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Abstract: By using some analytical techniques, we establish some properties of the sigmoid function. The properties

are in the form of inequalities involving the function. Some of these inequalities connect the sigmoid function to the

softplus function.
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1. Introduction

The sigmoid function, which is also known as the standard logistic function is defined as

S(x) =
ex

1 + ex
=

1

1 + e−x
, x ∈ (−∞,∞), (1)

=
1

2
+

1

2
tanh

(x
2

)
, x ∈ (−∞,∞). (2)

Its first and second derivatives are given as

S′(x) =
ex

(1 + ex)2
= S(x) (1− S(x)) , (3)

S′′(x) =
ex(1− ex)

(1 + ex)3
= S(x)(1− S(x))(1− 2S(x)), (4)

for all x ∈ (−∞,∞). It follows from (3) that S(x) is increasing on (−∞,∞). Also, in view of (3), y = S(x)

is a solution to the autonomous differential equation

dy

dx
= y(1− y), (5)

with initial condition y(0) = 0.5. Furthermore, the sigmoid function satisfies the following properties.

S(x) + S(−x) = 1, (6)

S′(x) = S(x)S(−x), (7)
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S′(x) = S′(−x), (8)

lim
x→∞

S(x) = 1, (9)

lim
x→0

S(x) =
1

2
, (10)

lim
x→−∞

S(x) = 0, (11)

lim
x→±∞

S′(x) = 0, (12)

lim
x→0

S′(x) =
1

4
, (13)

∫
S(x) dx = ln(1 + ex) + C, (14)

where C is a constant of integration. The function ln(1 + ex) is known in the literature as softplus function

[9]. It is clear from (14) that, the derivative of the softplus function gives the sigmoid function.

The sigmoid function has found useful applications in many scientific disciplines including machine

learning, probability and statistics, biology, ecology, population dynamics, demography, and mathematical

psychology (see [3] , [14], and the references therein).

In particular, the function is widely used in artificial neural networks, where it serves as an activation

function at the output of each neuron (see [4], [5], [6], [10], [15]). Also, in the business field, the function has

been applied to study performance growth in manufacturing and service management (see [13]). Another area

of application is in the field of medicine, where the function is used to model the growth of tumors or to study

pharmacokinetic reactions (see [14]). It is also applied in forestory. For example in [7], a generalized form of

the function is applied to predict the site index of unmanaged loblolly and slash pine plantations in East Texas.

Furthermore, it also applied in computer graphics or image processing to enhance image contrast (see [8], [12]).

The above important roles of the function makes its properties a matter of interest and hence worth

studying. In the recent work [11], the authors studied some analytic properties of the function such as starlikeness

and convexity in a unit disc.

In this paper, we continue the investigation. In the form of inequalities, we establish several properties

of the sigmoid function. We begin with the following definitions and lemmas.

2. Auxiliary Definitions and Lemmas

Definition 2.1. A function M : (0,∞)× (0,∞)→ (0,∞) is called a mean function if it satisfies the following

conditions.

(i) M(x, y) = M(y, x),

(ii) M(x, x) = x ,

(iii) x < M(x, y) < y , for x < y ,
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(iv) M(λx, λy) = λM(x, y), for λ > 0.

There are several well-known mean functions in the literature. Amongst these are the following.

(i) Arithmetic mean: A(x, y) = x+y
2 ,

(ii) Geometric mean: G(x, y) =
√
xy ,

(iii) Harmonic mean: H(x, y) = 1
A( 1

x , 1y )
= 2xy

x+y ,

(iv) Logarithmic mean: L(x, y) = x−y
ln x−ln y for x 6= y , and L(x, x) = x .

(v) Identric mean: I(x, y) = 1
e

(
xx

yy

) 1
x−y

for x 6= y , and I(x, x) = x .

Definition 2.2 ([1]). Let f : I ⊆ (0,∞) → (0,∞) be a continuous function and M and N be any two mean

functions. Then f is said to be MN -convex (MN -concave) if

f(M(x, y)) ≤ (≥)N(f(x), f(y)),

for all x, y ∈ I .

Lemma 2.1 ([1]). Let f : I ⊆ (0,∞)→ (0,∞) be a differentiable function. Then

(a) f is GG-convex (or GG-concave) on I if and only if xf ′(x)
f(x) is increasing (or decreasing) for all x ∈ I .

(b) f is AH -convex (or AH -concave) on I if and only if f ′(x)
f(x)2 is increasing (or decreasing) for all x ∈ I .

(c) f is HH -convex (or HH -concave) on I if and only if x2f ′(x)
f(x)2 is increasing (or decreasing) for all x ∈ I .

Lemma 2.2 ([2]). Let f : (a,∞)→ (−∞,∞) with a ≥ 0 . If the function defined by g(x) = f(x)−1
x is increasing

on (a,∞) , then the function h(x) = f(x2) satisfies the Grumbaum-type inequality

1 + h(z) ≥ h(x) + h(y), (15)

where x, y ≥ a and z2 = x2 + y2 . If g is decreasing, then the inequality (15) is reversed.

Lemma 2.3 ([17]). Let −∞ ≤ a < b ≤ ∞ and f and g be continuous functions that are differentiable on

(a, b) , with f(a+) = g(a+) = 0 or f(b−) = g(b−) = 0 . Suppose that g(x) and g′(x) are nonzero for all

x ∈ (a, b) . If f ′(x)
g′(x) is increasing (or decreasing) on (a, b) , then f(x)

g(x) is also increasing (or decreasing) on (a, b) .

3. Main Results

Theorem 3.1. The function S(x) is subadditive on (−∞,∞) . In other words, the function satisfies the

inequality

S(x+ y) < S(x) + S(y), (16)

for all x, y ∈ (−∞,∞) .
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First Proof. The case where x = y = 0 is trivial. Hence we only prove the result for the case where x, y ∈ (0,∞)

and the case where x, y ∈ (−∞, 0). For x ∈ (0,∞), let u(x) = ex

(1+ex)2 . Then u′(x) = ex(1−ex)
(1+ex)3 < 0 which

implies that u(x) is decreasing. Next let

f(x, y) = S(x+ y)− S(x)− S(y)

=
ex+y

1 + ex+y
− ex

1 + ex
− ey

1 + ey
,

for x, y ∈ (0,∞). Without loss of generality, let y be fixed. Then

∂

∂x
f(x, y) =

ex+y

(1 + ex+y)2
− ex

(1 + ex)2
< 0,

since u(x) is decreasing. Hence f(x, y) is decreasing. Then for x ∈ (0,∞) we have

f(x, y) < f(0, y) = lim
x→0

f(x, y) = −1

2
< 0,

which gives the desired result (16).

Likewise, for x ∈ (−∞, 0), let w(x) = ex

(1+ex)2 . Then w′(x) = ex(1−ex)
(1+ex)3 > 0 which implies that w(x) is

increasing. Furthermore, let

g(x, y) = S(x+ y)− S(x)− S(y),

for x, y ∈ (−∞, 0). Then for a fixed y we have

∂

∂x
g(x, y) =

ex+y

(1 + ex+y)2
− ex

(1 + ex)2
> 0,

since w(x) is increasing. Hence g(x, y) is increasing. Then for x ∈ (−∞, 0) we have

g(x, y) < g(0, y) = lim
x→0

g(x, y) < 0.

Therefore, inequality (16) holds for all x, y ∈ (−∞,∞).

Second Proof. For x > 0, let φ(x) = x
1+x . Then φ is increasing. Hence,

S(x) + S(y) =
ex

1 + ex
+

ey

1 + ey
=

ex + ey + 2ex+y

1 + ex + ey + ex+y

>
ex + ey + ex+y

1 + ex + ey + ex+y

= φ(ex + ey + ex+y)

> φ(ex+y)

= S(x+ y),

which gives the desired result.
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Third Proof. By direct computation, we obtain

(
S(x)

x

)′
=
xex + xe2x − xex − e2x − xe2x

x2(1 + ex)2
= − e2x

x2(1 + ex)2
< 0,

for all x ∈ (−∞,∞). Thus the function S(x)
x is decreasing on (−∞,∞). Then by virtue of Lemma 3.2 of [18],

we conclude that S(x) is subadditive on (−∞,∞).

Theorem 3.2. The function S(x) is logarithmically concave on (−∞,∞) . In other words, the inequality

S
(x
a

+
y

b

)
≥ [S(x)]

1
a [S(y)]

1
b , (17)

is satisfied for x, y ∈ (−∞,∞) , where a > 1 , b > 1 and 1
a + 1

b = 1 .

Proof. It suffices to show that (lnS(x))
′′ ≤ 0 for all x ∈ (−∞,∞). Let x ∈ (−∞,∞). Then we obtain

(lnS(x))
′′

=

(
S′(x)

S(x)

)′
= − ex

(1 + ex)2
≤ 0,

which concludes the proof.

Corollary 3.1. The inequalities

S′′(x)S(x)− (S′(x))2 ≤ 0, x ∈ (−∞,∞), (18)

S(1 + u)S(1− u) ≤
(

e

1 + e

)2

, u ∈ (−∞,∞), (19)

are satisfied.

Proof. Inequality (18) is a direct consequence of the logarithmic concavity of S(x). Then by letting a = b = 2,

x = 1 + u and y = 1− u in (17), we obtain (19).

Theorem 3.3. The function S(x) satisfies the following inequalities.

2e

1 + e
<
S(x+ 1)

S(x)
< e, x ∈ (−∞, 0), (20)

1 <
S(x+ 1)

S(x)
<

2e

1 + e
, x ∈ (0,∞). (21)

Proof. Recall that
(

S′(x)
S(x)

)′
≤ 0, for all x ∈ (−∞,∞). This means that the function S′(x)

S(x) is decreasing for all

x ∈ (−∞,∞). Now, let Q(x) = S(x+1)
S(x) for x ∈ (−∞,∞). Then

Q′(x) =
S(x+ 1)

S(x)

{
S′(x+ 1)

S(x+ 1)
− S′(x)

S(x)

}
≤ 0,
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since S′(x)
S(x) is decreasing. This implies that Q(x) is decreasing. Hence for x ∈ (−∞, 0), we obtain

2e

1 + e
= lim

x→0
Q(x) < Q(x) < lim

x→−∞
Q(x) = e,

which gives inequality (20). Also for x ∈ (0,∞), we obtain

1 = lim
x→∞

Q(x) < Q(x) < lim
x→0

Q(x) =
2e

1 + e
,

which gives inequality (21). This completes the proof.

Theorem 3.4. Let λ = 1.2784645 . . . be the unique solution of the equation 1 + ex − xex = 0 . Then the

function S(x) is GG-convex on (0, λ) and GG-concave on (λ,∞) . That is,

S(x
1
a y

1
b ) ≤ [S(x)]

1
a [S(y)]

1
b , (22)

for x, y ∈ (0, λ) and

S(x
1
a y

1
b ) ≥ [S(x)]

1
a [S(y)]

1
b , (23)

for x, y ∈ (λ,∞) , where a > 1 , b > 1 and 1
a + 1

b = 1 . Equality holds when x = y .

Proof. Let f(x) = 1 + ex − xex and λ = 1.2784645 . . . be the unique solution of 1 + ex − xex = 0. Then

f(x) > 0 if x ∈ (0, λ) and f(x) < 0 if x ∈ (λ,∞). Also,

xS′(x)

S(x)
=

x

1 + ex
,

and so, (
xS′(x)

S(x)

)′
=

1 + ex − xex

(1 + ex)2
.

Hence xS′(x)
S(x) is increasing on (0, λ) and decreasing on (λ,∞). Then by virtue of Lemma 2.1 (a), we conclude

that S(x) is GG-convex on (0, λ) and GG-concave on (λ,∞). These respectively imply inequalities (22) and

(23).

Theorem 3.5. The function S(x) is AH -concave on (0,∞) . That is,

S

(
x+ y

2

)
≥ 2S(x)S(y)

S(x) + S(y)
, (24)

for all x, y ∈ (0,∞) . Equality holds when x = y .

Proof. We have (
S′(x)

S(x)2

)′
= − 1

ex
< 0,

for all x ∈ (0,∞), which implies that S′(x)
S(x)2 is decreasing on (0,∞). Hence by Lemma 2.1 (b), we conclude

that S(x) is AH -convex on (0,∞).
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Theorem 3.6. The function S(x) is HH -convex on (0, 2) and HH -concave on (2,∞) . That is,

S

(
2xy

x+ y

)
≤ 2S(x)S(y)

S(x) + S(y)
, (25)

for x, y ∈ (0, 2) and

S

(
2xy

x+ y

)
≥ 2S(x)S(y)

S(x) + S(y)
, (26)

for x, y ∈ (2,∞) . Equality holds when x = y .

Proof. We have

x2S′(x)

S(x)2
=
x2

ex
,

which implies that (
x2S′(x)

S(x)2

)′
=
x(2− x)

ex
.

Then x2S′(x)
S(x)2 is increasing if x ∈ (0, 2) and decreasing if x ∈ (2,∞). Hence by Lemma 2.1 (c), we conclude

that S(x) is HH -convex on (0, 2) and HH -concave on (2,∞). These respectively imply inequalities (25) and

(26).

Theorem 3.7. The function S(x) satisfies the Grumbaum-type inequality

1 + S(z2) ≥ S(x2) + S(y2), (27)

where x, y ∈ (0,∞) and z2 = x2 + y2 .

Proof. Let g(x) be defined for x ∈ (0,∞) as g(x) = S(x)−1
x . That is,

g(x) =
ex

1+ex − 1

x
= − 1

x(1 + ex)
.

Then

g′(x) =
1

x2(1 + ex)
+

ex

x(1 + ex)
> 0,

which implies that g(x) is increasing. Hence by applying Lemma 2.2, we obtain the desired result (27).

In what follows we give some sharp inequalities connecting the sigmoid and the softplus functions.

Theorem 3.8. The inequalities

ex

1 + ex
< ln(1 + ex) < ln 2− 1

2
+

ex

1 + ex
, x ∈ (−∞, 0), (28)

ln 2− 1

2
+

ex

1 + ex
< ln(1 + ex), x ∈ (0,∞), (29)
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ex

1 + ex
< ln(1 + ex), x ∈ (−∞,∞), (30)

are valid.

Proof. Let F (x) = ln(1 + ex)− ex

1+ex for all x ∈ (−∞,∞). Then

F ′(x) =
ex

1 + ex

(
1− 1

1 + ex

)
=

(
ex

1 + ex

)2

> 0.

Thus F (x) is increasing for all x ∈ (−∞,∞). Then for x ∈ (−∞, 0), we have

0 = lim
x→−∞

F (x) < F (x) < lim
x→0

F (x) = ln 2− 1

2
,

which gives inequality (28). For x ∈ (0,∞), we have

ln 2− 1

2
= lim

x→0
F (x) < F (x) < lim

x→∞
F (x) =∞,

which gives inequality (29). Finally, for x ∈ (−∞,∞), we have

0 = lim
x→−∞

F (x) < F (x) < lim
x→∞

F (x) =∞,

which gives inequality (30). This completes the proof.

Lemma 3.1. The inequality

ex − ln(1 + ex) > 0 (31)

holds for all x ∈ (−∞,∞) .

Proof. Let T (x) = ex − ln(1 + ex) for all x ∈ (−∞,∞). Then

T ′(x) = ex
(

1− 1

1 + ex

)
=

e2x

1 + ex
> 0,

which means that T (x) is increasing. Then we have

∞ = lim
x→∞

T (x) > T (x) > lim
x→−∞

T (x) = lim
x→−∞

[ex − ln(1 + ex)] = 0,

which gives inequality (31).

Theorem 3.9. Let f(x) = (1 + ex)
1
ex and g(x) = (1 + ex)1+

1
ex for all x ∈ (−∞,∞) . Then f(x) is decreasing

and g(x) is increasing. Consequently the inequalities

(ln 2)ex < ln(1 + ex) < ex, x ∈ (−∞, 0), (32)

ex

1 + ex
< ln(1 + ex) < (2 ln 2)

ex

1 + ex
, x ∈ (−∞, 0), (33)
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ex

1 + ex
< ln(1 + ex) < ex, x ∈ (−∞,∞), (34)

are satisfied.

Proof. Let K(x) = ln f(x) = ln(1+ex)
ex and L(x) = ln g(x) = 1+ex

ex ln(1 + ex) for all x ∈ (−∞,∞). Then

K ′(x) =
1

1 + ex
− ln(1 + ex)

ex

=
1

ex

[
ex

1 + ex
− ln(1 + ex)

]
< 0,

which follows from (30). Hence K(x) is decreasing and consequently, f(x) is also decreasing. Also, we have

L′(x) = 1− ln(1 + ex)

ex

=
1

ex
[ex − ln(1 + ex)] > 0,

which follows from Lemma 3.1. Thus L(x) is increasing and consequently, g(x) is also increasing. Moreover,

we have

K(0) = ln 2, (35)

lim
x→−∞

K(x) = lim
x→−∞

ln(1 + ex)

ex
= lim

x→−∞

1

1 + ex
= 1, (36)

lim
x→∞

K(x) = lim
x→∞

1

1 + ex
= 0, (37)

L(0) = 2 ln 2, (38)

lim
x→−∞

L(x) = lim
x→−∞

ln(1 + ex)(
ex

1+ex

) = lim
x→−∞

(1 + ex) = 1, (39)

lim
x→∞

L(x) = lim
x→∞

ln(1 + ex)(
ex

1+ex

) =∞. (40)

Since K(x) is decreasing and L(x) is increasing, we obtain the following. For x ∈ (−∞, 0), we have

ln 2 = K(0) < K(x) < lim
x→−∞

K(x) = 1,

which gives inequality (32). Also, for x ∈ (−∞, 0), we have

1 = lim
x→−∞

L(x) < L(x) < L(0) = 2 ln 2,

which gives inequality (33). Furthermore, for x ∈ (−∞,∞), we have

0 = lim
x→∞

K(x) < K(x) < lim
x→−∞

K(x) = 1,
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which gives

ln(1 + ex) < ex. (41)

Also, we have

1 = lim
x→−∞

L(x) < L(x) < lim
x→∞

L(x) =∞,

which gives

ex

1 + ex
< ln(1 + ex). (42)

Now, by combining (41) and (42), we obtain (34).

Theorem 3.10. Let Ψ be defined for x ∈ (−∞, 0) by

Ψ(x) =
ex ln(1 + ex)

ex − ln(1 + ex)
.

Then Ψ(x) is increasing and consequently, the inequality

0 <
ex ln(1 + ex)

ex − ln(1 + ex)
<

ln 2

1− ln 2
, (43)

is satisfied.

Proof. To begin with, we have

lim
x→0

Ψ(x) =
ln 2

1− ln 2
,

and

lim
x→−∞

Ψ(x) = lim
x→−∞

ex ln(1 + ex)

ex − ln(1 + ex)

= lim
x→−∞

ln(1 + ex)− ex

1+ex

ex

1+ex

= lim
x→−∞

ex

1+ex −
ex

(1+ex)2

ex

(1+ex)2

= lim
x→−∞

ex

= 0.

Next, let f(x) = ex ln(1 + ex) and g(x) = ex − ln(1 + ex). Then f(−∞) = limx→−∞ f(x) = 0 and

g(−∞) = limx→−∞ g(x) = 0. Also,

f ′(x) = ex
[
ln(1 + ex) +

ex

1 + ex

]
,

and

g′(x) = ex
[
1− 1

1 + ex

]
= ex

ex

1 + ex
.

88



Kwara Nantomah

Then

f ′(x)

g′(x)
=

ln(1 + ex) + ex

1+ex

ex

1+ex
=

ln(1 + ex)(
ex

1+ex

) − 1 =
1 + ex

ex
ln(1 + ex)− 1,

which implies that (
f ′(x)

g′(x)

)′
=

(
1 + ex

ex
ln(1 + ex)

)′
=

1

ex
[ex − ln(1 + ex)] > 0.

Thus f ′(x)
g′(x) is increasing. Hence in view of Lemma 2.3, we conclude that f(x)

g(x) = Ψ(x) is increasing. Then for

x ∈ (−∞, 0) we have

0 = lim
x→−∞

Ψ(x) < Ψ(x) < lim
x→0

Ψ(x) =
ln 2

1− ln 2
,

which yields inequality (43).

Remark 3.1. Let α = ln 2
1−ln 2 . Then inequality (43) can be rearranged as

ln(1 + ex) <
αex

α+ ex
, (44)

for all x ∈ (−∞, 0) .

4. Conclusion

In the form of inequalities, we have established several properties of the sigmoid function which is frequently

used in artificial neural networks as well as some other scientific disciplines. The established results may find

applications in the numerous areas where the sigmoid function is employed.
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