A perturbed elliptic problem involving the $p(x)$-Kirchhoff type triharmonic operator

Eugenio Cabanillas Lapa1 and Henry C. Zubieta Rojas2

1Instituto de Investigación, Facultad de Ciencias Matemáticas-UNMSM, Lima-Perú. ORCID iD: 0000-0002-8941-4394
2Unidad de Posgrado, Facultad de Ciencias Matemáticas-UNMSM Lima-Perú. ORCID iD: 0000-0001-9441-1369

Received: 19 Jul 2023 • Accepted: 06 Aug 2023 • Published Online: 31 Aug 2023

Abstract: This paper examines the existence of weak solutions for a nonlinear boundary value problem of $p(x)$-Kirchhoff type involving the $p(x)$-Kirchhoff type triharmonic operator and perturbed external source terms. We establish our results by using a Fredholm-type result for a couple of nonlinear operators, in the framework of variable exponent Sobolev spaces.

Key words: $p(x)$-kirchhoff type problem, variable exponent Sobolev space, Fredholm alternative

1. Introduction

The purpose of this work is to investigate the existence of weak solutions for the following nonlinear elliptic problem involving the $p(x)$-Kirchhoff type triharmonic operator, with Navier boundary conditions

$$
-M(L(u))\Delta_{p(x)}^3 u = f_\lambda(x, u, \nabla u, \Delta u, \nabla \Delta u) \quad \text{en} \quad \Omega,
$$

$$
u = \Delta u = \Delta^2 u = 0 \quad \text{en} \quad \partial \Omega,
$$

where Ω is a bounded domain in \mathbb{R}^n with a smooth boundary $\partial \Omega$, and $N \geq 3$, $p \in C(\overline{\Omega})$ for any $x \in \overline{\Omega}$; $M : \mathbb{R}^+ \to \mathbb{R}^+$ is a continuous function, $L(u) = \int_{\Omega} \frac{1}{p(x)} |\nabla \Delta u|^{p(x)} \, dx$, $\Delta_{p(x)}^3 u := \text{div} \left(\Delta \left(|\nabla \Delta u|^{p(x)-2} \nabla \Delta u \right) \right)$ is the so-called $p(x)$-triharmonic operator, $p \in C_+(\overline{\Omega}) = \{ h : h \in C(\overline{\Omega}), h(x) > 1 \text{ for any} \ x \in \overline{\Omega} \}$; $1 < p^- := \min_{\Omega} p(x) \leq p^+ := \max_{\Omega} p(x) < N$, $f_\lambda = f_1 + \lambda f_2$, where f_1, f_2 are continuous functions and $\lambda \geq 0$.

The study of differential and partial differential equations with variable exponent has received considerable attention in recent years. This interest reflects directly into various range of applications. There are applications concerning elastic mechanics [37], thermorheological and electrorheological fluids [3, 34], image restoration [9] and mathematical biology [24]. In the context of the study of elliptic Navier boundary problems, many results have been obtained, for example [10, 11, 28, 32]; however, there are few contributions to the study of the triharmonic problems with reaction term $f(x, t, z, y, w)$ depending on the gradient, the Laplacian and the gradient of the Laplacian of the solution. We can cite [4, 5, 26, 31, 33, 35]. Recently, Mehraban et al. [30] considered the existence and multiplicity of solutions for the problem (1),

©Asia Mathematika, DOI: 10.5281/zenodo.8369081
*Correspondence: cleugenio@yahoo.com
with \(M(t) = 1, f_{\lambda}(x, u, \nabla u, \Delta u, \nabla \Delta u) := \mu f(x, u) + \lambda g(x, u) \). We notice that if we choose the functional \(L(u) = \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx \) then we have the problem

\[
-M\left(\int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx\right) \text{div}(|\nabla u|^{p(x)-2} \nabla u) = f(x, u) \quad \text{in } \Omega,
\]

\[u = 0 \quad \text{on } \partial \Omega, \tag{2} \]

which is called the \(p(x) \)-Kirchhoff type equation. The problem (2) has some physical motivations as follows. Indeed, it is related with a physical model

\[
\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L |\frac{\partial u}{\partial x}|^2 \, dx \right) \frac{\partial^2 u}{\partial x^2} = 0, \tag{3}
\]

which extends the classical D’Alembert’s wave equation, by considering the effect of the changing in the length of the string during the vibration. A distinct feature is that the model (3) contains a nonlocal coefficient \(\frac{P_0}{h} + \frac{E}{2L} \int_0^L |\frac{\partial u}{\partial x}|^2 \, dx \) which depends on the average \(\frac{1}{L} \int_0^L |\frac{\partial u}{\partial x}|^2 \, dx \), and hence the equation is no longer a pointwise identity. Problem (3) has received a lot of attention after Lions [29] proposed an abstract framework for this problem, see e.g. [2, 8] and [13–18]. The study of Kirchhoff type equations has already been extended to the case involving the \(p \)-Laplacian (for details, see [13, 14, 18, 20]) and \(p(x) \)-Laplacian (see [12, 15–17, 25, 32, 40]).

Motivated by the above references, the results in Rahal [33] and the importance of sixth order elliptic equation in the modeling of ulcers [38], viscous fluid, geometric design [39], in this paper we investigate the existence of weak solutions of problem (1). Due to the presence of \(\nabla u, \Delta u \) and \(\nabla \Delta u \) in \(f \) the most usual variational techniques can not be used to study it; so we adapt topological tools: a Fredholm type theorem for a \(F \)redholm type theorem for a

2. Preliminaries

To discuss problem (1), we need some theory on \(W^{1,p(x)}(\Omega) \) which is called variable exponent Sobolev space (for details, see [21]). Denote by \(S(\Omega) \) the set of all measurable real functions defined on \(\Omega \). Two functions in \(S(\Omega) \) are considered as the same element of \(S(\Omega) \) when they are equal almost everywhere. Write

\[
C_+(\Omega) = \{ h : h \in C(\overline{\Omega}), h(x) > 1 \text{ for any } x \in \overline{\Omega} \},
\]

\[
h^- := \min_{\overline{\Omega}} h(x), \quad h^+ := \max_{\overline{\Omega}} h(x) \quad \text{for every } h \in C_+(\overline{\Omega}).
\]

Define

\[
L^{p(x)}(\Omega) = \{ u \in S(\Omega) : \int_{\Omega} |u(x)|^{p(x)} \, dx < +\infty \text{ for } p \in C_+(\overline{\Omega}) \}
\]

with the norm

\[
|u|_{L^{p(x)}(\Omega)} = |u|_{p(x)} = \inf \{ \lambda > 0 : \int_{\Omega} \frac{|u(x)|^{p(x)}}{\lambda} \, dx \leq 1 \},
\]
Moreover, the norms \(\|\cdot\|_{W^{k,p}(x)} \) with the norm
\[
\|u\|_{W^{k,p}(x)} = \|D^\alpha u\|_{L^p(\Omega)}
\]

Proposition 2.1 ([21]). The spaces \(L^p(\Omega) \) and \(W^{k,p}(x) \) are separable and reflexive Banach spaces.

Proposition 2.2 ([21]). Set \(\rho(u) = \int_{\Omega} |u(x)|^{p(x)} \, dx \). For any \(u \in L^p(\Omega) \), then

1. for \(u \neq 0 \), \(|u|_{p(x)} = \lambda \) if and only if \(\rho(u) = 1 \);
2. \(|u|_{p(x)} < 1 \) \((= 1; > 1)\) if and only if \(\rho(u) < 1 \) \((= 1; > 1)\);
3. if \(|u|_{p(x)} > 1 \), then \(|u|_{p(x)}^{p^+} \leq \rho(u) \leq |u|_{p(x)}^{p^+} \);
4. if \(|u|_{p(x)} < 1 \), then \(|u|_{p(x)}^{p^+} \leq \rho(u) \leq |u|_{p(x)}^{p^+} \);
5. \(\lim_{k \to +\infty} |u_k|_{p(x)} = 0 \) if and only if \(\lim_{k \to +\infty} \rho(u_k) = 0 \);
6. \(\lim_{k \to +\infty} |u_k|_{p(x)} = +\infty \) if and only if \(\lim_{k \to +\infty} \rho(u_k) = +\infty \).

\(p^*_k(x) = \begin{cases} \frac{Np(x)}{N-kp(x)} & \text{if } kp(x) \leq N, \\ +\infty & \text{if } kp(x) \geq N. \end{cases} \)

The space \(W^{1,p(x)}(\Omega) \) is the closure of \(C_0(\Omega) \) in \(W^{1,p(x)}(\Omega) \). We denote by
\[
X = W^{1,p(x)}(\Omega) \cap W^{3,p(x)}(\Omega)
\]
and define a norm \(\|\cdot\|_X \) by
\[
\|u\|_X = \|u\|_{1,p(x)} + \|u\|_{2,p(x)} + \|u\|_{3,p(x)}.
\]

Moreover, the norms \(\|u\|_X \) and \(\|\nabla \Delta u\|_{p(x)} \) are equivalent on \(X \). Let
\[
\|u\| = \inf \left\{ \mu > 0 : \int_{\Omega} \frac{\nabla \Delta u}{\mu}^{p(x)} \, dx \leq 1 \right\}
\]
for any \(u \in X \). Hence, we see that \(\|u\| \) is equivalent to the norms \(\|u\|_X \) and \(\|\nabla \Delta u\|_{p(x)} \) in \(X \). From now on, we will use \(\|\cdot\| \) instead of \(\|u\|_X \) on \(X \).

Proposition 2.4 ([21, 23]). The conjugate space of \(L^p(\Omega) \) is \(L^{q(x)}(\Omega) \), where \(\frac{1}{q(x)} + \frac{1}{p(x)} = 1 \) holds a.e. in \(\Omega \). For any \(u \in L^p(\Omega) \) and \(v \in L^{q(x)}(\Omega) \), we have the following Hölder-type inequality
\[
|\int_{\Omega} uv \, dx| \leq \left(\frac{1}{p} + \frac{1}{q} \right) |u|_{p(x)} |v|_{q(x)}.
\]
Proposition 2.5 ([21, 23]). Let \(p(x) \) and \(q(x) \) be measurable functions such that \(p(x) \in L^\infty(\Omega) \) and \(1 \leq p(x)q(x) \leq \infty \), for a.e. \(x \in \Omega \). Let \(u \in L^q(\Omega), u \neq 0 \). Then, we have

i) For \(|u|_{p(x)q(x)} \leq 1 \), \(|u|_{p(x)q(x)}^p \leq |u|_{p(x)q(x)} \leq |u|_{p(x)q(x)}^p \)

ii) For \(|u|_{p(x)q(x)} > 1 \), \(|u|_{p(x)q(x)}^p \leq |u|_{p(x)q(x)} \leq |u|_{p(x)q(x)}^p \)

Proposition 2.6 ([21, 23]). Set \(\Psi_{p(x)}(u) = \int_{\Omega} |\nabla \Delta u|^{p(x)} \, dx \) for any \(u \in X \). Then, we have

1. If \(\|u\| \geq 1 \), then \(\|u\|^p \leq \Psi_{p(x)}(u) \leq \|u\|^p \);
2. If \(\|u\| \leq 1 \), then \(\|u\|^p \leq \Psi_{p(x)}(u) \leq \|u\|^p \).

Theorem 2.1 ([19]). Let \(X \) and \(Y \) be real Banach spaces and two nonlinear operators \(T, S : X \to Y \) such that

1. \(T \) is bijective and \(T^{-1} \) is continuous.
2. \(S \) is compact.
3. Let \(\mu \neq 0 \) be a real number such that: \(\|(\mu T - S)(x)\| \to +\infty \) as \(\|x\| \to +\infty \);
4. There is a constant \(R > 0 \) such that

\[\|(\mu T - S)(x)\| > 0 \text{ if } \|x\| \geq R, \quad d_{LS}(I - T^{-1}(\frac{S}{\mu}), B(\theta, R), 0) \neq 0. \]

Then \(\mu I - S \) is surjective from \(X \) onto \(Y \).

Here \(d_{LS}(G, B, 0) \) denotes the Leray-Schauder degree.

Definition 2.1. A function \(u \in X \) is said to be a weak solution of (1) if

\[
(P_\lambda) \quad M \left(\int_\Omega \frac{1}{p(x)} |\nabla \Delta u|^{p(x)} \, dx \right) \int_\Omega |\nabla \Delta u|^{p(x)-2} \nabla \Delta u \cdot \nabla \Delta v \, dx = \int_\Omega f_\lambda(x, u, \nabla u, \Delta u, \nabla \Delta u) v \, dx
\]

for all \(v \in X \).

Suppose that \(M \) and \(f_\lambda \) satisfy the following hypotheses:

\((M_0) \) \(\cdot [0, +\infty) \to [m_0, +\infty) \) is a continuous and nondecreasing function with \(m_0 > 0 \).

\((F_1) \) \(f_\lambda = f_1 + \lambda f_2, \lambda \geq 0, \ f_i \in C((\Omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n; \mathbb{R}), i = 1, 2 \) and there exists a positive constant \(c_1 \) such that

\[
|f_i(x, s, \xi, t, \zeta)| \leq c_1(\sigma_i(x) + |s|^\eta_i(x) + |\xi|^{\delta_i(x)} + |\xi|^{\delta_i(x)}), \quad \forall x \in \Omega,
\]

\[
\forall s, t \in \mathbb{R}, \xi \in \mathbb{R}^n, \text{ where } \eta_i, \delta_i \in C(\overline{\Omega}), \ q \in C_+ (\overline{\Omega}), \ \frac{1}{p(x)} + \frac{1}{p'(x)} = 1,
\]

\[
\sigma_i \in L^{p_i}(\Omega), \quad 0 \leq \eta_i(x) < p(x) - 1, \ 0 \leq \delta_i(x) < \frac{p(x) - 1}{p'(x)}, i = 1, 2;
\]

\[
p^- + 1 \leq \eta_2(x) < p^+ + 1 \text{ for } x \in \overline{\Omega}.
\]
3. Existence of solutions

In this section we will discuss the existence of weak solutions of (1). Our first result is as follows.

Theorem 3.1. Assume \(\lambda = 0 \) and that (\(M_0 \)) and (\(F_1 \)) hold. Then (1) has a weak solution in \(X \).

Proof. In order to apply theorem (2.1), we take \(Y = X' \) and the operators \(T, S_\lambda : X \rightarrow X' \) in the following way

\[
\langle Tu, v \rangle = M \left(\int \frac{1}{p(x)} |\nabla \Delta u|^{p(x)} \, dx \right) \int \Omega |\nabla \Delta u|^{p(x)-2} \nabla \Delta u \cdot \nabla \Delta v \, dx,
\]

\[
\langle S_\lambda u, v \rangle = \int \Omega f_\lambda(x, u, \nabla u, \Delta u, \nabla \Delta u) v \, dx,
\]

for all \(u, v \in X \).

Then \(u \in X \) is a solution of (1) if and only if

\[
Tu = S_\lambda u \quad \text{in} \quad X'.
\]

In what follows, for simplicity we denote \(S \equiv S_0, f \equiv f_1, \eta \equiv \eta_1, \delta \equiv \delta_1 \).

Take \(\lambda = 0 \). For the convenience of the reader, we will divide the proof into five steps.

Step 1. We prove that \(T \) is an injection.

First we observe that

\[
\Phi(u) = \tilde{M}\left(L(u)\right), \quad \text{where} \quad \tilde{M}(s) = \int_0^s M(t) \, dt,
\]

is a continuously Gâteaux differentiable function whose Gâteaux derivative at the point \(u \in X \) is the functional \(\Phi'(u) \in X' \) given by

\[
\langle \Phi'(u), v \rangle = \langle T(u), v \rangle \quad \text{for all} \quad v \in X.
\]

On the other hand, by applying a standard argument, we can show that \(L \in C^1(X, \mathbb{R}) \) and

\[
\langle L'(u), v \rangle = \int \Omega |\nabla \Delta u|^{p(x)-2} \nabla \Delta u \cdot \nabla \Delta v \, dx, \quad \text{for all} \quad u, v \in X.
\]

for all \(u, v \in X \).

By taking into account the inequality [36, (2.2)]

\[
\langle |x|^{p-2} x - |y|^{p-2} y, x - y \rangle \geq \begin{cases} C_p |x - y|^p & \text{if} \ p \geq 2 \\ C_p \frac{|x-y|^2}{(|x|+|y|)^{2-p}} & \text{if} \ 1 < p < 2, \end{cases}
\]

for all \(x, y \in \mathbb{R}^N \), we obtain

\[
\langle L'(u) - L'(v), u - v \rangle > 0 \quad \text{for all} \quad u, v \in X \quad \text{with} \ u \neq v,
\]

that is, \(L' \) is strictly monotone and thus, by [41, Prop. 25.10], \(L \) is strictly convex. Furthermore, as \(M \) is nondecreasing, \(\tilde{M} \) is convex in \([0, +\infty[\). Consequently, for every \(u, v \in X \) with \(u \neq v \), and every \(s, t \in (0, 1) \) with \(s + t = 1 \), one has

\[
\tilde{M}(Lu + tv) < \tilde{M}(sL(u) + tL(v)) \leq s\tilde{M}(L(u)) + t\tilde{M}(L(v)).
\]
This shows that Φ is strictly convex, and as $\Phi'(u) = T(u)$ in X' it follows that T is strictly monotone in X, consequently T is an injection.

Step 2. We prove that the inverse $T^{-1}: X' \to X$ of T is continuous.

For any $u \in X$ with $\|u\| > 1$, one has

$$\frac{\langle T(u), u \rangle}{\|u\|} = M \left(\int_\Omega \frac{1}{p(x)} |\nabla \Delta u|^p(x) \, dx \right) \left[\int_\Omega |\nabla \Delta u|^p(x) \, dx \right] \geq m_0 \|u\|^{p-1},$$

from which we have the coercivity of T.

Since T is the Fréchet derivative of Φ, T is continuous. Thus, in view of the well known Minty Browder theorem T is a surjection and so $T^{-1}: X' \to X$ and it is bounded.

Now we prove the continuity of T^{-1}.

First, we verify that T is of type (S_+). In fact, if $u_\nu \rightharpoonup u$ in V (so there exists $R > 0$ such that $\|u_\nu\| \leq R$) and the strict monotonicity of T we have

$$0 = \limsup_{\nu \to \infty} \langle Tu_\nu - Tu, u_\nu - u \rangle = \lim_{\nu \to \infty} \langle Tu_\nu - Tu, u_\nu - u \rangle$$

Then

$$\lim_{\nu \to \infty} \langle Tu_\nu, u_\nu - u \rangle = 0$$

That is

$$\lim_{\nu \to \infty} M \left(L(u_\nu) \right) \int_\Omega |\nabla \Delta u_\nu|^{p(x)-2} \nabla \Delta u_\nu \cdot (\nabla \Delta u_\nu - \nabla \Delta u) \, dx = 0 \quad (5)$$

Now, we have

$$|L(u_\nu)| \leq \frac{1}{p} \int_\Omega |\nabla \Delta u_\nu|^{p(x)} \, dx \leq \frac{1}{p} (\|u_\nu\|^p + 1) \leq C \quad (6)$$

So, $(L(u_\nu))_{\nu \geq 1}$ is bounded.

Then, since M is continuous, up to a subsequence there is $t_0 \geq 0$ such that

$$M \left(L(u_\nu) \right) \to M(t_0) \geq m_0 \quad \text{as } \nu \to \infty$$

This and (5) imply

$$\lim_{\nu \to \infty} \int_\Omega |\nabla \Delta u_\nu|^{p(x)-2} \nabla \Delta u_\nu \cdot (\nabla \Delta u_\nu - \nabla \Delta u) \, dx = 0$$

By proceeding similarly to [[1], Proposition 2.5], one can obtain

$$\lim_{\nu \to \infty} \int_\Omega |\nabla \Delta u_\nu - \nabla \Delta u|^p(x) \, dx = 0.$$

Therefore, by the equivalence of norms on X one has

$$u_\nu \rightharpoonup u \quad \text{strongly in } X \text{ as } \nu \to \infty.$$
where

\[0 \leq \eta(x) \leq p(x) - 1, \]

we have

\[0 \leq \eta(x)p'(x) < p(x), \]

then

\[
\int_{\Omega} |f(x, u, \nabla u, \Delta u, \nabla \Delta u)|p'(x) dx \leq \left(\int_{\Omega} |f(x, u, \nabla u, \Delta u, \nabla \Delta u)|p'(x) dx \right)^{1/\alpha}
\]

\[
\leq C \left(1 + \left|\nabla \Delta u(x)\right|^\theta x \right)\]

where

\[
\alpha = \begin{cases}
 p'^-, & \text{if } |f(x, u, \nabla u)|p'(x) > 1, \\
 p'^+, & \text{if } |f(x, u, \nabla u)|p'(x) \leq 1,
\end{cases} \]

\[
\beta = \begin{cases}
 (\eta p')^+, & \text{if } |u|_{\eta(x)p'(x)} > 1, \\
 (\eta p')^-, & \text{if } |u|_{\eta(x)p'(x)} \leq 1
\end{cases}
\]

\[
\theta = \begin{cases}
 (\delta p')^+, & \text{if } |\nabla u|_{\delta x(p'(x))} > 1, \\
 (\delta p')^-, & \text{if } |\nabla u|_{\delta x(p'(x))} \leq 1
\end{cases}
\]

On the other hand, if \(u_\nu \to u \) in \(X \) up to a subsequence \(\nu \rightarrow u \) in \(X \), and \(\nabla \Delta u \to \nabla \Delta u \) a.e. in \(\Omega \)

\[
|u_\nu(x)| \leq k(x), |\partial u_\nu(x)/\partial x_j| \leq w_j, |\partial^2 u_\nu(x)/\partial x_j^2| \leq z_j,
\]

\[
|\partial^3 u_\nu(x)/\partial x_i \partial x_j \partial x_k| \leq l_{ij} \text{ a.e. } x \in \Omega,
\]

for some \(k, w_j, z_j, l_{ij} \in L^p(x)(\Omega) \)

Then

\[
\Psi(u_\nu(x)) \to \Psi(u(x)) \text{ a.e. } x \in \Omega
\]

But, it follows from \((F_1) \) and \((8) \) that

\[
\left| \Psi(u_\nu(x)) - \Psi(u(x)) \right|^{p'(x)} \leq C 2^{(p')^+} \left[|\Psi(u_\nu(x))|^{p'(x)} + |\Psi(u(x))|^{p'(x)} \right]
\]

\[
\leq h(x) \text{ a.e. } x \in \Omega
\]
where $h = h(k, w_j, z_j, l_{ij}) \in L^1(\Omega)$. Applying the Dominated Convergence Theorem with (9)-(10), we obtain
\[
\lim_{\nu \to \infty} \int_\Omega \left| \Psi(u_\nu)(x) - \Psi(u)(x) \right|^{p'(x)} dx = 0
\]
This implies that
\[
\lim_{\nu \to \infty} \left| \Psi(u_\nu)(x) - \Psi(u)(x) \right|^{p'(x)} = 0.
\]

2.- S is well defined. Indeed
\[
\langle Su, v \rangle \leq \int_\Omega |\Psi(u)(x)||v| dx
\]
\[
\leq C |\Psi(u)|^{p'(x)}|v|^{p(x)} \leq C |\Psi(u)|^{p'(x)}||v|| < \infty.
\]

3.- $S = I_2^* \circ \Psi \circ I_1$, where $I_1 : X \to L^{p(x)}(\Omega) \times L^{p(x)}(\Omega; \mathbb{R}^n) \times L^{p(x)}(\Omega) \times L^{p(x)}(\Omega; \mathbb{R}^n)$ is given by
\[
I_1(u) = (u, \nabla u, \triangle u, \nabla \triangle u),
\]
\[\Psi \] is the Nemytskii operator in (7) and $I_2 : X \hookrightarrow L^{p'(x)}(\Omega)$ whose adjoint operator $I_2^* : L^{p'(x)}(\Omega) \to X'$ is given by
\[
(I_2^* v)(u) = \int_\Omega vu dx.
\]
Since I_1 is linear and bounded, Ψ is continuous and I_2^* is continuous and compact, we conclude that S is continuous and compact.

Step 4
\[
\|(T - S)(u)\| \to \infty \quad \text{as} \quad \|u\| \to \infty \quad \text{for} \quad u \in X.
\]
In fact, after some computations we get
\[
\|Tu\| \geq m_0 \|u\|^{p-1} \quad \text{for all} \quad u \in X \quad \text{with} \quad \|u\| > 1
\]
and, since
\[
\int_\Omega \Psi(u)(x)v dx \leq C_p \left(\int_\Omega |\Psi(u)(x)|^{p'(x)} dx \right)^{1/\alpha} \|v\| \quad \text{for all} \quad u, v \in X,
\]
we get
\[
\|Su\| \leq C_1 (\|u\|^{\theta} + \|u\|^{\theta})^{1/\alpha} + C_2 \quad \text{for all} \quad u \in X
\]
for some $\theta \in [(np')^-, (np')^+]$ and $\vartheta \in [(\delta p')^-, (\delta p')^+]$.

Combining the above inequalities, we obtain
\[
\|(T - S)(u)\| \geq \|Tu\| - \|Su\| \geq C_0 \|u\|^{p-1} - C_0' \|u\|^\theta/\alpha - C_2' \|u\|^{\vartheta/\alpha} - C_3. \quad (11)
\]
Here, we note that
\[
0 \leq \frac{\theta}{p'^+} < \frac{p^- - 1}{p'^+}, \quad 0 \leq \frac{\vartheta}{p'^-} < \frac{p'' - 1}{p'^-}, \quad \frac{p^- - 1}{p'^+} \leq \frac{p'' - 1}{p'^-}.
\]
Eugenio Cabanillas Lapa and Henry C. Zubieta Rojas

So, we have

\[0 \leq \frac{\theta}{\alpha} < \frac{p^- - 1}{p'^-} < p^- - 1 \]

and, similarly we obtain \(0 \leq \frac{\theta}{\alpha} < p^- - 1 \).

Since

\[\lim_{t \to \infty} (C_0 t^{p^- - 1} - C_1 t^{a} - C_2 t^{b} - C_3) = \infty \]

and from (11) we conclude that \(\|(T - S)(u)\| \to \infty \) as \(\|u\| \to \infty \).

Moreover, there exists \(r_0 > 1 \) such that \(\|(T - S)(u)\| > 1 \) for all \(u \in X \), with \(\|u\| > r_0 \).

Step5 Set

\[W = \{ u \in X : \exists t \in [0, 1] \text{ such that } u = tT^{-1}(Su) \} \]

Next, we prove that \(W \) is bounded in \(V \).

For \(u \in W \setminus 0 \), i.e. \(u = tT^{-1}(Su) \) for some \(t \in [0, 1] \) we have

\[\|T(Su)\| = \|Su\| \leq C_1 \|u\|^{\theta/\alpha} + C_2 \|u\|^{\theta/\alpha} + C_3 \text{ with } t > 0. \]

(12)

Then, there exist three constants \(a, b, c > 0 \) such that

\[m_0 \|u\|^{p^+ - 1} \leq a \|u\|^n - b \|u\|^{d^-} + c \quad \text{if } 0 < \|u\| < t, \]

\[m_0 \|u\|^{p^- - 1} \leq a \|u\|^n - b \|u\|^{d^-} + c \quad \text{if } t \leq \|u\| \leq 1, \]

\[m_0 \|u\|^{p^- - 1} \leq a \|u\|^n + b \|u\|^{d^+} + c \quad \text{if } 1 < \|u\|. \]

Let \(g_1, g_2 : [0, 1] \to \mathbb{R} \) and \(g_3 : [1, \infty[\to \mathbb{R} \) be defined by

\[g_1(t) = m_0 t^{p^+ - 1} - a t^{n} - b t^{d^-} - c, \quad g_2(t) = m_0 t^{p^- - 1} - a t^{n} - b t^{d^-} - c, \]

\[g_3(t) = m_0 t^{p^- - 1} - a t^{n} - b t^{d^+} - c. \]

The sets \(\{ t \in [0, 1] : g_1(t) \leq 0 \} \), \(\{ t \in [0, 1] : g_2(t) \leq 0 \} \) and \(\{ t \in [1, \infty[: g_3(t) \leq 0 \} \) are bounded in \(\mathbb{R} \).

From the above inequalities and (12) we infer that \(W \) is bounded in \(X \), so

\[W \subseteq B(0, r_1) \quad \text{for some } r_1 > 0. \]

Now, taking \(R = \max\{r_0, r_1\} \), it follows from [27, theorem 1.8] that

\[d_{LS}(I - tT^{-1}(S), B(0, R), 0) = 1 \quad \text{for all } t \in [0, 1]. \]

In particular

\[d_{LS}(I - T^{-1}(S), B(0, R), 0) = 1. \]

Thus, the couple of nonlinear operators \((T, S)\) satisfies the hypotheses of theorem (2.1) for \(\mu = 1 \). Then \(T : X \to X' \) is surjective. Therefore, there exists \(u \in X \) such that

\[(T - S)u = 0 \quad \text{in } X'. \]

With this step the proof of Theorem (3.1) is concluded.
We are now in a position to give the proof of our main result.

Theorem 3.2. Assume that hypotheses \((M_0)\) and \((F_1)\) hold. If \(\lambda > 0\) is small enough, then (1) has a weak solution in \(X\).

Proof. Thanks to the proof of Theorem (3.1), we have that all the solutions of \((P_0)\) are in \(B(0,R)\). Hence

\[
u - T^{-1}S_0(u) \neq 0, \quad \forall u \in \partial B(0,R)
\]

From this, we have that

\[
\rho := \inf_{u \in \partial B(0,r)} \|Tu - S_0u\|_{X'} > 0
\]

In fact, arguing by contradiction, assume that there exists a sequence \(\{u_\nu\} \subset \partial B(0,R)\) such that

\[
\|Tu_\nu - S_0u_\nu\|_{X'} \rightarrow 0 \quad \text{as} \quad \nu \rightarrow +\infty.
\]

By construction, the sequence \(\{u_\nu\}\) is bounded in \(X\) and so (up to a subsequence) converge to some \(u_0\) weakly in \(X\). Hence, by the compactness of \(S\), \(\{S_0u_\nu\}\) has a strong convergent subsequence in \(X'\) (still denoted \(\{S_0u_\nu\}\)) such that

\[
\|S_0u_\nu - S_0u_0\|_{X'} \rightarrow 0 \quad \text{as} \quad \nu \rightarrow +\infty.
\]

Then, we get

\[
\|Tu_\nu - S_0u_0\|_{X'} \leq \|Tu_\nu - S_0u_\nu\|_{X'} + \|S_0u_\nu - S_0u_0\|_{X'} \rightarrow 0
\]
as \(\nu \rightarrow +\infty\). Now, the continuity of \(T^{-1}\) implies that \(u_\nu \rightarrow T^{-1}S_0u_0\) in \(X\); thus we obtain

\[
u_\nu \rightarrow u_0 \quad \text{in} \quad X \quad \text{(14)}
\]
because \(u_\nu \rightarrow u_0\). From (13) and (14) we have

\[
\|Tu_0 - S_0u_0\|_{X'} = 0.
\]

So, \(u_0\) solves \((P_0)\) and \(\|u_0\| = R\), which is a contradiction. Therefore \(\rho > 0\).

Since the Nemytskii operator \(N_{f_2}\) is bounded and continuous from \(X\) to \(X'\), there exists \(\varepsilon > 0\) such that

\[
\|N_{f_2}(u)\|_{X'} \leq \varepsilon \quad \forall u \in \overline{B(0,R)}.
\]

Set \(\lambda_\ast = \frac{\varepsilon}{R}\), then for any \(\lambda \in [0,\lambda_\ast]\) we have

\[
\|Tu - S_\lambda u\|_{X'} = \|Tu - S_0u + S_0u - S_\lambda u\|_{X'} \\
\geq \|Tu - S_0u\|_{X'} - \|S_0u - S_\lambda u\|_{X'} \\
> \rho - \frac{\rho}{\varepsilon} \varepsilon = 0, \quad \forall u \in \partial B(0,R).
\]

Hence \(Tu - S_\lambda u = 0\) does not have solution on \(\partial B(0,R)\) for any \(\lambda \in [0,\lambda_\ast]\). It follows that the Leray-Schauder degree \(d_{LS}(I - T^{-1}S_\sigma, B(0,R), 0)\) is well defined for \(\sigma \in [0,1]\), and

\[
d_{LS}(I - T^{-1}S_\lambda, B(0,R), 0) = d_{LS}(I - T^{-1}S_0, B(0,R), 0) = 1,
\]

where the last equality is due to that the equation \(Tu = S_0u\) has solution in \(X\). Thus \(Tu = S_\lambda u\) has a solution. \(\square\)
In the last part of this section, we will show that the solution of problem (1), for \(\lambda = 0 \), is unique. To this end, we also need the following hypotheses on the nonlinearity \(f \).

\((F_2) \). There exists \(\beta_2 \geq 0 \) such that
\[
(f(x, s_1, \xi, t, \zeta) - f(x, s_2, \xi, t, \zeta)) (s_1 - s_2) \leq \beta_2 |s_1 - s_2|^{p(x)}
\]
for a.e \(x \in \Omega \) and all \(s_1, s_2 \in \mathbb{R} \), \((\xi, t, \zeta) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \).

\((F_3) \). There exists \(\beta_3 \geq 0 \) such that
\[
|f(x, s, \xi, t, \zeta) - f(x, s, \xi, t, \hat{\zeta})| \leq \beta_3 |\zeta - \hat{\zeta}|^{p(x) - 1}
\]
for a.e \(x \in \Omega \) and all \(s_1, s_2 \in \mathbb{R} \), \((\xi, t, \zeta) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \).

Theorem 3.3. Let \(M : [0, +\infty) \rightarrow [m_0, m_1] \) be a function satisfying \((M_0) \) with \(m_1 > m_0 > 0 \) and, moreover \((F_2) - (F_3) \) hold. If, in addition \(2 \leq p(x) \) for all \(x \in \Omega \), then (1) has a unique weak solution provided that
\[
\frac{p^+}{m_0} \left[\left(\frac{\beta_3}{p^+} \right)^{\frac{1}{p^-}} + \beta_3 \frac{p^+ - 1}{p^-} \right] < 1
\] \((15) \)
where
\[
\lambda_* = \inf_{u \in X \setminus \{0\}} \frac{\int_\Omega |\nabla u|^p(x) \, dx}{\int_\Omega |u|^{p(x)} \, dx} > 0.
\]

Proof. Theorem 3.1 gives a weak solution \(u \in X \). It is enough to prove that \(T - S : X \rightarrow X' \) is injective. Let \(u_1, u_2 \) be two weak solutions of (1) such that \((T - S)(u_1) = (T - S)(u_2) \). Hence
\[
\langle T(u_1) - T(u_2), u_1 - u_2 \rangle = \langle S(u_1) - S(u_2), u_1 - u_2 \rangle.
\] \((16) \)

But, in view of Lemma 3 in [7], assumptions \((M_0) \), \((F_2) \) and \((F_3) \), we get from (16) and the Young inequality that
\[
\frac{m_0}{p^+} \int_\Omega |\nabla u_1 - \nabla u_2|^{p(x)} \, dx \leq m_0 \int_\Omega \frac{1}{p(x)} |\nabla u_1 - \nabla u_2|^{p(x)} \, dx
\]
\[
\leq \langle T(u_1) - T(u_2), u_1 - u_2 \rangle \leq |\langle S(u_1) - S(u_2), u_1 - u_2 \rangle|
\]
\[
\leq \int_\Omega |\Psi(u_1)(x) - \Psi(u_2)(x)||u_1 - u_2| \, dx
\]
\[
\leq \int_\Omega (f(x, u_1, \nabla u_1, \Delta u_1, \nabla \Delta u_1) - f(x, u_2, \nabla u_1, \Delta u_1, \nabla \Delta u_1))(u_1 - u_2) \, dx
\]
\[
+ \int_\Omega |f(x, u_2, \nabla u_1, \Delta u_1, \nabla \Delta u_1) - f(x, u_2, \nabla u_2, \Delta u_2, \nabla \Delta u_2)||u_1 - u_2| \, dx
\]
\[
\leq \beta_2 \int_{\Omega} |u_1 - u_2|^{p(x)} \, dx + \beta_3 \int_{\Omega} |\nabla \Delta (u_1 - u_2)|^{p(x)-1} |u_1 - u_2| \, dx \\
\leq \beta_2 \lambda_*^{-1} \int_{\Omega} |\nabla \Delta (u_1 - u_2)|^{p(x)} \, dx + \beta_3 \frac{p^* - 1}{p^*} \int_{\Omega} |\nabla \Delta (u_1 - u_2)|^{p(x)} \, dx \\
+ \frac{\beta_3}{p^*} \lambda_*^{-1} \int_{\Omega} |\nabla \Delta (u_1 - u_2)|^{p(x)} \, dx \\
= \left[\left(\frac{\beta_3}{p^*} \right) \lambda_*^{-1} + \beta_3 \frac{p^* - 1}{p^*} \right] \int_{\Omega} |\nabla \Delta (u_1 - u_2)|^{p(x)} \, dx.
\]

Therefore, we obtain
\[
\int_{\Omega} |\nabla \Delta (u_1 - u_2)|^{p(x)} \, dx = 0 \quad \text{(by (15)).}
\]

So, \(u_1 = u_2 \). The proof is complete. \(\square \)

Acknowledgements

This research was partially supported by the Vicerectorado de Investigación-UNMSM-Perú and is part of the doctoral thesis of the second author.

References

Eugenio Cabanillas Lapa and Henry C. Zubieta Rojas

