting reflections on the concept of closure, interior or exterior (as for the last one, it was recently studied
e.g. in [4] but in neutrosophic biminimal context).

As for the interpretation, quasi-complement is based on the idea that now the whole set of neutral and
forbidden elements becomes necessary. Those elements that were possible but not necessary are still treated as
possible. Former necessary elements are now rejected.

It is possible to define complement in our triple setting in a more typical way and this will be done later.
Now let us think about inclusion.

Definition 3.3. Assume that A and B are two triple sets on a universe X . We say that A ⊆ B (that is, A

is contained in B ) if and only if A1 ⊆ B1 , A2 ⊆ B2 and B3 ⊆ A3 .

For example, if X = {a, b, c, d, e, f, g} , A = ({a}, {a, b}, {e, f}) and B = ({a, b}, {a, b, c}, {f}) then
A ⊆ B .

The definition above is modelled after the one that is typical for intuitionistic sets (see [2]) and double
sets. We see that transitivity of this operation holds: if A ⊆ B and B ⊆ C , then one can easily prove that
A ⊆ C . Moreover, one can easily check that any triple set is contained in universal triple set and empty triple
set is contained in any triple set. Finally, if A ⊆ B then Bc ⊆ Ac because: if A1 ⊆ B1 , then Bc

1 ⊆ Ac
1 ,

if A2 ⊆ B2 , then Bc
2 ⊆ Ac

2 . As for the third components of quasi-complements, we have A1 ⊆ B1 just by
assumption.

Besides, we do not use any special symbols for triple universal and empty set. Analogously, we do not use
any special symbols of triple intersection and union. The context will always allow us to distinguish between
e.g. classical and triple universe or classical and triple operations.

It is important to check which algebraic properties are satisfied in this environment and which are not.

Theorem 3.1. Assume that A , B and C are three triple sets on some non-empty universe X . Then the
following identities and relationships hold:

1. ((Ac)c)c = Ac .

2. A ∪A = A , A ∩A = A (idempotence).
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3. A ∪B = B ∪A , A ∩B = B ∩A (commutativity).

4. A ∪ (A ∩B) = A , A ∩ (A ∪B) = A (absorption law).

5. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) , A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (distributivity).

6. A ∪ (B ∪ C) = (A ∪B) ∪ C , A ∩ (B ∩ C) = (A ∩B) ∩ C (associativity).

Proof.

We know that Ac = (Ac
2, A

c
1, A1) . Now (Ac)c = ((Ac

1)
c, (Ac

2)
c, Ac

2) = (A1, A2, A
c
2) . Then ((Ac)c)c =

(Ac
2, A

,
1A1) = Ac .

Obvious.

Obvious (because of commutativity of classical operations).

A∪ (A∩B) = A∪ (A1∩B1, A2∩B2, A3∪B3) = (A1∪ (A1∩B1), A2∪ (A2∩B2), A3∩ (A3∪B3)) = (A1, A2, A3) .
But the last set is just our original A . We may prove the second identity in a similar manner. Clearly, we used
absorption of classical operations.

A∪ (B ∩C) = A∪ (B1 ∩C1, B2 ∩C2, B3 ∪C3) = (A1 ∪ (B1 ∩C1), A2 ∪ (B2 ∩C2), A3 ∩ (B3 ∪C3)) . We see that
now we can use distributivity of classical union and intersection to obtain our expected result. The second part
of the proof is similar.

A∪(B∪C) = A∪(B1∪C1, B2∪C2, B3∩C3) = (A1∪(B1∪C1), A2∪(B2∪C2), A3∩(B3∩C3)) . But here we use
classical associativity to transform the last expression into ((A1 ∪B1)∪C1, (A2 ∪B2)∪C2), (A3 ∪B3)∪C3) =

(A1∪B1, A2∪B2, A3∪B3)∪(C1, C2, C3) = (A∪B)∪C . The second part can be solved in a similar manner.

We see that PT (X) together with the operations of (triple) union and intersection satisfies all the basic
properties of distributive lattice.

Remark 3.2. Consider the first property from Theorem 3.1 together with earlier Remark 3.1. As we already
know, we cannot say that (Ac)c = A (in general). This fact is typical for intuitionistic logic. Moreover, the
fact that triple negation reduces to single negation is also intuitionistic. Just like in intuitionism, we see that
A ⊆ (Ac)c . This is because A1 ⊆ A1 , A2 ⊆ A2 (trivially) and A3 ⊆ Ac

2 . Clearly, the converse inclusion (of
triple sets) may not be true, as we have already shown.

What about the law of excluded middle and the law of contradiction? They do not necessarily hold.

Remark 3.3. Let X = {a, b, c, d, e, f, g} . Take A = ({a, b}, {a, b, c}, {f, g}) and then we have Ac =

({d, e, f, g}, {c, d, e, f, g}, {a, b}) . Now:
A ∪ Ac = ({a, b, d, e, f, g}, {a, b, c, d, e, f, g}, ∅) = ({a, b, d, e, f, g}, X, ∅) . But this set is different than

triple universal set.
A ∩Ac = (∅, {c}, {a, b, f, g}) . But this set is different than triple empty set.

In fact, we can prove the following general lemma.

Lemma 3.1. Let X be a non-empty universe and assume that A is a triple set on X . Then the following
results hold:
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1. A ∪Ac = (A1 ∪Ac
2, X, ∅) = ((A2 −A1)

c, X, ∅) .

2. A ∩Ac = (∅, A2 ∩Ac
1, A3 ∪A1) = (∅, A2 −A1, A3 ∪A1) .

Proof. The proof can be considered as a simple generalization of Remark 3.3.

What about the properties of empty triple and universal triple set?

Lemma 3.2. Let X be a non-empty universe and assume that A is a triple set on X . Then the following
results hold:

1. A ∪X = X .
2. A ∩ ∅ = ∅ .

3. A ∪ ∅ = A .
4. A ∩X = A .

5. ∅c = X and Xc = ∅ .

Proof. We have:

1. A ∪X = (A1 ∪X,A2 ∪X,A3 ∩ ∅) = (X,X, ∅) = X .

2. A ∩ ∅ = (A1 ∩ ∅, A2 ∩ ∅, A3 ∪X) = (∅, ∅, X) = ∅ .

3. A ∪ ∅ = (A1 ∪ ∅, A2 ∪ ∅, A3 ∩X) = (A1, A2, A3) = A .

4. A ∩X = (A1 ∩X,A2 ∩X,A3 ∪ ∅) = (A1, A2, A3) = A .

5. ∅c = (∅, ∅, X)c = (∅c, ∅c, ∅) = (X,X, ∅) and Xc = (X,X, ∅)c = (Xc, Xc, X) = (∅, ∅, X) .

Note that we can add the following definition to our framework.

Definition 3.4. Let X be a non-empty universe. Then we say that 0 = (∅, ∅, ∅) is a total triple set.

At first glance, 0 seems to be the best candidate for the role of triple empty set. Indeed, it is ”absolutely
empty”. However, it does not satisfy all the expected properties of empty set. Nevertheless, the following simple
observation is interesting.

Lemma 3.3. Let X be a non-empty universe. Then 0c = X .

Proof. According to the definition of quasi-complement: 0c = (∅, ∅, ∅)c = (∅c, ∅c, ∅) = (X,X, ∅) = X .

On the other hand, we already know that Xc = ∅ = (∅, ∅, X) ̸= 0 . Moreover, we cannot say that 0

is contained in every triple set. In fact, it is contained only in triple sets of the form (A1, A2, ∅) . We cannot
consider 0 as a bottom of our lattice PT (X) .

What about the hypothetical ”0 - analogues” of b) and c) in Lemma 3.2? They are somewhat weaker
than in case of ∅ .

Lemma 3.4. Let X be a non-empty universe and assume that A is a triple set on X . Then the following
identities are true:
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1. A ∪ 0 = (A1, A2, ∅) .

2. A ∩ 0 = (∅, ∅, A3) .

Note that one could think that the object of the form (X,X,X) is a natural counterpart of 0 . However,
this intuition is misleading: this object does not even belong to PT (X) .

The next question is: what about de Morgan laws? As we know, quasi-complement is weaker than
classical negation, hence at first glance it may not be clear if these laws hold. However, we have the following
theorem.

Theorem 3.2. Let X be a non-empty universe and let A and B be two triple sets on X . Then the following
identities are true:

1. (A ∪B)c = Ac ∩Bc .

2. (A ∩B)c = Ac ∪Bc .

Proof.

(A ∪ B)c = (A1 ∪ B1, A2 ∪ B2, A3 ∩ B3)
c = ((A2 ∪ B2)

c, (A1 ∪ B1)
c, A1 ∪ B1) = (Ac

2 ∩ Bc
2, A

c
1 ∩ Bc

1, A1 ∪ B1) .
But this is just (Ac

2, A
c
1, A1) ∩ (Bc

2, B
c
1, B1) = Ac ∩Bc .

(A ∩ B)c = (A1 ∩ B1, A2 ∩ B2, A3 ∪ B3)
c = ((A2 ∩ B2)

c, (A1 ∩ B1)
c, A1 ∩ B1) = (Ac

2 ∪ Bc
2, A

c
1 ∪ Bc

1, A1 ∩ B1) .
But this is just (Ac

2, A
c
1, A1) ∪ (Bc

2, B
c
1, B1) = Ac ∪Bc .

We see that both de Morgan laws hold. This situation is different than in intuitionistic logic, where the
following inclusion (implication in logical sense) fails: that (A ∩B)c ⊆ Ac ∪Bc .

3.2. Triple sets with standard complement

Let us define triple negation in a new way that is (at least in some sense) more classical.

Definition 3.5. Let X be a non-empty universe and A be a triple set on X . Then we define standard triple
complement of A as −A = (A3, A

c
2, A1) .

Now the interpretation is: former forbidden elements are now necessary, all those elements that were
forbidden or just neutral are now possible, while former necessary elements are now rejected. The last feature is
shared with quasi-complement. Clearly, the set that is produced is a triple set again: A3 ⊆ Ac

2 and A3∩A1 = ∅ .
An advantage of this approach is that this complement engages all three components of triple set.

One can prove the following theorem about standard complement and its relationships with quasi-
complement:

Theorem 3.3. Let X be a non-empty universe and let A and B be two triple sets on X . Then the following
properties hold:

1. −(−A) = A .

2. A ∪ −A = (A1 ∪A3, X, ∅) .

3. A ∩ −A = (∅, ∅, A3 ∪A1) .
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4. −∅ = X and −X = ∅ .

5. −∅ = X .

6. −A ⊆ Ac .

7. −(A ∪B) = −A ∩ −B , −(A ∩B) = −A ∪ −B .

Proof. We have:

1. −(−A) = −(A3, A
c
2, A1) = (A1, (A

c
2)

c, A3) = (A1, A2, A3) .

2. A ∪ −A = (A1, A2, A3) ∪ (A3, A
c
2, A1) = (A1 ∪ a3, A2 ∪Ac

2, A3 ∩A1) = (A1 ∪A3, X, ∅) .

3. A ∩ −A = (A1, A2, A3) ∩ (A3, A
c
2, A1) = (A1 ∩A3, A2 ∩Ac

2, A3 ∪A1) = (∅, ∅, A3 ∪A1) .

4. We see that −∅ = −(∅, ∅, X) = (X, ∅c, ∅) = (X,X, ∅) = X . Then −X = −(X,X, ∅) = (∅, Xc, X) = (∅, ∅, X) =

∅ .

5. −0 = −(∅, ∅, ∅) = (∅, X, ∅) .

6. Clearly, −A = (A3, A
c
2, A1) and Ac = (Ac

2, A
c
1, A1) . We see that A3 ⊆ Ac

2 , Ac
2 ⊆ Ac

1 and A1 ⊆ A1 (trivially).
Thus, −A ⊆ Ac .

7. −(A ∪ B) = −(A1 ∪ B1, A2 ∪ B2, A3 ∩ B3) = (A3 ∩ B3, (A2 ∪ B2)
c, A1 ∪ B1) = (A3 ∩ B3, A

c
2 ∩ Bc

2, A1 ∪ B1) .
Now the last set is (A3, A

c
2, A1) ∩ (B3, B

c
2, B1) = −A ∩ −B . The other identity can be proved in an analogous

manner.

This theorem tells us that standard triple complement is (speaking informally) ”slightly more” classical
than quasi-complement. Double negation in standard sense collapses to the original set, as we can see in a).
However, as for the law of excluded middle and the law of contradiction, they are still both false. Besides, we
see that standard complement is always contained in quasi-complement.

4. Two additional operations
Union and intersection seem to be ”natural” operations on triple sets. In many ways, they behave like analogues
of corresponding operations on classical sets. However, we can discuss less typical operations in our framework.
Basically, we would like to investigate them in our further research. Nevertheless, we define them here together
with some basic operations. They are modelled after similar operations on double sets (they were investigated
in [7]).

Definition 4.1. Let X be a non-empty universe and assume that A and B are triple sets on X . Then we
define:

1. A⊙B = (A1 ∩B1, A2 ∪B2, A3 ∩B3) (intunion).

2. A⊕B = ((A1 ∪B1) ∩ (A2 ∩B2), A2 ∩B2, A3 ∪B3) (unionint).

As for the first two components: the idea of the first operation is that two decision makers agree to
connect their possibility sets and to limit their new necessity set only to those elements that are accepted for
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certain by both of them. As for the rejection sets, they intersect them to make sure that the new set has empty
intersection with the new second component.

The second operation is different. Now these two decision makers intersect their possibility sets and
they sum up their necessity sets but only in the limits of their new possibility set. As for the rejections sets,
they connect them. We can easily check that there is no risk of non-empty intersection with the new second
component. However, one can see that it would be reasonable to work with intersection of rejection sets, that
is: to define ”strong unionint” operation. This will be studied later.

One specific property of these two operations can be pointed out even on this stage. It refers to the
question of absorption law.

Lemma 4.1. Let X be a non-empty universe and assume that A and B are two triple sets on X . Then the
following absorptions laws do not hold:

1. A⊕ (A⊙B) = A .

2. A⊙ (A⊕B) = A .

Proof.1. In both cases the easiest way is to give counterexamples. However, let us check general expression too.
A⊕(A⊙B) = A⊕(A1∩B1, A2∪B2, A3∩B3) = ((A1∪(A1∩B1))∩(A2∩(A2∪B2)), A2∩(A2∪B2), A3∩A3∩B3) .
The last set is (we can use classical absorption law to prove this) just (A1 ∩ A2, A2, A3 ∩ B3) . But this
is (A1, A2, A3 ∩ B3) . For example, assume that X = {a, b, c, d, e, f, g} , A = ({a}, {a, b}, {e, f}) and B =

({b, c}, {b, c, d}, {f, g}) . According to our calculations, we have:
A⊕ (A⊙B) = (A1, A2, A3 ∩B3) = ({a}, {a, b}, {f}) . Clearly, the last set is different than A .
Besides, we see that if we limit our attention only to the first two components, then this absorption law is true.
However, the third component, the one of rejection, changes the whole thing.

2. Again, let us formulate general pattern:
A⊙ (A⊕B) = A⊙ ((A1 ∪B1) ∩ (A2 ∩B2), A2 ∩B2, A3 ∪B3) . This can be rewritten in the next step as:
(A1 ∩ ((A1 ∪ B1) ∩ (A2 ∩ B2)), A2 ∪ (A2 ∩ B2), A3 ∪ (A3 ∪ B3)) = (A1 ∩ A2 ∩ B2, A2, A3 ∪ B3) . This is
(A1 ∩B2, A2, A3 ∪B3) . Now take the same universe and sets that were used in part a). We obtain:
A⊕ (A⊙B) = (∅, {a, b}, {e, f, g}) . This is different than A .

We see that in this case even without third components we cannot obtain general absorption law. This
is important. On the one hand, we see that new operations have some natural interpretation in terms of
negotiations, necessity, possibility and rejection. On the other hand, the structure of equipped with these
two operations is rather weak (if we do not have absorption laws which are considered as very elementary for
algebras, e.g. for lattices).

5. Conclusion
In this paper we introduced triple sets. They are double sets with additional component that contains those
objects of universe that are rejected or forbidden by a decision maker whose point of view is described by a
given triple set. We defined basic algebraic operations and we compared two version of complement operation.
The next steps that we would like to take are: to define and study triple topological (and weaker: e.g. minimal,
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weak) structures; to fuzzify the whole concept; to study additional algebraic operations presented in this paper;
to reintroduce triple sets in soft setting. We can also define and analyze triple points (per analogiam with
double and intuitionistic points).
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