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On the singular prescribed scalar curvature problem
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Abstract: Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . In this paper, we define and introduce the
prescribed scalar curvature problem with singularities. Under some assumptions, we show that there exists a conformal
metric g such that its scalar curvature Sg equals some given function. This problem is equivalent to studying the
existence and regularity of the solution to what we will call the singular prescribed scalar curvature equation.
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1. Introduction
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . In 1960, Yamabe [27] formulated the
following problem : Does there exist a metric g , conformal to g , such that the scalar curvature Sg is constant.
He thought that he had solved this problem but unfortunately eight years later Trudinger [25] pointed out a
serious difficulty in the Yamabe’s article. The problem is now completely solved and is known as the Yamabe
problem. The first step was given by Trudinger who had understood the gap of the Yamabe’s proof when the
scalar curvature Sg ≥ 0 . The second step was given by Aubin [4] in 1976, he solved the problem for any non
locally conformally flat manifolds of dimension n ≥ 6 and the last step was done by Schoen [23] in 1984. The
reader can be refereed to [19] or [18] for more details on the subject. The method to solve the Yamabe problem
is the following :
Let u ∈ C∞(M) , u > 0 be a function, the metric g = uN−2g is a conformal metric to g where N = 2n

n−2 .
Then, we can check out that the scalar curvatures Sg and Sg are related by the following equation see [18]:

∆gu+ CnSgu = CnSg|u|N−2u (1)

where ∆g = −divg(∇g) is the Laplacian-Beltrami operator and Cn = n−2
4(n−1) . Put

Pg = ∆g + CnSg.

The operator Pg is called the Yamabe operator and solving the Yamabe problem is equivalent to find a smooth
positive function u solution of the following equation

Pgu = C|u|N−2u (2)

where C is a constant. In other words, we prescribe the scalar curvature by putting CnSg = C in (1) and we
look for solution u to equation (2), again that is to say we are looking for the metric g = uN−2g . In order to
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obtain solutions of (2), Yamabe defined the quantity

µ(M, g) = inf
u∈H2

1 (M),u ̸=0
Y (u) (3)

where the Sobolev space H2
1 (M) is the completion of the space C∞(M) with respect to the norm

∥u∥H2
1 (M) = (

∫
M

|∇gu|2 + u2dvg)
1
2 (4)

and

Y (u) =

∫
M

uPgudvg

(
∫
M

uNdvg)
2
N

=

∫
M
|(∇gu|2 + CnSgu

2)dvg

(
∫
M

uNdvg)
2
N

.

The constant µ(M, g) is conformal invariant and it is known as the Yamabe invariant while Y is the Yamabe
functional. If we write Euler-Lagrange equation associated to this functional, we will see that critical points of Y
are solutions of equation (2). In particular, it follows that if u is positive, smooth and such that Y (u) = µ(M, g) ,
then u is solution of (2) and g = uN−2 g is the desired metric of constant scalar curvature. To solve the problem,
Aubin [4] showed in his works that it is sufficient to prove the following theorem (conjecture):

Theorem 1.1.
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . Assume that the Yamabe invariant

µ(M, g) < K−2
0 (n, 1),

then there exists a positive smooth function u such that Y (u) = µ(M, g) .

Here the constant

K2
0 (n, 1) =

4

n(n− 2)ω
2
n
n

where ωn stands for the volume of the unit n -sphere Sn ⊂ Rn+1 . The following theorem is due to Aubin [4]
and Schoen [23]:

Theorem 1.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . Then we always have the
following large inequality

µ(M, g) ≤ K−2
0 (n, 1) (5)

and we only have equality in this inequality if and only if (M, g) is conformally diffeomorphic to the sphere Sn .

In [21] Aubin and Madani assumed that the metric g satisfied the following assumption :

(H) : the metric g ∈ Hp
2 (M,T ∗M ⊗ T ∗M) where p > n and there exists a point P such that g is smooth in

the ball B(P, δ) ,

where the space T ∗M is the cotangent space of M and B(P, δ) is the geodesic ball of center P and of radius

δ with 0 < δ <
rg(M)

2 and rg(M) is the injectivity radius. The space Hp
2 (M,T ∗M ⊗ T ∗M) is the space of
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all sections g (2− covariant tensors) such that in normal coordinates the components gij of g are in Hp
2 (M)

where Hp
2 (M) is the completion of the space C∞(M) with respect to the norm

∥u∥Hp
2 (M) =

∫
M

|∇2
gu|p + |∇gu|p + |u|pdvg

 1
p

. (6)

By Sobolev’s embedding, we get that for all p > n :

Hp
2 (M,T ∗M ⊗ T ∗M) ⊂ C1(M,T ∗M ⊗ T ∗M) (7)

then the Christoffels symbols belong to Hp
1 (M) ⊂ C0(M) , the components of the Riemannian curvature tensor

Rmg , Ricci tensor Ricg and the scalar curvature Sg are in Lp(M) . The assumption (H) allowed authors to
introduce the singular Yamabe problem. Moreover, µ(M, g) is called the singular Yamabe invariant and Pg is
the singular Yamabe operator.

From now, we assume that the metric g satisfies the assumption (H), the authors in [21] proved the following
results :

Proposition 1.1.
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . The operator Pg is weakly conformally
invariant and if the singular Yamabe invariant µ(M, g) > 0 , Pg is coercive and invertible.

Solving the singular Yamabe problem is reduced to find a positive solution u ∈ Hp
2 (M) to the equation (2).

Theorem 1.3.
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . If (M, g) is not conformal to the n-sphere
Sn of Rn+1 , then there exists a metric g = uN−2g conformal to g such that u ∈ Hp

2 (M) , u > 0 and the scalar
curvature Sg of g is constant.

In this paper, we would like to study a more general setting. We are very interested by solving the prescribed
scalar curvature problem (under the assumption (H)), in other words we prescribe the scalar curvature by
putting Sg = f where f is some positive C∞(M) function on M and we look for the corresponding metric
g and this is equivalent to study the existence and regularity of solutions to the following partial differential
equation :

∆gu+ CnSgu = f |u|N−2u. (8)

The above equation (8) is elliptic, nonlinear with critical Sobolev growth and its second coefficient does not
have the usual regularity, which allow us to talk about the singular prescribed scalar curvature equation. We
also notice that there has been many results for second-order elliptic equations, see [1–10], [12], [14], [16–26]
for more information on the subject. Many techniques have been used to solve second-order equations, and
variational methods are the most suitable, for more detail about those methods, we refer the reader to [18, 19]
and the references therein. [11, 13, 14] concern fourth order elliptic equation, they are cited here for some other
methods used in this work.
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2. Notations and preliminaries

In this section, we collect some basic facts and definitions which are used in the whole paper. Let (M, g) be a
smooth compact Riemannian manifold of dimension n ≥ 3 . By Sobolev’s embedding [18], one gets that

H2
1 (M) ⊂ Lq(M)

where 1 < q ≤ N , and this embedding is compact when q < N . The number N = 2n
n−2 is known as the critical

exponent of the Sobolev embedding.
The constant K0(n, 1) introduced above is just the best constant in the following Sobolev inequality that asserts
that there exists a constant B > 0 such that for any u ∈ H2

1 (M) ,

(

∫
M

|u|Ndvg)
2
N ≤ K2

0 (n, 1)∥∇gu∥22 +B∥u∥22. (9)

Under the assumption (H) on the metric g , the operator Pg is defined in the weak sense on H2
1 (M) , and it is

easy to see that it is elliptic and self-adjoint. To obtain solutions of equation (8) we introduce the functional E
on H2

1 (M) as follows:

E(u) =

∫
M

|(∇gu|2 + CnSgu
2)dvg

we will use classical variational methods by minimizing this functional. However, serious difficulties appear
compared with the smooth case. In order, we define the quantity

µ(M, g) = inf
u∈H
u̸=0

E(u) (10)

where the set

H = {u ∈ H2
1 (M) such that

∫
M

f |u|Ndvg = 2
N
2 }

Clearly, the functional E is well defined in H2
1 (M) and is of class C1 and if we write Euler-Lagrange equation

associated to this minimizing problem, we will get equation (8) up to a constant. Now, we state our main results
:
Theorem 2.1.
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . Assume that Sg ∈ Lp(M) where p > n , f

a positive C∞(M) function on M and P ∈ M such that f(P ) = sup
x∈M

f(x) . If

µ(M, g) < 2(K−2
0 (n, 1))(f(P ))−

2
N

then, equation (8) has a nontrivial positive weak solution u ∈ H2
1 (M) such that E(u) = µ(M, g) and∫

M

f |u|Ndvg = 1 . Moreover, u ∈ C1(M) and u > 0 , therefore there is a metric g = uN−2g such that its

scalar curvature Sg = f .

This theorem is regarded as combined results between Theorem (3.1) and (3.2). Our paper is organized as follows
: In section 1 and 2, we have just introduced some notations and preliminaries. In section 3, we establish the
existence and regularity result to equation (8). Finally in section 4 we get an application.
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3. Existence and regularity of the solution

In this section, we establish the existence and regularity result to equation (8).

Theorem 3.1.
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . Assume that Sg ∈ Lp(M) where p > n , f

a positive C∞(M) function on M and P ∈ M such that f(P ) = sup
x∈M

f(x) . If

µ(M, g) < 2(K−2
0 (n, 1))(f(P ))−

2
N

then, equation (8) has a nontrivial positive weak solution u ∈ H2
1 (M) such that E(u) = µ(M, g) and∫

M

f |u|Ndvg = 1 .

Proof.
Firstly, we show that µ(M, g) is finite. Since p > n

2 , Sg ∈ L
n
2 (M) , then for any u ∈ H2

1 (M) and by H ö lder’s
inequality one has, ∫

M

|CnSg|u2dvg ≤ (

∫
M

|CnSg|
n
2 dvg)

2
n (

∫
M

u
2n

n−2 dvg)
n−2
n

≤ ∥CnSg∥n
2
∥u∥2N .

From the identity ∫
M

f |u|Ndvg = 2
N
2

and since f > 0 , one can easily gets

∥u∥2N ≤ 2

( inf
x∈M

f(x))
2
N

(11)

then, ∫
M

|CnSg|u2dvg ≤
2∥CnSg∥n

2

( inf
x∈M

f(x))
2
N

. (12)

Therefore, ∀u ∈ H2
1 (M) one gets

∫
M

(|∇gu|2 + CnSgu
2)dvg ≥

∫
M

CnSgu
2dvg ≥

−2∥CnSg∥n
2

( inf
x∈M

f(x))
2
N

.

Consequently, µ(M, g) is finite.
Secondly, we let (um)m ∈ H2

1 (M) be a minimizing sequence of µ(M, g) , then the sequence um is such that

µ(M, g) = lim
m−→+∞

∫
M

(|∇gum|2 + CnSgu
2
m)dvg, (13)
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and

∫
M

f |um|Ndvg = 2
N
2 .

We note that it is easy to see that (|um|)m is also a minimizing sequence, hence, we can assume that um ≥ 0 .
Thirdly, we are going to show that the sequence (um)m is bounded. For m large enough, we get

∫
M

(|∇gum|2 + CnSgu
2
m)dvg ≤ µ(M, g) + 1.

which implies that

∫
M

|∇gum|2 dvg ≤ µ(M, g) + 1−
∫
M

CnSgu
2
mdvg

≤ µ(M, g) + 1 +

∫
M

|CnSg|u2
mdvg.

By using (12), we get

∫
M

|∇gum|2 dvg ≤ µ(M, g) + 1 +
2∥CnSg∥n

2

( inf
x∈M

f(x))
N
2

.

In the other hand, by the embedding LN (M) ⊂ L2(M) and by (11), we get that there exists c > 0 such that,

∫
M

u2
mdvg ≤ c∥um∥2N ≤ 2c

( inf
x∈M

f(x))
N
2

this implies in turn that (um)m is bounded in H2
1 (M) , and after restriction to a subsequence still labeled

(um)m , we may assume that there exists u ∈ H2
1 (M) , u ≥ 0 such that um −→ u weakly in H2

1 (M) and
um −→ u strongly in Lq(M) for all q < N and almost everywhere on M .
Putting φm = um − u , then, φm −→ 0 weakly in H2

1 (M) and strongly in Lq(M) for all q < N , then for all
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m , one gets : ∫
M

umPgumdvg =

∫
M

(φm + u)Pgumdvg

=

∫
M

(φmPgum + vPgum)dvg

=

∫
M

(umPgφm + umPgu)dvg

=

∫
M

((u+ φm)Pgu+ (u+ φm)Pgφm)dvg

=

∫
M

uPgudvg +

∫
M

φmPgφmdvg +

∫
M

2uPgφmdvg

=

∫
M

uPgudvg +

∫
M

|∇gφm|2 + CnSgφ
2
mdvg

+ 2

∫
M

(∇gu,∇gφm) + CnSguφmdvg.

Since (φm)m goes to 0, weakly in H2
1 (M) and as Sgu ∈ L2(M) , one gets∫

M

(∇gu,∇gφm) + CnSguφmdvg −→ 0

in fact, since p > n , Sg ∈ Lp(M) ⊂ Ln(M) , then∫
M

S2
gu

2dvg ≤ (

∫
M

S
2 N

N−2
g dvg)

N−2
N (

∫
M

u2N
2 dvg)

2
N

≤ (

∫
M

Sn
g dvg)

N−2
N (

∫
M

uNdvg)
2
N < +∞.

From the strong convergence of (φm)m to 0 in H2
1 (M), we get∫

M

CnSgφ
2
mdvg −→ 0

therefore ∫
M

umPgumdvg =

∫
M

uPgudvg +

∫
M

|∇gφm|2dvg + o(1)

that is to say ∫
M

umPgumdvg =

∫
M

uPgudvg + ∥∇gφm∥22 + o(1).
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The definition of µ(M, g) implies that∫
M

uPgudvg ≥ µ(M, g)(

∫
M

f |uN |dvg)
2
N

then ∫
M

umPgumdvg ≥ µ(M, g)(

∫
M

f |uN |dvg)
2
N + ∥∇gφm∥22 + o(1).

Again (13) means ∫
M

umPgumdvg = µ(M, g) + o(1)

which implies that

µ(M, g) + o(1) ≥ µ(M, g)(

∫
M

f |u|Ndvg)
2
N + ∥∇gφm∥22 + o(1). (14)

On the other hand, by Brezis-Lieb lemma applying to (um)m , one has

2
N
2 =

∫
M

f |um|Ndvg =

∫
M

f |u|Ndvg +

∫
M

f |φm|Ndvg + o(1)

which implies,

2 ≤ (

∫
M

f |u|Ndvg)
2
N + (

∫
M

f |φm|Ndvg)
2
N + o(1),

and since the inequality (14) can be written as

∥∇gφm∥22 ≤ µ(M, g)

1− (

∫
M

f |u|Ndvg)
2
N

+ o(1),

one has,

2∥∇gφm∥22 ≤ µ(M, g)

2− 2(

∫
M

f |u|Ndvg)
2
N

+ o(1),

then it follows that,

2∥∇gφm∥22 ≤ µ(M, g)

(

∫
M

f |u|Ndvg)
2
N + (

∫
M

f |φm|Ndvg)
2
N



− 2µ(M, g)

(

∫
M

f |u|Ndvg)
2
N

+ o(1)

≤ µ(M, g)

(

∫
M

f |φm|Ndvg)
2
N −

∫
M

f |u|Ndvg)
2
N

+ o(1)
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we then get

2∥∇gφm∥22 ≤ µ(M, g)(

∫
M

f |φm|Ndvg)
2
N + o(1).

By using Sobolev’s inequality (9) in the right-hand side, the strong convergence of φm in L2(M) and since f

is smooth on M , one has

2∥∇gφm∥22 ≤ µ(M, g)( sup
x∈M

f(x))
2
N K2

0 (n, 1)∥∇gφm∥22 + o(1).

that is to say, (
2− µ(M, g)(f(P ))

2
N K2

0 (n, 1)
)
∥∇gφm∥22 ≤ o(1).

Now, since

µ(M, g) < 2(K−2
0 (n, 1))(f(P ))−

2
N

one finds,

∥∇gφm∥22 = o(1)

Consequently φm converges strongly to 0 in H2
1 (M) which implies that um converges strongly to u in H2

1 (M)

and in LN (M) . It follows that,

lim

∫
M

f |um − u|Ndvg = 0

which necessarily leads to ∫
M

f |u|Ndvg = 2
N
2

and since f > 0 , u is a nontrivial. Finally, writing the Euler-Lagrange equation associated, one sees that u is
a positive weak solution of (8).

In [21], Madani proved a regularity result with f a constant function through an adaptation of Trudinger’s
regularity theorem [25]. In order, to study the regularity of our solution, we will follow the same procedure,
and despite the presence of the non constant function f adds other difficulties, we can easily get the regularity
of solution to equation (8). This result is formulated in the following theorem.

Theorem 3.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . Let Sg ∈ Lp(M) with
p > n and f be a positive C∞(M) function on M . If u ∈ H2

1 (M) is a nontrivial positive weak solution of

∆gu+ CnSgu = fuN−1, (15)

then u ∈ Hp
2 (M) ⊂ C1(M) and u > 0 .
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Proof.
To prove this theorem, it suffices to show that u ∈ LN+ϵ(M) for some ϵ > 0 . Indeed, u satisfies the equation

∆gu+ (CnSg − fuN−2)u = 0,

and if u ∈ LN+ϵ(M) , the singular term CnSg − fuN−2 must be in Lr(M) where r = min(p, n+ ϵ) > n , hence
one has ∆gu ∈ Lp(M) and by classical regularity theorem, we deduce that u ∈ Hp

2 (M) .
Now we are going to show that u ∈ LN+ϵ(M) . As in Trudinger strategy, we let l > 0 be a real number and
H,F be two continuous functions on R+ given by

H(x) =

{
tγ if 0 ≤ t ≤ l
lq−1(qlq−1t− (q − 1)lq) if t > l

and

F (x) =

{
tq if 0 ≤ t ≤ l
qlq−1t− (q − 1)lq if t > l

where γ = 2q− 1 and 1 < q < n(p−1)
n(p−2) . Since u ≥ 0 and u ∈ H2

1 (M) , then it follows that H ◦u , F ◦u are both

in H2
1 (M) ,

qH(t) = F (t)F ′(t), (F ′(t))2 ≤ qH ′(t) and F 2(t) ≥ tH(t). (16)

Let u be a weak solution of (15), then for all v ∈ H2
1 (M) one has,∫

M

∇gu∇gvdvg +

∫
M

CnSguvdvg =

∫
M

fuN−1vdvg. (17)

Now, as in the section 2, we define a cut-off function η ∈ C1(M) such that

η(x) =

{
1 on B(P, δ)
0 on M −B(P, 2δ)

Chosen, v = η2H ◦ u , and plugging this function in (17), we get∫
M

η2H ′ ◦ u|∇gu|2dvg + 2

∫
M

ηH ◦ u∇gu∇gηdvg =

∫
M

fuN−1η2H ◦ udvg −
∫
M

CnSguη
2H ◦ udvg. (18)

We put h = F ◦ u and let us evaluate each of the above integrals by using this function and the formulae (16).
We have ∇gh = F ′ ◦ u∇gu and by applying the second relationship of (16), one gets

|∇gh|2 = (F ′ ◦ u)2|∇gu|2 ≤ qH ′ ◦ u|∇gu|2,

we deduce that the first integral of (18) is bounded then it follows that,

1

q
∥η∇gh∥22 ≤

∫
M

η2H ′ ◦ u|∇gu|2dvg.
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The first relationship of (16) and the Cauchy-Schwartz inequality implies that the second integral of (18) is also
bounded, therefore

2

∫
M

ηH ◦ u∇gu∇gηdvg =
2

q

∫
M

ηh∇gh∇gηdvg ≥ −2

q
∥h∇gη∥2∥η∇gh∥2.

By using the latter relationship of (16), one has uH ◦ u ≤ h2 and along the same lines the two integrals of the
right-hand side member in (18) will also be bounded, thus

|
∫
M

fuN−1η2H ◦ udvg −
∫
M

CnSguη
2H ◦ udvg| ≤ ( sup

x∈M
f(x))∥u∥

4
n−2

N,2δ∥ηh∥
2
N + ∥CnSg∥p∥ηh∥

2
2p

p−1
.

where ∥u∥NN,r =
∫
B(P,r)

uNdvg . After grouping these estimates together, the equality (18) becomes

∥η∇gh∥22 − 2∥h∇gη∥2∥η∇gf∥2 ≤ q[( sup
x∈M

f(x))∥u∥
4

n−2

N,2δ∥ηh∥
2
N + ∥CnSg∥p∥ηh∥

2
2p

p−1
]. (19)

Now, let a1, b1, c1 and d1 be real numbers such that a1
2 − 2a1b ≤ c1

2 + d1
2 , we easily obtain that a1 ≤

2b1 + c1 + d1 , then (19) becomes

∥η∇gh∥2 ≤
√
q sup
x∈M

f(x)∥u∥
2

n−2

N,2δ∥ηh∥N +
√

q∥CnSg∥p∥ηh∥ 2p
p−1

+ 2∥h∇gη∥2. (20)

By Sobolev’s embedding, we then get that there exists a constant c > 0 depending only on n such that

∥ηh∥N ≤ c(∥η∇gh∥2 + ∥h∇gη∥2 + ∥hη∥2.

Since q < N , and after using (20), we obtain

(1− c
√
N sup

x∈M
f(x)∥u∥

2
n−2

N,2δ)∥ηh∥N ≤ c(
√
N∥CnSg∥p∥ηh∥ 2p

p−1
+ 3∥h∇gη∥2 + ∥hη∥2),

for δ sufficiently small, one has

∥u∥
2

n−2

N,2δ ≤ 1

2c
√

N sup
x∈M

f(x)
.

When l goes to +∞ , we then get that there exists a constant C > 0 depending only on n, δ, ∥η∥∞, ∥∇gη∥∞∥CnSg∥p
and f such that

∥uq∥N,2δ ≤ C(∥uq∥2 + ∥uq∥ 2p
p−1

).

The boundedness of u in LN (M) and as 2p
p−1q < N mean again that

∥uq∥qN,2δ ≤ C.

Since M is compact, it can be covered by a finite number of balls {B(Pi, δ)}i∈I and let (ηi)i∈I be a partition
of unity subordinated to the covering, then

∥u∥qNqN =
∑
i∈I

∥ηiu∥qNqN,δi
≤ C.

it follows that, u ∈ LqN (M) with qN > N .
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4. Application
Corollary 4.1.
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 . Assume that Sg ∈ Lp(M) where p > n , f

a positive C∞(M) function on M and P ∈ M such that f(P ) = sup
x∈M

f(x) . If

µ(M, g) < 2(K−2
0 (n, 1))(f(P ))−

2
N

Then there exists a metric g = uN−2g conformal to g such that the scalar curvature Sg = f .

Proof. As in the section 1, the singular Yamabe operator Pg = ∆g + CnSg is weakly comformally invariant,
and by Theorem (3.1) and (3.2), there exists u ∈ C1(M) , u > 0 solution of the following equation

∆gu+ CnSgu = f |u|N−2u.

On the other hand, by the weak conformal invariance of Pg and if g = uN−2g is conformal to g , one has

∆gu+ CnSgu = CnSg|u|N−2u.

then, we deduce that the metric g = uN−2g is such that its scalar curvature Sg = f
Cn

.
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