

Nano $\mathcal{I}_{q^{\#}}$ -normal and nano $\mathcal{I}_{q^{\#}}$ -regular spaces

O. Nethaji¹, S. Devi², M. Rameshpandi^{3*} and R. Premkumar⁴

 ¹PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628 003, Tamil Nadu, India. Orcid iD: 0000-0002-2004-3521
²Department of Mathematics, Sri Adichunchanagairi Women's College, Kumuli Main Road, Cumbum-625 516, Tamil Nadu, India. Orcid iD: 0000-0002-0934-7719
²Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti-625 532, Madurai District, Tamil Nadu, India. Orcid iD: 0000-0002-5882-1990
⁴Department of Mathematics, Arul Anandar College, Karumathur, Madurai-625 514, Tamil Nadu, India. Orcid iD: 0000-0002-8088-5114

Received: 30 Aug 2023	•	Accepted: 23 Dec 2023	•	Published Online: 15 Jan 2024
Treceiveu, 50 Aug 2025	•	Accepted, 20 Dec 2020	•	I ublished Online. 15 Jan 2024

Abstract: In this paper, we define $n\mathcal{I}_{g^{\#}}$ -normal and $n\mathcal{I}_{g^{\#}}$ -regular spaces are introduced and various characterizations and properties are given. Characterizations of nano normal, mildly nano normal, $ng^{\#}$ -normal and regular spaces are also given.

Key words: $n\mathcal{I}_{g^{\#}}$ -normal, $_{g^{\#}}n\mathcal{I}$ -normal, $n\mathcal{I}_{g^{\#}}$ -regular and $ng^{\#}$ -normal spaces

1. Introduction and Preliminaries

In 2013, Lellis Thivagar et al. [6] introduced a nano topological space. Then the notions of an ideal nano topological space was introduced by Parimala et al [10]. A nano topological space (U, \mathcal{N}) with an ideal I on U is called [10] an ideal nano topological space and is denoted by (U, \mathcal{N}, I) . Recently several authors were discussed and studied the concepts of an ideal nanotopological spaces for example[[1], [4], [14], [15] and [16]]. In this paper, we define $n\mathcal{I}_{g^{\#}}$ -normal, ${}_{g^{\#}}n\mathcal{I}$ -normal and $n\mathcal{I}_{g^{\#}}$ -regular spaces using $n\mathcal{I}_{g^{\#}}$ -open sets and give characterizations and properties of such spaces. Also, characterizations of nano normal, mildly nano normal, $ng^{\#}$ -normal and regular spaces are given.

Definition 1.1. A subset H of a nano topological space (U, \mathcal{N}) is called;

- 1. nano g-closed (briefly, ng-closed) [2] if $ncl(H) \subseteq G$, whenever $H \subseteq G$ and G is n-open.
- 2. nano regular closed (briefly, *n*-regular closed) [6] if H = ncl(nint(H)).
- 3. nano pre-open [6] if $H \subseteq nint(ncl(H))$.
- 4. nano αg -closed set (briefly, $n\alpha g$ -closed) [19] if $n\alpha cl(H) \subseteq G$ whenever $H \subseteq G$ and G is n-open.
- 5. nano rg-closed set (briefly, nrg-closed) [18] if $ncl(H) \subseteq G$ whenever $H \subseteq G$ and G is n-regular open.
- 6. nano dense (briefly *n*-dense) [17] if ncl(H) = U,

Definition 1.2. [6] A subset H of a space (U, \mathcal{N}) is called nano α -open (briefly $n\alpha$ -open) if $H \subseteq nint(ncl(nint(H)))$. The family of all $n\alpha$ -open sets in (U, \mathcal{N}) denoted by $n\tau^{\alpha}$.

[©]Asia Mathematika, DOI: 10.5281/zenodo.10608856

^{*}Correspondence: proframesh9@gmail.com

Definition 1.3. A subset H of a space (U, \mathcal{N}, I) is called

- 1. nano \star -closed (briefly, $n \star$ -closed) [11] if $H_n^* \subseteq H$.
- 2. nano τ^* -closed (briefly $n\tau^*$ -closed) [10] if $H_n^* \subseteq H$.
- 3. nano I_g -closed (briefly nI_g -closed) [11] if $H_n^* \subseteq G$ whenever $H \subseteq G$ and G is n-open.
- 4. nano I_{rg} -closed (briefly nI_{rg} -closed) [12] if $H_n^* \subseteq G$ whenever $H \subseteq G$ and G is n-regular open.
- 5. nano $\mathcal{I}_{q^{\#}}$ -closed (briefly $n\mathcal{I}_{q^{\#}}$ -closed) [3] if $H_n * \subseteq G$ whenever $H \subseteq G$ and G is nano αg -open.

Definition 1.4. [7] A subset E of a space (U, \mathcal{N}) is called n-nowhere dense if $nint(ncl(E)) = \phi$.

Definition 1.5. [11] A subset E of a space (U, \mathcal{N}, I) is called $n \star$ -closed if $E_n^{\star} \subseteq E$.

The following lemmas and proposition will be useful in the sequel.

Lemma 1.1. [10] Let $(U, \tau_R(X), \mathcal{I})$ be an ideal nano topological space. If \mathcal{I} is completely nano codense, then $n\tau^* \subseteq n\tau^{\alpha}$.

Theorem 1.1. [3] Let $(U, \tau_R(X), \mathcal{I})$ be an ideal nano topological space where \mathcal{I} is completely nano codense. Then the following are equivalent.

- 1. U is nano normal.
- 2. For any disjoint nano closed sets E and F, there exist disjoint $n\mathcal{I}_{g^{\#}}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 3. For any nano closed set E and open set Q containing E, there exists an $n\mathcal{I}_{g^{\#}}$ -open set P such that $E \subseteq P \subseteq ncl^{*}(P) \subseteq Q$.

Corollary 1.1. [3] If $(U, \tau_R(X), \mathcal{I})$ is an ideal nano topological space and $E \subseteq U$, then if $\mathcal{I} = \{\phi\}$, then E is $n\mathcal{I}_{g^{\#}}$ -closed if and only if E is $ng^{\#}$ -closed.

Lemma 1.2. [3] Let $(U, \tau_R(X), \mathcal{I})$ be an ideal nano topological space and $E \subseteq U$. Then E is $n\mathcal{I}_{g^{\#}}$ -open if and only if $G \subseteq nint^{\star}(E)$ whenever G is $n\alpha g$ -closed and $G \subseteq E$.

Lemma 1.3. [3] Let $(U, \tau_R(X), \mathcal{I})$ be an ideal nano topological space. Then every subset of U is $n\mathcal{I}_{g^{\#}}$ -closed if and only if every $n\alpha g$ -open set is $n \star$ -closed.

Lemma 1.4. [12] Let $(U, \tau_R(X), \mathcal{I})$ be an ideal nano topological space. A subset $A \subseteq U$ is $n\mathcal{I}_{rg}$ -open if and only if $F \subseteq nint^*(A)$ whenever F is nano regular closed and $F \subseteq A$.

2. Nano $\mathcal{I}_{g^{\#}}$ -normal and nano $_{g^{\#}}\mathcal{I}$ -normal spaces

Definition 2.1. An ideal nano topological space $(U, \tau_R(X), \mathcal{I})$ is said to be an $n\mathcal{I}_{g^{\#}}$ -normal space if for every pair of disjoint closed sets E and F, there exist disjoint $n\mathcal{I}_{g^{\#}}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.

Remark 2.1. Every nano open set is an $n\mathcal{I}_{q^{\#}}$ -open set.

2. Every nano normal space is $n\mathcal{I}_{q^{\#}}$ -normal.

The following Example 2.1 shows that an $n\mathcal{I}_{g^{\#}}$ -normal space is not necessarily a nano normal space. Theorem 2.1 below gives characterizations of $n\mathcal{I}_{g^{\#}}$ -normal spaces. Theorem 2.2 below shows that the two concepts coincide for completely nano codense ideal topological spaces.

Example 2.1. Let $U = \{a_1, a_2, a_3, a_4\}$ with $U/R = \{\{a_2\}, \{a_4\}, \{a_1, a_3\}\}$ and $X = \{a_3, a_4\}$. Then $\mathcal{N} = \{\phi, \{a_4\}, \{a_1, a_3\}, \{a_1, a_3, a_4\}, U\}$ and $\mathcal{I} = \{\phi, \{a_4\}\}$. Then $\phi^* = \phi$, $(\{a_4\})^* = \{\phi\}$, $(\{a_1, a_3\})^* = \{a_1, a_2, a_3\}$, $(\{a_1, a_3, a_4\})^* = \{a_1, a_2, a_3\}$ and $U^* = \{a_1, a_2, a_3\}$. Here every $n\alpha g$ -open set is $n\star$ -closed and so, by Lemma 1.3, every subset of U is $n\mathcal{I}_{g\#}$ -closed and hence every subset of U is $n\mathcal{I}_{g\#}$ -open. This implies that $(U, \tau_R(X), \mathcal{I})$ is $n\mathcal{I}_{g\#}$ -normal. Now ϕ and $\{a_2, a_4\}$ are disjoint nano closed subsets of U which are not separated by disjoint nano open sets and so $(U, \tau_R(X))$ is not nano normal.

Theorem 2.1. Let $(U, \tau_R(X), \mathcal{I})$ be an ideal nano topological space. Then the following are equivalent.

- 1. U is $n\mathcal{I}_{q^{\#}}$ -normal.
- 2. For every nano closed set E and an nano open set Q containing E, there exists an $n\mathcal{I}_{g^{\#}}$ -open set P such that $E \subseteq P \subseteq ncl^{*}(P) \subseteq Q$.

Proof. (1) \Rightarrow (2). Let E be a nano closed set and Q be an nano open set containing E. Since E and U - Q are disjoint nano closed sets, there exist disjoint $n\mathcal{I}_{g^{\#}}$ -open sets P and S such that $E \subseteq P$ and $U - Q \subseteq S$. Again, $P \cap S = \phi$ implies that $P \cap nint^*(S) = \phi$ and so $ncl^*(P) \subseteq U - nint^*(S)$. Since U - Q is $n\alpha g$ -closed and S is $n\mathcal{I}_{g^{\#}}$ -open, $U - Q \subseteq S$ implies that $U - Q \subseteq nint^*(S)$ and so $U - nint^*(S) \subseteq Q$. Thus, we have $E \subseteq P \subseteq ncl^*(P) \subseteq U - nint^*(S) \subseteq Q$ which proves (2).

(2) \Rightarrow (1). Let *E* and *F* be two disjoint nano closed subsets of *U*. By hypothesis, there exists an $n\mathcal{I}_{g^{\#}}$ -open set *P* such that $E \subseteq P \subseteq ncl^{\star}(P) \subseteq U - F$. If $S = U - ncl^{\star}(P)$, then *P* and *S* are the required disjoint $n\mathcal{I}_{g^{\#}}$ -open sets containing *E* and *F* respectively. So, $(U, \tau_R(X), \mathcal{I})$ is $n\mathcal{I}_{g^{\#}}$ -normal.

Theorem 2.2. Let $(U, \tau_R(X), \mathcal{I})$ be an ideal nano topological space where $n\mathcal{I}$ is completely nano codense. If $(U, \tau_R(X), \mathcal{I})$ is $n\mathcal{I}_{a^{\#}}$ -normal, then it is a nano normal space.

Proof. It is obvious from Theorem 2.1 and Lemma 1.1.

Theorem 2.3. Let $(U, \tau_R(X), \mathcal{I})$ be an $n\mathcal{I}_{g^{\#}}$ -normal space. If F is nano closed and E is a $ng^{\#}$ -closed set such that $E \cap F = \phi$, then there exist disjoint $n\mathcal{I}_{g^{\#}}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.

Proof. Since $E \cap F = \phi$, $E \subseteq U - F$ where U - F is $n \alpha g$ -open. Therefore, by hypothesis, $ncl(A) \subseteq U - F$. Since $ncl(E) \cap F = \phi$ and U is $n\mathcal{I}_{g^{\#}}$ -normal, there exist disjoint $n\mathcal{I}_{g^{\#}}$ -open sets P and Q such that $ncl(E) \subseteq P$ and $F \subseteq Q$. Thus $E \subseteq P$ and $F \subseteq Q$.

The following Corollaries 2.1 and 2.2 give properties of nano normal spaces. If $\mathcal{I} = \{\phi\}$ in Theorem 2.3, then we have the following Corollary 2.1, the proof of which follows from Theorem 2.2 and Lemma 1.1, since $\{\phi\}$ is a completely nano codense ideal. If $\mathcal{I} = \mathcal{N}$ in Theorem 2.3, then we have the Corollary 2.2 below, since $n\tau^*(\mathcal{N}) = n\tau^{\alpha}$ and $n\mathcal{I}_{a^{\#}}$ -open sets coincide with $n\alpha g^{\#}$ -open sets.

Corollary 2.1. Let $(U, \tau_R(X))$ be a nano normal space with $\mathcal{I} = \{\phi\}$. If F is a nano closed set and E is a $ng^{\#}$ -closed set disjoint from F, then there exist disjoint $ng^{\#}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.

Corollary 2.2. Let $(U, \tau_R(X), \mathcal{I})$ be a normal ideal nano topological space where $\mathcal{I} = \mathcal{N}$. If F is a nano closed set and E is a $ng^{\#}$ -closed set disjoint from F, then there exist disjoint $n\alpha g^{\#}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.

Theorem 2.4. Let $(U, \tau_R(X), \mathcal{I})$ be an ideal nano topological space which is $n\mathcal{I}_{g^{\#}}$ -normal. Then the following hold.

- 1. For every nano closed set E and every $ng^{\#}$ -open set F containing E, there exists an $n\mathcal{I}_{g^{\#}}$ -open set P such that $E \subseteq nint^{*}(P) \subseteq P \subseteq F$.
- 2. For every $ng^{\#}$ -closed set E and every nano open set F containing E, there exists an $n\mathcal{I}_{g^{\#}}$ -closed set P such that $E \subseteq P \subseteq ncl^{*}(P) \subseteq F$.

Proof. (1) Let E be a nano closed set and F be a $ng^{\#}$ -open set containing E. Then $E \cap (U - F) = \phi$, where E is nano closed and U - F is $ng^{\#}$ -closed. By Theorem 2.3, there exist disjoint $n\mathcal{I}_{g^{\#}}$ -open sets P and Q such that $E \subseteq P$ and $U - F \subseteq Q$. Since $P \cap Q = \phi$, we have $P \subseteq U - Q$. By Lemma 1.2, $E \subseteq nint^{*}(P)$. Therefore, $E \subseteq nint^{*}(P) \subseteq P \subseteq U - Q \subseteq F$. This proves (1).

(2) Let E be a $ng^{\#}$ -closed set and F be an nano open set containing E. Then U - F is a nano closed set contained in the $ng^{\#}$ -open set U - E. By (1), there exists an $n\mathcal{I}_{g^{\#}}$ -open set Q such that $U - F \subseteq nint^{*}(Q) \subseteq Q \subseteq U - E$. Therefore, $E \subseteq U - Q \subseteq ncl^{*}(U - Q) \subseteq F$. If P = U - Q, then $E \subseteq P \subseteq ncl^{*}(P) \subseteq F$ and so P is the required $n\mathcal{I}_{g^{\#}}$ -closed set.

The following Corollaries 2.3 and 2.4 give some properties of nano normal spaces. If $\mathcal{I} = \{\phi\}$ in Theorem 2.4, then we have the following Corollary 2.3. If $\mathcal{I} = \mathcal{N}$ in Theorem 2.4, then we have the Corollary 2.4 below. \Box

Corollary 2.3. Let $(U, \tau_R(X))$ be a nano normal space with $\mathcal{I} = \{\phi\}$. Then the following hold.

- 1. For every nano closed set E and every $ng^{\#}$ -open set F containing E, there exists a $ng^{\#}$ -open set P such that $E \subseteq nint(P) \subseteq P \subseteq F$.
- 2. For every $ng^{\#}$ -closed set E and every nano open set F containing E, there exists a $ng^{\#}$ -closed set P such that $E \subseteq P \subseteq ncl(P) \subseteq F$.

Corollary 2.4. Let $(U, \tau_R(X))$ be a nano normal space with $\mathcal{I} = \mathcal{N}$. Then the following hold.

- 1. For every nano closed set E and every $ng^{\#}$ -open set F containing E, there exists an $n\alpha g^{\#}$ -open set P such that $E \subseteq n\alpha$ -int $(P) \subseteq P \subseteq F$.
- 2. For every $ng^{\#}$ -closed set E and every nano open set F containing E, there exists an $n\alpha g^{\#}$ -closed set P such that $E \subseteq P \subseteq n\alpha$ -cl $(P) \subseteq F$.

Definition 2.2. An ideal nano topological space $(U, \tau_R(X), \mathcal{I})$ is said to be $_{g^{\#}} n\mathcal{I}$ -normal if for each pair of disjoint $n\mathcal{I}_{g^{\#}}$ -closed sets E and F, there exist disjoint open sets P and Q in U such that $E \subseteq P$ and $F \subseteq Q$.

Remark 2.2. Every nano closed set is $n\mathcal{I}_{q^{\#}}$ -closed.

2. Every $_{a^{\#}}n\mathcal{I}$ -normal space is nano normal. But converse need not be true as the following Example 2.2 shows.

Example 2.2. Let $U = \{a_1, a_2, a_3\}$ with $U/R = \{\{a_1\}, \{a_2, a_3\}\}$ and $X = \{a_1, a_3\}$. Then the nano topology $\mathcal{N} = \{\phi, \{a_1\}, \{a_2, a_3\}, U\}$ and $\mathcal{I} = \{\phi, \{a_1\}, \{a_2\}, \{a_3\}, \{a_1, a_2\}, \{a_1, a_3\}, \{a_2, a_3\}, U\}$. Every $n\alpha g$ -open set is $n \star$ -closed and so every subset of U is $n\mathcal{I}_{g^{\#}}$ -closed. Now $E = \{a_1, a_2\}$ and $F = \{a_3\}$ are disjoint $n\mathcal{I}_{g^{\#}}$ -closed sets, but they are not separated by disjoint nano open sets. So $(U, \tau_R(X), \mathcal{I})$ is not $_{g^{\#}}n\mathcal{I}$ -normal. But $(U, \tau_R(X), \mathcal{I})$ is nano normal.

Theorems 2.5 and 2.6 below give characterizations of $_{q^{\#}}n\mathcal{I}$ -normal spaces.

Theorem 2.5. In an ideal nano topological space $(U, \tau_R(X), \mathcal{I})$, the following are equivalent.

- 1. U is $_{g^{\#}}n\mathcal{I}$ -normal.
- 2. For every $n\mathcal{I}_{g^{\#}}$ -closed set E and every $n\mathcal{I}_{g^{\#}}$ -open set F containing E, there exists an nano open set P of U such that $E \subseteq P \subseteq ncl(P) \subseteq F$.

Proof. It is similar to the proof of Theorem 2.1.

If $\mathcal{I} = \{\phi\}$, then $_{g^{\#}} n\mathcal{I}$ -normal spaces coincide with $ng^{\#}$ -normal spaces and so if we take $\mathcal{I} = \{\phi\}$, in Theorem 2.5 then we have the following characterization for $ng^{\#}$ -normal spaces.

Corollary 2.5. In a space $(U, \tau_R(X))$, the following are equivalent.

- 1. U is $ng^{\#}$ -normal.
- 2. For every $ng^{\#}$ -closed set E and every $ng^{\#}$ -open set F containing E, there exists an nano open set P of U such that $E \subseteq P \subseteq ncl(P) \subseteq F$.

Theorem 2.6. In an ideal nano topological space $(U, \tau_R(X), \mathcal{I})$, the following are equivalent.

- 1. U is $_{q^{\#}}n\mathcal{I}$ -normal.
- 2. For each pair of disjoint $n\mathcal{I}_{g^{\#}}$ -closed subsets E and F of U, there exists an nano open set P of U containing E such that $cl(P) \cap F = \phi$.
- 3. For each pair of disjoint $n\mathcal{I}_{g^{\#}}$ -closed subsets E and F of U, there exist an nano open set P containing Eand an nano open set Q containing F such that $ncl(P) \cap ncl(Q) = \phi$.

Proof. (1) \Rightarrow (2). Suppose that E and F are disjoint $n\mathcal{I}_{g^{\#}}$ -closed subsets of U. Then the $n\mathcal{I}_{g^{\#}}$ -closed set E is contained in the $n\mathcal{I}_{g^{\#}}$ -open set U - F. By Theorem 2.5, there exists an nano open set P such that $E \subseteq P \subseteq ncl(P) \subseteq U - F$. Therefore, P is the required nano open set containing E such that $ncl(P) \cap F = \phi$.

 $(2) \Rightarrow (3)$. Let E and F be two disjoint $n\mathcal{I}_{g^{\#}}$ -closed subsets of U. By hypothesis, there exists an nano open set P of U containing E such that $ncl(P) \cap F = \phi$. Also, ncl(P) and F are disjoint $n\mathcal{I}_{g^{\#}}$ -closed sets of U. By hypothesis, there exists an nano open set Q of U containing F such that $ncl(P) \cap ncl(Q) = \phi$.

 $(3) \Rightarrow (1)$. The proof is clear.

If $\mathcal{I} = \{\phi\}$, in Theorem 2.6, then we have the following characterizations for $ng^{\#}$ -normal spaces.

Corollary 2.6. Let $(U, \tau_R(X))$ be a nano topological space. Then the following are equivalent.

- 1. U is $ng^{\#}$ -normal.
- 2. For each pair of disjoint $ng^{\#}$ -closed subsets E and F of U, there exists an nano open set P of U containing E such that $ncl(P) \cap F = \phi$.
- 3. For each pair of disjoint $ng^{\#}$ -closed subsets E and F of U, there exist an nano open set P containing E and an nano open set Q containing F such that $ncl(P) \cap ncl(Q) = \phi$.

Theorem 2.7. Let $(U, \tau_R(X), \mathcal{I})$ be an $_{g^{\#}} n \mathcal{I}$ -normal space. If E and F are disjoint $n \mathcal{I}_{g^{\#}}$ -closed subsets of U, then there exist disjoint nano open sets P and Q such that $ncl^*(E) \subseteq P$ and $ncl^*(F) \subseteq Q$.

Proof. Suppose that E and F are disjoint $n\mathcal{I}_{g^{\#}}$ -closed sets. By Theorem 2.6(3), there exist an nano open set P containing E and an nano open set Q containing F such that $ncl(P) \cap ncl(Q) = \phi$. Since E is $n\mathcal{I}_{g^{\#}}$ -closed, $E \subseteq P$ implies that $ncl^{*}(E) \subseteq P$. Similarly $ncl^{*}(F) \subseteq Q$.

If $\mathcal{I} = \{\phi\}$, in Theorem 2.7, then we have the following property of disjoint $ng^{\#}$ -closed sets in $ng^{\#}$ -normal spaces.

Corollary 2.7. Let $(U, \tau_R(X))$ be a $ng^{\#}$ -normal space. If E and F are disjoint $ng^{\#}$ -closed subsets of U, then there exist disjoint open sets P and Q such that $ncl(E) \subseteq P$ and $cl(F) \subseteq Q$.

Theorem 2.8. Let $(U, \tau_R(X), \mathcal{I})$ be an $_{g^{\#}} n\mathcal{I}$ -normal space. If E is an $n\mathcal{I}_{g^{\#}}$ -closed set and F is an $n\mathcal{I}_{g^{\#}}$ -open set containing E, then there exists an nano open set P such that $E \subseteq ncl^*(E) \subseteq P \subseteq nint^*(F) \subseteq F$.

Proof. Suppose E is an $n\mathcal{I}_{g^{\#}}$ -closed set and F is an $n\mathcal{I}_{g^{\#}}$ -open set containing E. Since E and U - F are disjoint $n\mathcal{I}_{g^{\#}}$ -closed sets, by Theorem 2.7, there exist disjoint nano open sets P and Q such that $ncl^{\star}(E) \subseteq P$ and $ncl^{\star}(U - F) \subseteq Q$. Now, $U - nint^{\star}(F) = ncl^{\star}(U - F) \subseteq Q$ implies that $U - Q \subseteq nint^{\star}(F)$. Again, $P \cap Q = \phi$ implies $P \subseteq U - Q$ and so $E \subseteq ncl^{\star}(E) \subseteq P \subseteq U - Q \subseteq nint^{\star}(F) \subseteq F$.

If $\mathcal{I} = \{\phi\}$, in Theorem 2.8, then we have the following Corollary 2.8.

Corollary 2.8. Let $(U, \tau_R(X))$ be a $ng^{\#}$ -normal space. If E is a $ng^{\#}$ -closed set and F is a $ng^{\#}$ -open set containing E, then there exists an nano open set P such that $E \subseteq ncl(E) \subseteq P \subseteq nint(F) \subseteq F$.

The following Theorem 2.9 gives a characterization of nano normal spaces in terms of $ng^{\#}$ -open sets which follows from Lemma 1.1 if $\mathcal{I} = \{\phi\}$.

Theorem 2.9. Let $(U, \tau_R(X))$ be a nano topological space. Then the following are equivalent.

- 1. U is normal.
- 2. For any disjoint nano closed sets E and F, there exist disjoint $ng^{\#}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 3. For any nano closed set E and nano open set Q containing E, there exists a $ng^{\#}$ -open set P such that $E \subseteq P \subseteq ncl(P) \subseteq Q$.

The rest of the section is devoted to the study of mildly nano normal spaces in terms of $n\mathcal{I}_{g^{\#}}$ -open sets, $n\mathcal{I}_{g}$ -open sets and $n\mathcal{I}_{rg}$ -open sets.

Theorem 2.10. Let $(U, \tau_R(X), \mathcal{I})$ be an ideal nano topological space where \mathcal{I} is completely nano codense. Then the following are equivalent.

- 1. U is mildly nano normal.
- 2. For disjoint nano regular closed sets E and F, there exist disjoint $n\mathcal{I}_{g^{\#}}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 3. For disjoint nano regular closed sets E and F, there exist disjoint $n\mathcal{I}_g$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 4. For disjoint nano regular closed sets E and F, there exist disjoint $n\mathcal{I}_{rg}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 5. For a nano regular closed set E and a nano regular open set Q containing E, there exists an $n\mathcal{I}_{rg}$ -open set Pof U such that $E \subseteq P \subseteq ncl^*(P) \subseteq Q$.
- 6. For a nano regular closed set E and a nano regular open set Q containing E, there exists an $n\star$ -open set P of U such that $E \subseteq P \subseteq ncl^{\star}(P) \subseteq Q$.
- 7. For disjoint nano regular closed sets E and F, there exist disjoint $n\star$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.

Proof. (1) \Rightarrow (2). Suppose that E and F are disjoint nano regular closed sets. Since U is mildly nano normal, there exist disjoint nano open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$. But every nano open set is an $n\mathcal{I}_{a^{\#}}$ -open set. This proves (2).

- $(2) \Rightarrow (3)$. The proof follows from the fact that every $n\mathcal{I}_{a^{\#}}$ -open set is an $n\mathcal{I}_{g}$ -open set.
- $(3) \Rightarrow (4)$. The proof follows from the fact that every $n\mathcal{I}_g$ -open set is an $n\mathcal{I}_{rg}$ -open set.

 $(4) \Rightarrow (5)$. Suppose E is a nano regular closed and F is a nano regular open set containing E. Then E and U - F are disjoint nano regular closed sets. By hypothesis, there exist disjoint $n\mathcal{I}_{rg}$ -open sets P and Q such that $E \subseteq P$ and $U - F \subseteq Q$. Since U - F is nano regular closed and Q is $n\mathcal{I}_{rg}$ -open, by Lemma 1.4, $U - F \subseteq nint^*(Q)$ and so $U - nint^*(Q) \subseteq F$. Again, $P \cap Q = \phi$ implies that $P \cap nint^*(Q) = \phi$ and so $ncl^*(P) \subseteq U - nint^*(Q) \subseteq F$. Hence P is the required $n\mathcal{I}_{rg}$ -open set such that $E \subseteq P \subseteq ncl^*(P) \subseteq F$.

 $(5) \Rightarrow (6)$. Let E be a nano regular closed set and Q be a nano regular open set containing E. Then there exists an $n\mathcal{I}_{rg}$ -open set H of U such that $E \subseteq H \subseteq ncl^*(H) \subseteq Q$. By Lemma 1.4, $E \subseteq nint^*(H)$. If $P = nint^*(H)$, then P is an n^* -open set and $E \subseteq P \subseteq ncl^*(P) \subseteq ncl^*(H) \subseteq Q$. Therefore, $E \subseteq P \subseteq ncl^*(P) \subseteq Q$.

(6) \Rightarrow (7). Let *E* and *F* be disjoint nano regular closed subsets of *U*. Then U-F is a nano regular open set containing *E*. By hypothesis, there exists an *n**-open set *P* of *U* such that $E \subseteq P \subseteq ncl^*(P) \subseteq U - F$. If $Q = U - ncl^*(P)$, then *P* and *Q* are disjoint *n**-open sets of *U* such that $E \subseteq P$ and $F \subseteq Q$.

 $(7) \Rightarrow (1)$. Let E and F be disjoint nano regular closed sets of U. Then there exist disjoint $n\star$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$. Since \mathcal{I} is completely nano codense, by Lemma 1.1, $n\tau^* \subseteq n\tau^{\alpha}$ and so P, $Q \in n\tau^{\alpha}$. Hence $E \subseteq P \subseteq nint(ncl(nint(P))) = G$ and $F \subseteq Q \subseteq nint(ncl(nint(Q))) = H$. G and H are the required disjoint nano open sets containing E and F respectively. This proves (1).

If $\mathcal{I} = \mathcal{N}$, in the above Theorem 2.10, then $n\mathcal{I}_{rg}$ -closed sets coincide with $nr\alpha g$ -closed sets and so we have the following Corollary 2.9.

Corollary 2.9. Let $(U, \tau_R(X))$ be a nano topological space. Then the following are equivalent.

- 1. U is mildly nano normal.
- 2. For disjoint nano regular closed sets E and F, there exist disjoint $n\alpha g^{\#}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 3. For disjoint nano regular closed sets E and F, there exist disjoint $n\alpha g$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 4. For disjoint nano regular closed sets E and F, there exist disjoint $nr\alpha g$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 5. For a nano regular closed set E and a nano regular open set Q containing E, there exists an $nr\alpha g$ -open set P of U such that $E \subseteq P \subseteq n\alpha cl(P) \subseteq Q$.
- 6. For a nano regular closed set E and a nano regular open set Q containing E, there exists an $n\alpha$ -open set P of U such that $E \subseteq P \subseteq n\alpha$ -cl(P) $\subseteq Q$.
- 7. For disjoint nano regular closed sets E and F, there exist disjoint $n\alpha$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.

If $\mathcal{I} = \{\phi\}$ in the above Theorem 2.10, we get the following Corollary 2.10.

Corollary 2.10. Let $(X, \tau_R(X))$ be a nano topological space. Then the following are equivalent.

- 1. U is mildly nano normal.
- 2. For disjoint nano regular closed sets E and F, there exist disjoint $ng^{\#}$ -open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 3. For disjoint nano regular closed sets E and F, there exist disjoint ng-open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 4. For disjoint nano regular closed sets E and F, there exist disjoint nrg-open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.
- 5. For a nano regular closed set E and a nano regular open set Q containing E, there exists an nrg-open set P of U such that $E \subseteq P \subseteq ncl(P) \subseteq Q$.
- 6. For a nano regular closed set E and a nano regular open set Q containing E, there exists an nano open set P of U such that $E \subseteq P \subseteq ncl(P) \subseteq Q$.
- 7. For disjoint nano regular closed sets E and F, there exist disjoint nano open sets P and Q such that $E \subseteq P$ and $F \subseteq Q$.

3. Nano $\mathcal{I}_{q^{\#}}$ -regular spaces

Definition 3.1. An ideal nano topological space $(U, \tau_R(X), \mathcal{I})$ is said to be an $n\mathcal{I}_{g^{\#}}$ -regular space if for each pair consisting of a point x and a nano closed set F not containing x, there exist disjoint $n\mathcal{I}_{g^{\#}}$ -open sets P and Q such that $x \in P$ and $F \subseteq Q$.

Remark 3.1. Every nano regular space is $n\mathcal{I}_{a^{\#}}$ -regular.

The following Example 3.1 shows that an $n\mathcal{I}_{g^{\#}}$ -regular space need not be nano regular. Theorem 3.1 gives a characterization of $n\mathcal{I}_{g^{\#}}$ -regular spaces.

Example 3.1. Consider the ideal topological space $(U, \tau_R(X), \mathcal{I})$ of Example 2.1. Then $\phi^* = \phi$, $(\{a_4\})^* = \{\phi\}$, $(\{a_1, a_3\})^* = \{a_1, a_2, a_3\}$, $(\{a_1, a_3, a_4\})^* = \{a_1, a_2, a_3\}$ and $U^* = \{a_1, a_2, a_3\}$. Since every $n\alpha g$ -open set is $n \star - closed$, every subset of U is $n\mathcal{I}_{g^{\#}}$ -closed and so every subset of U is $n\mathcal{I}_{g^{\#}}$ -open. This implies that $(U, \tau_R(X), \mathcal{I})$ is $n\mathcal{I}_{g^{\#}}$ -regular. Now, $\{a_2\}$ is a nano closed set not containing $a_4 \in U$, $\{a_2\}$ and a are not separated by disjoint nano open sets. So $(U, \tau_R(X), \mathcal{I})$ is not nano regular.

Theorem 3.1. In an ideal nano topological space $(U, \tau_R(X), \mathcal{I})$, the following are equivalent.

- 1. U is $n\mathcal{I}_{a^{\#}}$ -regular.
- 2. For every nano open set Q containing $x \in U$, there exists an $n\mathcal{I}_{g^{\#}}$ -open set P of U such that $x \in P \subseteq ncl^{*}(P) \subseteq Q$.

Proof. (1) \Rightarrow (2). Let Q be an nano open subset such that $x \in Q$. Then U - Q is a nano closed set not containing x. Therefore, there exist disjoint $n\mathcal{I}_{g^{\#}}$ -open sets P and S such that $x \in P$ and $U - Q \subseteq S$. Now, $U - Q \subseteq S$ implies that $U - Q \subseteq nint^*(S)$ and so $U - nint^*(S) \subseteq Q$. Again, $P \cap S = \phi$ implies that $P \cap nint^*(S) = \phi$ and so $ncl^*(P) \subseteq U - nint^*(S)$. Therefore, $x \in P \subseteq ncl^*(P) \subseteq Q$. This proves (2).

 $(2) \Rightarrow (1)$. Let F be a nano closed set not containing x. By hypothesis, there exists an $n\mathcal{I}_{g^{\#}}$ -open set P such that $x \in P \subseteq ncl^{\star}(P) \subseteq U - F$. If $S = U - ncl^{\star}(P)$, then P and S are disjoint $n\mathcal{I}_{g^{\#}}$ -open sets such that $x \in P$ and $F \subseteq S$. This proves (1).

Theorem 3.2. If $(U, \tau_R(X), \mathcal{I})$ is an $n\mathcal{I}_{g^{\#}}$ -regular, $nT_{\mathcal{I}}$ -space where \mathcal{I} is completely nano codense, then U is nano regular.

Proof. Let F be a nano closed set not containing $x \in U$. By Theorem 3.1, there exists an $n\mathcal{I}_{g^{\#}}$ -open set P of U such that $x \in P \subseteq ncl^{*}(P) \subseteq U - F$. Since U is a $nT_{\mathcal{I}}$ -space, $\{x\}$ is $n\alpha g$ -closed and so $\{x\} \subseteq nint^{*}(P)$, by Lemma 1.2. Since \mathcal{I} is completely nano codense, $n\tau^{*} \subseteq n\tau^{\alpha}$ and so $nint^{*}(P)$ and $U-ncl^{*}(P)$ are $n\alpha$ -open sets. Now, $x \in nint^{*}(P) \subseteq nint(ncl(nint(nint^{*}(P)))) = G$ and $F \subseteq U - ncl^{*}(P) \subseteq nint(ncl(nint(U - ncl^{*}(P)))) = H$. Then G and H are disjoint nano open sets containing x and F respectively. Therefore, U is nano regular.

If $\mathcal{I} = \mathcal{N}$ in Theorem 3.1, then we have the following Corollary 3.1 which gives characterizations of nano regular spaces, the proof of which follows from Theorem 3.2.

Corollary 3.1. If $(U, \tau_R(X))$ is a $nT_{\mathcal{I}}$ -space, then the following are equivalent.

- 1. U is nano regular.
- 2. For every nano open set Q containing $x \in U$, there exists an $n\alpha g^{\#}$ -open set P of U such that $x \in P \subseteq n\alpha$ - $ncl(P) \subseteq Q$.

If $\mathcal{I} = \{\phi\}$ in Theorem 3.1, then we have the following Corollary 3.2 which gives characterizations of nano regular spaces, the proof of which follows from Theorem 3.2.

Corollary 3.2. If $(U, \tau_R(X))$ is a $nT_{\mathcal{I}}$ -space, then the following are equivalent.

- 1. U is nano regular.
- 2. For every nano open set Q containing $x \in U$, there exists a $ng^{\#}$ -open set P of U such that $x \in P \subseteq ncl(P) \subseteq Q$.

Theorem 3.3. If every $n \alpha g$ -open subset of an ideal nano topological space $(U, \tau_R(X), \mathcal{I})$ is $n \star$ -closed, then $(U, \tau_R(X), \mathcal{I})$ is $n \mathcal{I}_{q^{\#}}$ -regular.

Proof. Suppose every $n\alpha g$ -open subset of U is $n\star$ -closed. Then by Lemma 1.3, every subset of U is $n\mathcal{I}_{g^{\#}}$ closed and hence every subset of U is $n\mathcal{I}_{g^{\#}}$ -open. If F is a nano closed set not containing x, then $\{x\}$ and F are the required disjoint $n\mathcal{I}_{g^{\#}}$ -open sets containing x and F respectively. Therefore, $(U, \tau_R(X), \mathcal{I})$ is $n\mathcal{I}_{g^{\#}}$ -regular.

References

- R. Asokan, O. Nethaji and I. Rajasekaran, On nano generalized *-closed sets in an ideal nanotopological space, Asia Mathematika, 2(3) (2018), 50-58.
- [2] K. Bhuvaneshwari and K. Mythili Gnanapriya, Nano generalised closed sets, International Journal of Scientific and Research Publications, 4(5) (2014), 1-3.
- [3] S. Devi, M. Rameshpandi and S. Antony David, ng[#]-closed set in an ideal nano topological space, Communications in Mathematics and Applications, 12(3)(2021), 655-663.
- [4] S. Devi, M. Rameshpandi and R. Premkumar, Nano weakly g[#]-closed set in nano topological spaces, Asia Mathematika, 7(1) (2023), 40-49.
- [5] K. Kuratowski, Topology, Vol I. Academic Press (New York) 1966.
- [6] M. Lellis Thivagar and Carmel Richard, On nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1)(2013), 31-37.
- [7] M. Lellis Thivagar, Saeid Jafari and V. Sutha Devi, On new class of contra continuity in nano topology, Italian Journal of Pure and Applied Mathematics, 2017, 1-10.
- [8] O. Nethaji, R. Asokan and I. Rajasekaran, Novel concept of ideal nanotopological spaces, Asia Mathematika, 3(3)(2019), 5-15.
- [9] O. Nethaji, R. Asokan and I. Rajasekaran, New generalized classes of ideal nano topological space, Bull. Int. Math. Virtual Inst., Vol. 9(2019), 543-552.
- [10] M. Parimala, T. Noiri and S. Jafari, New types of nano topological spaces via nano ideals https://www.researchgate.net/publication/315892279 (2016).
- [11] M. Parimala, S. Jafari and S. Murali, Nano ideal generalized closed sets in nano ideal topological spaces, Annales Univ. Sci. Budapest., 60(2017), 3-11.
- [12] R. Premkumar and M. Rameshpandi, nI_g-normal nI_g-regular space, Advances in Mathematics: Scientific Journal, 9(8)(2020), 5637-5647.
- [13] R. Premkumar and M. Rameshpandi, New sets in ideal nano topological spaces, Bull. Int. Math. Virtual Inst., Vol. 10(1)(2020), 19-27.
- [14] I. Rajasekaran and O. Nethaji, An introductory notes to ideal binanotopological spaces, Asia Mathematika, 3(1) (2019), 47-59.
- [15] I. Rajasekaran and O. Nethaji, Unified approach of several sets in ideal nanotopological spaces, Asia Mathematika, 3(1) (2019), 70-78.

- [16] I. Rajasekaran, O. Nethaji, R. Asokan and R. Premkumar, Nano generalized closed sets depending on ideal, Asia Mathematika, 3(3) (2019), 1-4.
- [17] P. Sathishmohan, V. Rajendran, C. Vignesh Kumar and P. K. Dhanasekaran, On nano semi pre neighbourhoods in nano topological spaces, Malaya Journal of Matematik, 6(1)(2018), 294-298.
- [18] P. Sulochana Devi and K. Bhuvaneswari, On nano regular generalized and nano generalized regular closed sets in nano topological spaces, International Journal of Engineering Trends and Technology, 8(13)(2014), 386-390.
- [19] R. Thanga Nachiyar and K. Bhuvaneswari, On nano generalized A-closed sets & nano A-generalized closed sets in nano topological spaces, International Journal of Engineering Trends and Technology, 6(13)(2014), 257-260.