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Abstract: In this paper we introduce a new class of sets known as picture sets. They can be considered as a crisp
version of picture fuzzy sets. We define basic algebraic operations on them. Then we explore topological aspects of this
novel framework. Thus, we introduce picture topological spaces and related notions (e.g. picture closure, picture interior
and picture derived set). We study their properties and relationships between them. Additionally, the concepts of picture
product and subspace topologies are presented along with the demonstration of appropriate theorems. We emphasize the
fact that there are some important differences between picture and classical sets. The same can be said about picture
and classical points.
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1. Introduction
Traditional logic determines logical values of statements as either true or false. This does not allow for modelling
of uncertainty that occurs in many real-life situations. To overcome this, Zadeh (see [18]) created fuzzy sets
theory where the participation of elements within a set is indicated by a membership grade ranging from 0 to
1 . Since its formulation, this theory has undergone numerous developments by different researchers. Among its
extensions and modifications we have: intuitionistic fuzzy sets of Atanassov (see [1]), soft sets of Molodtsov [9],
fuzzy soft sets [2], rough sets of Pawlak [11], vague sets (see [16] for their soft version 1) or even intuitionistic
multi fuzzy sets (see [10]). Moreover, neutrosophic sets introduced by Smarandache (see [14]) can be considered
as a very general framework for uncertainty analysis and estimation.

Clearly, the list presented above is not complete and all these concepts have many variations (depending
both on their practical applications and theoretical considerations). In particular, in 2014 Cuong [5] has
introduced picture fuzzy sets (PFS): a modified version of intuitionistic fuzzy sets. They utilize neutral and
refusal membership grades together with standard membership and non-membership grades. The idea is to
address uncertainty in a more effective manner. PFS has proven to be particularly useful in all those scenarios
where individuals hold multiple perspectives such as ”yes”, ”abstain”, ”no”, and ”refusal”.

A notable example of this is are general elections, where a voter may vote for a candidate (”yes”), against
a candidate (”no”), abstain from voting or refuse to vote for the available options and choose ”not” (refusal).

The utilization of PFS has increased among researchers for resolving decision-making problems. The
authors applied methods of similarity measurement to identify building materials and mineral recognition.

©Asia Mathematika, DOI: 10.5281/zenodo.10609662
∗Correspondence: tm.witczak@gmail.com

1It seems that vague sets are identical with intuitionistic fuzzy sets. Both terms are frequently used in literature.
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There are also purely algebraic applications (see e.g. [15] for interval valued picture fuzzy ideals).
As we can see, fuzzy sets and their extended forms have proven to be effective tools in the field of managing

uncertainty and vagueness. However, these non-classical families of sets are important from theoretical point of
view too. For example, it is a well-known fact that we can establish fuzzy (and thus also vague, neutrosophic
etc.) topological spaces. Generalizations of such topologies (e.g. supra and infra topologies, minimal structures)
are possible too.

This paper presents the concept of picture sets, which is an advancement of picture fuzzy sets. We
introduce the idea of picture topological space and we examine some of its properties. We show many topological
and algebraic results. What is important, is that we analyze the notion of picture points in one of its possible
understandings. We prove that the algebra of picture sets is different from the algebra of classical sets.

2. Preliminaries
Let us start from some basic notions. We recall the general idea of fuzzy and intuitionistic fuzzy sets. Then
they will be compared with picture fuzzy and picture sets. Moreover, we mention intuitionistic sets too.

First, let us recall the intuition that has been already mentioned. A fuzzy set (FS) is a set in which
every element has a degree of membership of belonging in it. This can be formulated in a strict mathematical
manner, as it is in the definition below.

Definition 2.1. [7] Let X be a non-empty universal set. A fuzzy set M on X is an object of the form:
M = {(x, µM (x));x ∈ X}
where µM (x) : X → [0, 1] is a function that assigns a real number from the interval [0, 1] to each element

of X . The value µM (x) shows the grade of membership of x in M .

Definition 2.2. [7] An intuitionistic fuzzy set (IFS) M on a non empty set X is an object of the form

M = {(x, µM (x), νM (x));x ∈ X)}

where µM (x) ∈ [0, 1] is called the degree of membership of x in M , νM (x) ∈ [0, 1] is called the degree
of non-membership of x in M and we assume that µM (x) and νM (x) satisfy the following condition 2:

(∀x ∈ X) (µM (x) + νM (x) ≤ 1)

Intuitionistic fuzzy sets are constantly studied e.g. in the context of topologies. For example, various
subclasses of weakly open sets are analyzed (see [6] for one of the most recent results).

Intuitionistic sets are their crisp version.

Definition 2.3. [7], [3] Let X be a non-empty universal set. We say that M ⊆ X is an intuitionistic set (IS)
if M is of the form M = ⟨X,M1,M2⟩ , where M1 and M2 are the subsets of X such that M1 ∩M2 = ∅ . The
sets M1 and M2 are interpreted as members and non-members of M respectively.

Definition 2.4. [7], [3] Let X be a non-empty set, M = ⟨X,M1,M2⟩ and N = ⟨X,N1, N2⟩ be two IS’s on
X . Let J be a non-empty index set and {Mi : i ∈ J} be an arbitrary family of IS’s on X , where each of its
elements is of the form 3:

2This condition can be slightly changed if we want to expand the set of possible pairs of values. The reader is encouraged to
check Pythagorean and Fermatean fuzzy sets in this context.

3There is a little abuse of notation here: we use subscripts to enumerate the elements of the family, while the components of a
particular intuitionistic set are enumerated in superscripts.
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Mi = ⟨X,M
(1)
i ,M

(2)
i ⟩ for any i ∈ J .

Then we define:

1. M ⊆ N if and only if M1 ⊆ N1 and M2 ⊇ N2 (inclusion).

2. M = N if and only if M ⊆ N and N ⊆ M (equality).

3. M c = ⟨X,M2,M1⟩ (complement).

4. M ∪N = ⟨X,M1 ∪N1,M2 ∩N2⟩ (binary union).

5. M ∪N = ⟨X,M1 ∩N1,M2 ∪N2⟩ (binary intersection).

6.
∪
Mi = ⟨X,

∪
M

(1)
i ,

∩
M

(2)
i ⟩ (arbitrary union).

7.
∩
Mi = ⟨X,

∩
M

(1)
i ,

∪
M

(2)
i ⟩ (arbitrary intersection).

8. M −N = M ∩N c (difference of sets).

9. ∅ = ⟨X, ∅, X⟩ .

10. X = ⟨X,X, ∅⟩ .

11. [ ]M = ⟨X,M1,M
c
1 ⟩ .

12. ⟨ ⟩M = ⟨X,M c
2 ,M2⟩ .

One can easily prove that union, intersection and complement are defined in a coherent way: that is,
they produce new intuitionistic sets. Moreover, the following lemma holds.

Lemma 2.1. [3], [4] Assume that X is a non-empty universe, while M , N and Mi (for arbitrary i ∈ J ) are
members of some family of intuitionistic sets on X . Then the following identities and relationships hold:

1. (
∪

Mi)
c =

∩
M c

i .

2. (
∩

Mi)
c =

∪
M c

i (de Morgan laws).

3. M ⊆ N ⇒ N c ⊆ M c .

4. (M c)c = M .

Now let us recall the very definition of picture fuzzy set.

Definition 2.5. [5] Let X be a non-empty universe. A picture fuzzy set (PFS) M on a non-empty universe
X is an object of the form:

M = {(x, µM (x), ηM (x), νM (x));x ∈ X}

where µM (x) ∈ [0, 1] is called the grade of positive membership of x in M , ηM (x) ∈ [0, 1] is called the
degree of neutral membership of x in M , νM (x) ∈ [0, 1] is called the degree of negative membership of x ∈ M .
We assume that µM (x)+ ηM (x)+ νM (x) ≤ 1 for any x ∈ X . Then 1− (µM (x)+ ηM (x)+ νM (x)) is called the
degree of refusal membership of x in M .

Our picture sets (that will be presented in the next section) can be considered as a crisp version of picture
fuzzy sets and (at the same time) as a generalization of intuitionistic sets. They are similar to neutrosophic
crisp sets invented by Salama et al. (see [13]) but they are not identical with them.
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3. Picture sets and picture topological spaces
Let us start from some basic definitions.

3.1. Initial notions
Definition 3.1. Assume that X is a non-empty universe. A picture set on X is an object of the form
M = ⟨X,M1,M2,M3⟩ where M1 , M2 and M3 are the subsets of X such that M1 ∩M3 = ∅ . The sets M1 ,
M2 , M3 and (M1 ∪M2 ∪M3)

c are the sets of members, neutral members, non-members and refusal members
of M respectively.

Note that in neutrosophic crisp sets we have stronger assumptions: that M1 ∩ M2 = ∅ , M1 ∩ M3 = ∅
and M2 ∩M3 = ∅ (see [12], [13]). Hence, each neutrosophic crisp set can be considered as a picture set but the
converse of this statement is not true.

Let us define some basic operations on picture sets.

Definition 3.2. Let X be a non empty universe. Assume that M , N are picture sets on X and {Mi : i ∈ J}
be an arbitrary family of picture sets on X , where each of its elements is of the form

Mi = ⟨X,M
(1)
i ,M

(2)
i ,M

(3)
i ⟩ for any i ∈ J .

Then we define:

1. M ⊆ N if and only if M1 ⊆ N1 , M2 ⊇ N2 and M3 ⊇ N3 (inclusion).

2. M = N if and only if M ⊆ N and N ⊆ M (equality).

3. M c = ⟨X,M3,M
c
2 ,M1⟩ (complement).

4. M ∪N = ⟨X,M1 ∪N1,M2 ∩N2,M3 ∩N3⟩ (binary union).

5. M ∩N = ⟨X,M1 ∩N1,M2 ∪N2,M3 ∪N3⟩ (binary intersection).

6.
∪
Mi = ⟨X,

∪
M

(1)
i ,

∩
M

(2)
i ,

∩
M

(3)
i ⟩ (arbitrary union) 4.

7.
∩
Mi = ⟨X,

∩
M

(1)
i ,

∪
M

(2)
i ,

∪
M

(3)
i ⟩ (arbitrary intersection).

8. M \N = M ∩N c (difference).

9. Xδ = ⟨X,X, ∅, ∅⟩ (universal picture set).

10. ∅δ = ⟨X, ∅, X,X⟩ (empty picture set).

In the next subsection we shall prove and analyze some basic properties of the operations mentioned
above.

3.2. Algebraic aspects of picture sets
First, we should be sure that our unary and binary operations produce new picture sets.

Lemma 3.1. Let M , N be two picture sets on X . Then M ∪N , M ∩N and M c are picture sets too.
4We omit some subscripts to avoid unnecessary complication. However, it is clear that we mean unions and intersections indexed

with i ∈ J . Moreover, just like in the earlier case of intuitionistic sets, we use superscripts to enumerate components for a while.
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Proof. In each case the only condition to check is that members and non-members have empty intersection.
Take M∪N = ⟨X,M1∪N1,M2∩N2,M3∩N3⟩ . Now (M1∪N1)∩(M3∩N3) = (M1∩M3∩N3)∪(N1∩M3∩N3) =

(∅ ∩N3) ∪ (M3 ∩ ∅) = ∅ ∪ ∅ = ∅ .
Similar proof can be performed for intersection. Both these proofs can be adjusted to the concept of

arbitrary unions and intersections.
As for the complement, the proof is obvious because of the commutativity of intersection.

Remark 3.1. One can point out that other algebraic operations on picture sets are possible too. For example,
we can define:

1. Strong intersection: M ⌢ N = ⟨M1 ∩N1,M2 ∪N2,M3 ∩N3⟩

2. Total intersection: M ∧N = ⟨M1 ∩N1,M2 ∩N2,M3 ∩N3⟩

3. Strong union: M ⌣ N = ⟨M1 ∪N1,M2 ∪N2,M3 ∩N3⟩ .

Note that we cannot define something like ”total union” ∨ as M ∨N = ⟨M1 ∪N1,M2 ∪N2,M3 ∪N3⟩ .
Take e.g. X = {a, b, c, d, e, f} , M = ⟨X, {a, b}, {b}, {d}⟩ , N = ⟨X, {c, d}, {c}, {e}⟩ . Now M ∨ N =

⟨X, {a, b, c, d}, {b, d}, {d, e}⟩ . And now (M1 ∪ N1)1 ∩ (M3 ∪ N3) = {a, b, c, d} ∩ {d, e} = {d} ̸= ∅ . Hence
the resulting set is not a properly defined picture set. Clearly, the same can be said about the following function:
M ⊻N = ⟨M1 ∪N1,M2 ∩N2,M3 ∪N3⟩ .

Note that non-standard forms of inclusion are possible too. However, perhaps they would build weaker
algebras (at least when considered with ∩ and ∪).

We think that the properties of ⌢ , ∧ and ⌣ should be studied in further research. However, we consider
∪ and ∩ as crucial. Thus, let us prove the following lemma.

Lemma 3.2. Assume that M , N , L and Mi (for any i ∈ J ) are picture sets on a universe X . Then the
following properties are true:

1. (
∪

Mi)
c =

∩
M c

i .

2. (
∩

Mi)
c =

∪
M c

i .

3. M ⊆ N ⇒ N c ⊆ M c .

4. (M c)c = M .

5. M ∩ (N ∪ L) = (M ∩N) ∪ (M ∩ L) .

6. M ∪ (N ∩ L) = (M ∪N) ∩ (M ∪ L) (distributivity).

7. M ∪ (N ∪ L) = (M ∪N) ∪ L .

8. M ∩ (N ∩ L) = (M ∩N) ∩ L (associativity).

9. M ∩ (M ∪N) = M .

10. M ∪ (M ∩N) = M (absorption laws).

11. M ⊆ Xδ and ∅δ ⊆ M .

12. M \ (N ∩ L) = (M \N) ∪ (M \ L) .
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13. M ∩ ∅δ = ∅δ and M ∪ ∅δ = M .

14. M ∩Xδ = M and M ∪Xδ = Xδ .

Proof. Basically, these proofs are not complicated. However, from the formal point of view, we have some
new algebra of sets here (namely, the algebra of picture sets), hence it would be good to prove at least some
fragments.

1. We have (
∪
Mi)

c = ⟨X,
∪
M

(1)
i ,

∩
M

(2)
i ,

∩
M

(3)
i ⟩c = ⟨X,

∩
M

(3)
i , (

∩
M

(2)
i )c,

∪
M

(1)
i ⟩ =

∩
M c

i .

2. Similar to the previous one.

3. Assume that M ⊆ N , that is M1 ⊆ N1 , N2 ⊆ M2 and N3 ⊆ M3 . Now recall the fact (from the basic set
theory) that if N2 ⊆ M2 , then (M2)

c ⊆ (N2)
c . But N c ⊆ M c means exactly that N3 ⊆ M3 , (M2)

c ⊆ (N2)
c

and M1 ⊆ N1 , so we obtain the same conclusion.

4. Obvious.

5. We have M∩(N∪L) = M∩⟨X,N1∪L1, N2∩L2, N3∩L3⟩ = ⟨X,M1∩(N1∪L1),M2∪(N2∩L2),M3∪(N3∩L3)⟩ =
⟨X, (M1 ∩N1) ∪ (M1 ∩ L1), (M2 ∪N2) ∩ (M2 ∪ L2), (M3 ∪N3) ∩ (M3 ∪ L3)⟩ = (M ∩N) ∪ (M ∩ L) .

6. We have M∪(N∪L) = M∪⟨X,N1∪L1, N2∩L2, N3∩L3⟩ = ⟨X, (M1∪N1)∪L1, (M2∩N2)∩L2, (M3∩N3)∩L3⟩ =
(M ∪N) ∪ L . Clearly, we used the fact that associativity laws are true for classical sets.

7. Analogous.

8. We have M∩(M∪N) = M∩⟨X,M1∪N1,M2∩N2,M3∩N3⟩ = ⟨M1∩(M1∪N1),M2∪(M2∩N2),M3∪(M3∩N3)⟩ =
⟨X,M1,M2,M3⟩ = M . Clearly, we used the fact that absorption laws are true for classical sets.

9. Analogous.

10. As for the first part: clearly, M1 ⊆ X and ∅ ⊆ M2 , ∅ ⊆ M3 in any case. The second part is similar.

11. M \ (N ∩L) = M ∩ ⟨X,N1 ∩L1, N2 ∪L2, N3 ∪L3⟩c = M ∩ ⟨X,N3 ∪L3, (N2 ∪L2)
c, N1 ∩L1⟩ = ⟨X,M1 ∩ (N3 ∪

L3),M2∪(N2∪L2)
c,M3∪(N1∩L1)⟩ = ⟨X, (M1∩N3)∪(M1∩L3), (M2∪N c

2 )∩(M2∪Lc
2), (M3∪N1)∩(M3∪L1)⟩ .

But at the same time (M \N)∪ (M \L) = ⟨X,M1 ∩N3,M2 ∪N c
2 ,M3 ∪N1⟩∪ ⟨X,M1 ∩L3,M2 ∪Lc

2,M3 ∪L1⟩ =
⟨X, (M1 ∩N3) ∪ (M1 ∩ L3), (M2 ∪N c

2 ) ∩ (M2 ∪ Lc
2), (M3 ∪N1) ∩ (M3 ∪ L1)⟩ = M \ (N ∩ L) .

12. M ∩ ∅δ = ⟨X,M1 ∩ ∅,M2 ∪X,M3 ∪X⟩ = ⟨X, ∅, X,X⟩ = ∅δ . The second part is similar.

13. Similar to the former.

Clearly, one can ask what about the law of the excluded middle. This has been explained in the remark
below.

Remark 3.2. Note that the union of picture set M and its complement M c need not to be identical with
the whole universal picture set ⟨X,X, ∅, ∅⟩ . Take e.g. X = {a, b, c, d, e} , M = ⟨X, {a, b}, {c}, {d, e}} . Then
M c = {X, {d, e}, {a, b, d, e}, {a, b} and M ∪M c = ⟨X, {{a, b, d, e}, ∅, ∅} . Hence, the law of the excluded middle
does not hold.

What about the law of consistency (that is, contradiction)?
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Remark 3.3. For any picture set M on X we have: M ∩ M c = ⟨X,M1,M2,M3⟩ ∩ ⟨X,M3,M
c
2 ,M1⟩ =

⟨X,M1 ∩M3,M2 ∪M c
2 ,M3 ∪M1⟩ = ⟨X, ∅, X,M3 ∪M1⟩ . Note that the last set need not to be equal with empty

picture set. Consider the following counterexample: X = {a, b, c, d, e} , M = ⟨X, {a, b}, {c, d}, {d, e}⟩ . Thus,
M c = ⟨X, {d, e}, {a, b, e}, {a, b} . Hence, M ∩ M c = ⟨X, ∅, {a, b, c, d, e}, {a, b, d, e} = ⟨X, ∅, X, {a, b, d, e}⟩ ̸= ∅δ
(because {a, b, d, e} ̸= X ). Hence, the logic determined by picture sets is (at least in some sense) paraconsistent.

Lemma 3.3. Assume that X is a non-empty universe and A , B are picture subsets of X . Suppose that
A ∩B = ∅δ . Then B ⊆ Ac (and A ⊆ Bc ).

Proof. Let us recall that A = ⟨X,A1, A2, A3⟩ , Ac = ⟨X,A3, A
c
2, A1⟩ , B = ⟨X,B1, B2, B3⟩ , A1∩A3 = B1∩B3 =

∅ . Moreover, by the very assumption about empty picture intersection of A and B , we have A1 ∩ B1 = ∅ ,
A2 ∪B2 = X and A3 ∪B3 = X .

The fact that B ⊆ Ac means that the following three conditions are simultaneously satisfied: B1 ⊆ A3 ,
Ac

2 ⊆ B2 and A1 ⊆ B3 . Suppose that this conjunction is not true. Then:
a) Assume that B1 ⊈ A3 . It means that there is some x ∈ B1 such that x /∈ A3 . But then x /∈ B3

(because B1 ∩B3 = ∅) . Hence x /∈ (A3 ∪B3) = X . Contradiction.
b) Assume that Ac

2 ⊈ B2 . Hence, there is x ∈ Ac
2 (which means that x /∈ A2 ) such that x /∈ B2 . Thus

x /∈ (A2 ∪B2) = X . Contradiction.
c) Assume that A1 ⊈ B3 . Hence there is x ∈ A1 (which means tat x /∈ A3 ) such that x /∈ B3 . But then

x /∈ (A3 ∪B3) = X . Contradiction.

One could say that our definitions of complement operation or empty and universal set are not the only
possible ones. In some sense, this is true (in fact, we have already pointed out that alternative versions of union
and intersection are possible too). For example, one could think about total empty set, that is ⟨X, ∅, ∅, ∅⟩ .
Note, however, that in this case ∅c = ⟨X, ∅, X, ∅⟩ . Hence, we cannot say that the whole universe (in its picture
interpretation) is a complement of empty set. Moreover, it is always true that ⟨X, ∅, X,X⟩ is contained in every
picture set, while ⟨X, ∅, ∅, ∅⟩ is contained only in the sets of the form ⟨X,A, ∅, ∅⟩ .

Moreover, we can prove that our inclusion is transitive:

Lemma 3.4. Let M,N, T be three picture sets on X . If M ⊆ N and N ⊆ T , then M ⊆ T .

Proof. If M ⊆ N , then M1 ⊆ N1 , N2 ⊆ M2 and N3 ⊆ M3 . If N ⊆ T , then N1 ⊆ T1 , T2 ⊆ N2 and T3 ⊆ N3 .
But then, by transitivity of inclusion of classical sets, M1 ⊆ T1 , T2 ⊆ M2 and T3 ⊆ M3 .

Finally, there is a lemma that will be useful later in the context of subspaces.

Lemma 3.5. Let A and B be two picture sets on X and A ⊆ B . Then A ∩B = A .

Proof. A∩B = ⟨X,A1∩B1, A2∪B2, A3∪B3⟩ . However, A ⊆ B , so A1 ⊆ B1 and thus A1∩B1 = A1 , B2 ⊆ A2

and thus A2 ∪B2 = A2 and B3 ⊆ A3 , so A3 ∪B3 = A3 .

The next definition refers to the concept of point.

Definition 3.3. Let X be a non-empty universe. An element mδ ∈ X is called picture point if mδ =

⟨X, {m}, {m}c, {m}c⟩ , where m ∈ X . If M is a picture set on X , then we say that mδ ∈ M if and only if
m ∈ M1 . The set of all picture points that belong to some picture set M will be denoted as Pt(M) .
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For example, if M = ⟨X, {a, c, d}, {a, b}, {b, e}⟩ then Pt(M) = {aδ, cδ, dδ} . Clearly, Pt(M) is a classical
set.

Note that if X contains n elements (that is, n picture points), then the picture power set of X contains
6n elements. Moreover, note that picture points are defined in a specific manner. As we already know, it is
possible that the intersection of M and M c is not empty in a picture sense. However, belonging of mδ to M

depends only on M1 . Hence, if mδ ∈ M , then m ∈ M1 , and thus m /∈ M3 (because M1 ∩M3 = ∅). But then
mδ /∈ M c . So the set of common picture points of M and M c is empty (clearly, this is a classical set: namely,
classical empty set).

Besides, we see that the relation of belonging defined in terms of picture points is specific also in the
sense that it is always true that mδ ∈ mδ .

Lemma 3.6. Suppose that M,N are two picture sets over X and M ⊆ N . Now, if xδ ∈ M , then xδ ∈ N .

Proof. This is clear. If M ⊆ N , then (in particular) M1 ⊆ N1 . If xδ ∈ M , then x ∈ M1 , so x ∈ N1 and thus
xδ ∈ N .

Remark 3.4. On the other hand, it is possible that for each xδ ∈ M we have that xδ ∈ N but M ⊈ N . Take
X = {a, b, c, d} , M = ⟨X, {a, b}, {c}, {d, e}⟩ and N = ⟨X, {a, b, c}, {c, d}, {e}⟩ . Now, what are the picture points
contained in M ? These are aδ = ⟨X, {a}, {b, c, d}, {b, c, d}⟩ and bδ = ⟨X, {b}, {a, c, d}, {a, c, d}⟩ . Clearly, a

and b belong to N1 = {a, b, c} . Thus, aδ and bδ belong to N . However, we cannot say that M ⊆ N because
{c, d} = N2 ⊈ M2 = {c} .

The last remark suggests a new definition.

Definition 3.4. Let M,N be two picture sets on X . We say that M is picture point contained in N if and
only if for any xδ , if xδ ∈ M , then xδ ∈ N . In such case we write M ≤ N . If M ≤ N and N ≤ M , then we
say that M and N are picture point similar and we denote this by M ≈ N .

In practice, it means that M ≤ N if and only M1 ⊆ N1 . Then M and N are picture point similar if
they have the same picture points. It means that M1 = N1 .

The next lemma is obvious.

Lemma 3.7. Assume that M,N are picture sets on X and M ⊆ N . Then M ≤ N .

Remark 3.5. Note that the fact that xδ /∈ M does not mean that xδ ∈ M c . If xδ /∈ M , then x /∈ M1 . But
this does not necessarily mean that x ∈ M3 . This is because M3 ⊆ M c

1 but it may not be equal with M c
1 .

We should remember that picture points are on the same ”level of existence” as picture sets. In fact,
they are picture sets of some specific kind. This is, in general, different than in case of classical sets where we
treat elements as being on somewhat ”lower” or ”more elementary” level than sets.

Remark 3.6. Note that the fact that xδ ∈ M does not necessarily mean that xδ ⊆ M . Take X = {a, b, c}
and M = ⟨X, {a, b}, {a}, ∅⟩ . Now aδ = ⟨X, {a}, {b, c}, {b, c}⟩ and aδ ∈ M because a ∈ M1 = {a, b} . However,
aδ ⊈ M because M2 = {a} ⊈ {b, c} .

On the other hand, it is clear that if xδ ⊆ M , then x ∈ M .
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3.3. Topology of picture sets

One of the most natural applications of non-classical sets5 are topologies and various weaker or just different
classes (like supra- and infra-topologies, minimal structures etc.). Due to this fact we define picture topologies.

3.4. Picture topologies
Definition 3.5. Let X be a non-empty universe. A collection τδ of picture subsets on X is called picture
topology on X if and only if the following axioms are satisfied:

1. Xδ, ∅δ ∈ τδ .

2. τδ is closed under arbitrary picture unions and finite picture intersections.

An ordered pair (X, τδ) is called picture topological space. Members of τδ are known as picture open sets
(PδOS ) in X . Their picture complements are picture closed sets (PδCS ).

Example 3.1. Assume that X = {a, b, c, d, e, f} . Consider:
τδ = {∅δ, Xδ, A = ⟨X, {a, b}, {c}, {d}⟩, B = ⟨X, {b, d}, {d, e}, {e, f}⟩,

C = ⟨X, {a, b, d}, ∅, ∅⟩, D = ⟨X, {b}, {c, d, e}, {d, e, f}⟩} .
One can check by direct inspection that τδ is a picture topology on X . For example, we see that A∪B = C ,

A ∩B = D , C ∪D = C , C ∩D = D , A ⊆ C , D ⊆ A (so A ∪ C = C , A ∩ C = A , A ∪D = A , A ∩D = D)

and the intersections and unions with ∅δ and Xδ are clear.

Example 3.2. Assume that X = N and τδ consists of ∅δ,Nδ and all picture sets of the form ⟨N, A, ∅, ∅⟩ where
A ⊆ N . Now, if M,N ∈ τδ , then their intersection is of the form ⟨N,M ∩ N, ∅ ∪ ∅, ∅ ∪ ∅⟩ = ⟨N,M ∩ N, ∅, ∅⟩
(so it belongs to τδ ). As for the arbitrary union, it will be ⟨N,

∪
Mi, ∅, ∅⟩ . Note that at first glance, it looks

like classical discrete topology where each set is open. However, this observation is true only if we limit our
attention to the first components, that is, to M1 , N1 and so on. In general, τδ does not contain all the picture
sets on X . For example, it is clear that e.g. ⟨N, {1, 2, 3}, {3, 4, 5}, {8, 9}⟩ does not belong to τδ .

Of course, as always in such cases, it is possible to assume that every picture set is open and to formulate
discrete picture topology.

Example 3.3. Let X = R . Assume that τδ(Z) consists of ∅δ , Rδ and all the picture sets of the form
⟨X,A,B,C⟩ where A can be written as a union of open intervals, while B and C are arbitrary subsets of some
determined finite Z ⊆ R . Note that if we limit our attention only to the first components, then this is just like
ordinary topology on R . On the other hand, when we consider only second and third components, then we may
think about discrete topologies on Z .

In general, exemplary elements of τδ(Z) are (if Z = {10, 11, 12, 13}): M = ⟨R, (0, 1), {10, 11}, {11, 12}⟩
or N = ⟨R, (−5,−1) ∪ (1, 5), {12}, {13}⟩ .

Definition 3.6. We say that a basis B for a picture topology τδ on X is any collection Bδ of picture subsets
of X such that;

1. For each xδ ∈ Xδ there is at least one basis element B containing xδ .
5By ”non-classical” sets we understand all those classes that are used to model uncertainty in non-probabilistic sense: that is,

fuzzy, neutrosophic, rough, soft sets etc.
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2. If xδ belongs to B1 ∩B2 (where B1, B2 ∈ B ), then there is B3 ∈ B such that B3 ⊆ B1 ∩B2 .

Definition 3.7. A subbasis S for a picture topology τδ on X is a collection of picture subsets of X whose
union equals X . The picture topology generated by the subbasis S is defined as a collection of all unions of
finite intersections of the elements of S .

Definition 3.8. Assume that (X, τδ) is a picture topological space and xδ ∈ Xδ . We say that a picture set G

on X is a picture neighborhood of xδ if there exists a picture open set U in X such that xδ ∈ U ⊆ G .

3.5. Picture interior
The notion of interior is crucial in topology. Here we have its two interpretations in picture framework.

Definition 3.9. Assume that (X, τδ) is a picture topological space, M ∈ Pic(X) and xδ ∈ Xδ . We say that
xδ is a picture interior point of M if there exists picture open set U such that xδ ∈ U ⊆ M . The union of
picture interior points 6 of M is called picture point interior of M , that is P p

δ int(M)) . We say that M is
picture point open if and only if M = P p

δ int(M) .

Remark 3.7. Note that we defined P p
δ int(M) not as a collection of picture interior points of M but as their

union. A collection would be classical while we want this kind of interior to be a picture set too. After some
additional investigation of sources, we recognized that a similar concept has been introduced in the context of
intuitionistic topological spaces by Kim et al. in [8].

Definition 3.10. Assume that (X, τδ) is a picture topological space and M ∈ Pic(X) . Then we say that the
union of all picture open sets contained in M is a picture interior of M and it is denoted by Pδint(M) .

These two definitions are not equivalent. This is clear from the remark below.

Remark 3.8. Take topology from Example 3.1. Take M = ⟨X, {a, b, c}, {c}, {d}⟩ . Let us compute its picture
interior. The only picture open set contained in M is A = ⟨X, {a, b}, {c}, {d}⟩ , hence A = Pδint(M) .
However, both aδ and bδ (but not cδ ) are of this kind that there is U ∈ τδ such that aδ ∈ U , bδ ∈ U

and U ⊆ E . In fact, this U can be just A . However, aδ ∪ bδ = ⟨X, {a}, {b, c, d, e, f}, {b, c, d, e, f}⟩ ∪
⟨X, {b}, {a, c, d, e, f}, {a, c, d, e, f}⟩ = ⟨X, {a, b}, {c, d, e, f}, {c, d, e, f}⟩ . This set, namely P p

δ int(M) is different
than Pδint(M) .

However, we have the following relationship:

Lemma 3.8. Let (X, τδ) be a picture topological space and M ∈ Pic(X) . Then P p
δ int(M) ≈ Pδint(M) .

Proof. (≤).
Suppose that there is yδ ∈ Pδint(M) such that yδ /∈ P p

δ int(M) . Then for any U ∈ τδ such that yδ ∈ U ,
we have U ⊈ M . However, we assumed that yδ ∈ Pδint(M) , hence it belongs to the union of all picture open
sets contained in M . Thus, it must belong to at least one such set. Contradiction.

(≥).
Suppose that there is yδ ∈ P p

δ int(M) such that yδ /∈ Pδint(M) . Hence yδ is beyond the union of all
picture open sets contained in M . But because of the first part of our assumption there must be at least one
such set. Contradiction.

6Again, recall the fact that picture points are, in particular, picture sets, so here we mean their picture union.
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In Remark 3.8 we have the following situation: that P p
δ int(M) ⊆ Pδint(M) . But in general, it is not

true. Consider the same topology and the set B ∈ τδ . Recall that it was ⟨X, {b, d}, {d, e}, {e, f}⟩ . This set is
picture open in this topology, so Pδint(B) = B 7. But P p

δ int(B) = bδ ∪ dδ = ⟨X, {b, d}, {a, c, e, f}, {a, c, e, f}⟩ .
However, B2 = {d, e} ⊈ {a, c, e, f} , so we cannot say that P p

δ int(B) ⊆ Pδint(B) .

Lemma 3.9. Let (X, τδ) be the picture topological space, then for any M in Pic(X) the following statements
hold:

1. Pδ int(M) ⊆ M .

2. M is picture open set iff Pδ int(M) = M .

3. If M is picture open and N ⊆ M , then N ⊆ Pδ int(M) .

4. Pδ int(M) is a picture open set.

5. If M ⊆ N , then Pδ int(M) ⊆ Pδ int(N) .

6. Pδ int(Pδ int(M)) = Pδ int(M) .

7. Pδ int(Xδ) = Xδ;

Pδ int(ϕδ) = ϕδ.

8. Pδ int(M) ∪ Pδ int(N) ⊆ Pδ int(M ∪N) .

9. Pδ int(M) ∩ Pδ int(N) = Pδ int(M ∩N) .

Proof. At first glance, these statements seem to be very natural and the reader can suppose that all the proofs
are standard. However, we know that the algebra of picture sets is not identical with the classical Boolean
algebra of P (X) . Hence, we should ensure that picture operations behave in a manner that makes all the
statements above true. Some cases are obvious while the others require more attention.

1. This is obvious. Note that analogous statement is not necessarily true in case of P p
δ int(M) , as it was shown in

Remark 3.8.

2. (⇒) . This is clear because M ⊆ M . (⇐) . Assume that Pδ int(M) = M . It means that M is identical with
the union of all picture open sets contained in M . But τδ is closed under picture unions, so this union (and
thus, M itself) must be picture open.

3. This is clear in the light of (2), taking into account the fact that M is just identical with its picture interior.

4. This is obvious in the light of the definition and because of the closure of τδ under picture unions.

5. Pδint(M) is of the form
∪
{U ∈ τδ : U ⊆ M} and Pδint(N) is of the form

∪
{V ∈ τδ : V ⊆ N} . But M ⊆ N ,

so for any U taken into account in Pδint(M) we have U ⊆ N . But then U is included in Pδint(N) .

6. (⊆). It is clear from (1). (⊇). From (1) Pδint(M) ⊆ M . But then Pδint(Pδint(M)) ⊆ Pδint(M) (from (5)).

7. Both cases are clear if one remembers that Xδ, ∅δ ∈ τδ . Then it is enough to use (2).

8. Clearly, M ⊆ M ∪ N and N ⊆ M ∪ N . Thus, Pδint(M) ⊆ Pδint(M ∪ N) and Pδint(N) ⊆ Pδint(M ∪ N) .
Hence the conclusion is clear.

7To be precise, this property will be mentioned in the next lemma.
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9. (⊇). Clearly, M ∩N ⊆ M and M ∩N ⊆ N , so Pδint(M ∩N) ⊆ Pδint(M) and Pδint(M ∩N) ⊆ Pδint(N) .
Hence the conclusion is natural. (⊆) . First, Pδint(M) ∩ Pδint(N) ⊆ M ∩ N . Now, Pδint(Pδint(M) ∩
Pδint(N)) ⊆ Pδint(M ∩N) . But both Pδint(M) and Pδint(N) are picture open, so their intersection is open
too. Thus, from (2), Pδint(Pδint(M) ∩ Pδint(N)) = Pδint(M) ∩ Pδint(N) and now we are ready.

3.6. The notion of closure
The notion of closure is another term typical for topology. It can be considered as a counterpart of the notion
of interior.

Definition 3.11. Let (X, τδ) be a picture topological space and M be a picture set on X . We say that
Pδcl(M) is a picture closure of M if it is the intersection of all picture closed sets containing M .

Lemma 3.10. Let (X, τδ) be a picture topological space. Then for any picture subset M of X the following
statements hold:

1. Pδ cl(M) is a picture closed set.

2. M is picture closed set iff Pδ cl(M) = M .

3. If M is picture closed set and M ⊆ N , then Pδ cl(M) ⊆ N .

4. Pδ cl(Xδ) = Xδ;

Pδ cl(ϕδ) = ϕδ.

5. Pδ cl(Pδ cl(M)) = Pδ cl(M) .

6. If M ⊆ N , then Pδ cl(M) ⊆ Pδ cl(N) .

7. Pδ cl(M ∪N) = Pδ cl(M) ∪ Pδ cl(N) .

8. Pδ cl(M ∩N) ⊆ Pδ cl(M) ∩ Pδ cl(N) .

9. For any xδ ∈ X ; if xδ ∈ Pδ cl(M) then V ∩M ̸= ϕδ for every picture open set V containing xδ .

10. X\Pδ cl(M) = Pδ int(X\M) ;
X\Pδ int(M) = Pδ cl(X\M) .

11. Pδ int(M) = X\Pδ cl(X\M)

Pδ cl(M) = X\Pδ int(X\M) .

Proof. We leave the majority of proofs for the reader. Basically, the statements presented in this lemma are
counterparts of analogous statements for (picture) interior. However, think about (9).

Let xδ ∈ Pδcl(M) . It means that for any picture closed set B (that is, for any picture set B such that
Bc is picture open) such that M ⊆ B , we have xδ ∈ B (hence, x ∈ B1 ). Now suppose that there is some
V ∈ τδ such that xδ ∈ V and V ∩ M = ∅δ = ⟨X, ∅, X,X⟩ . Now, x ∈ V1 , so x /∈ V3 . Thus, xδ /∈ V c and
V c is picture closed as a complement of a picture open set. Moreover, by virtue of Lemma 3.3, we know that
M ⊆ V c . Thus, we obtain a contradiction.
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Remark 3.9. Note that the converse of (9) may not be true. Basically, in classical topological spaces, the
analogue of this converse would be proven in the following way. Assume that U ∩M ̸= ∅δ for some xδ such that
xδ ∈ U ∈ τδ . Now suppose that xδ /∈ cl(M) . Then there must be some closed F such that M ⊆ F and xδ /∈ F .
But then xδ ∈ F c . However, F c is open (as a complement of closed set) and F c has empty intersection with
M . Thus we have an example of open set containing xδ and having empty intersection with M . Contradiction.

However, in case of picture sets and points the fact that xδ /∈ F does not necessarily imply that xδ ∈ F c .
The only necessary conclusion is that x /∈ F1 , so x ∈ F c

1 . However, F c
1 may be different than F3 (even if

F3 ⊆ F c
1 ). We cannot say that x ∈ F3 .
To be precise, think about the following picture topology. Let X = {a, b, c, d, e, f} . Then let τδ =

{∅, X,A = ⟨X, {a, b}, {b, c}, {c, d, e, f}⟩, B = ⟨X, {c, d}, {a, b}, {e, f}⟩, C = ⟨X, ∅, {a, b, c}, {c, d, e, f}⟩, D =

⟨X, {a, b, c, d}, {b}, {e, f}⟩} .
One can easily check that τδ is a picture topology on X . Both A and B are just arbitrary picture sets,

while C is their intersection and D is their union.
Then τ cδ = {∅, X,E = ⟨X, {c, d, e, f}, {a, d, e, f}, {a, b}⟩, F = ⟨X, {e, f}, {c, d, e, f}, {c, d}⟩,

G = ⟨X, {c, d, e, f}, {d, e, f}, ∅⟩,H = ⟨X, {e, f}, {a, c, d, e, f}, {a, b, c, d}⟩} .
Now take picture point bδ = ⟨X, {b}, {a, c, d, e, f}, {a, c, d, e, f}⟩ and consider M = ⟨X, {c, d, e, f}, {d, e, f}, ∅⟩ .

In fact, M = G (so it is picture closed, hence Pδcl(M) = M ) and we see that bδ /∈ M (because b /∈ {c, d, e, f}).
Thus bδ /∈ Pδcl(M) .

Now let us find all those picture open sets that contain bδ . These are X , A and D . Clearly, M ∩X ̸= ∅ .
Now let us calculate:

M ∩A = ⟨X, ∅, {b, c, d, e, f}, {c, d, e, f}⟩ . This set is different than ∅ = ⟨∅, X,X⟩ .
M ∩D = ⟨X, {c, d}, {b, d, e, f}, {e, f}⟩ . Again, this is not ∅ .
Hence, we have just shown that it is possible that some picture point (in our case, bδ ) does not belong to

the closure of some picture set (in our case, M ) even if the intersection of any picture open set containing this
point with M is non-empty in a picture sense.

3.7. Picture limit points

In this subsection we define and discuss the idea of convergence. We start from the initial definition.

Definition 3.12. A picture point pδ is said to be a picture limit point of a picture set M if for each picture
neighborhood Nδ of pδ we have Nδ ∩ (M \ pδ) ̸= ∅δ . The set of all picture limit points of a set M is known as
a picture derived set (Dδ(M)).

Note that (contrary to its name) this picture derived set is a classical set. Picture points are, as we
already know, just picture sets of some specific type. Hence, any set of them is just a classical set of such
objects: e.g. of the form D(A) = {aδ, cδ dδ} and so on. Due to the same reason in the definition of limit points
we do not substract {pδ} from M (that is, singleton of pδ ) but pδ itself (to make this substraction possible).

Example 3.4. Consider picture topology presented in Remark 3.9. In fact, we proved that bδ is a picture limit
point of M . Let us calculate M ′ = M\bδ = M∩bcδ = ⟨X, {c, d, e, f}, {d, e, f}, ∅⟩∩⟨X, {a, c, d, e, f}, {b}, {a, c, d, e, f}⟩ =
⟨X, {c, d, e, f}, {b, d, e, f}, {a, c, d, e, f}⟩ .

Now (recall that A and D are the only open neighborhoods of bδ ):
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M ′ ∩A = ⟨X, ∅, {b, c, d, e, f}, {a, c, d, e, f}⟩ ̸= ∅δ .
M ′ ∩D = ⟨X, {c, d}, {b, d, e, f}, {a, c, d, e, f}⟩ ̸= ∅δ .

Example 3.5. Take topology from Example 3.1. Consider M = ⟨X, {a, b, c}, {c}, {d}⟩ and picture point bδ .
We calculate:

M ′ = M \ bδ = M ∩ bcδ = M ∩ ⟨X, {a, c, d, e, f}, {b}, {b}⟩ = ⟨X, {a, c}, {b, c}, {b, d}⟩ . As for the picture
open neighborhoods of bδ in this topology, these are A , B , C and D . So we calculate:

M ′ ∩A = ⟨X, {a}, {b, c}, {b, d}⟩ ̸= ∅δ .
M ′ ∩B = ⟨X, ∅, {b, c, d, e}, {b, d, f}⟩ ̸= ∅δ .
M ′ ∩ C = ⟨X, {a}, {b, c}, {b, d}⟩ ̸= ∅δ .
M ′ ∩D = ⟨X, ∅, {b, c, d, e}, {b, d, e, f}⟩ ̸= ∅δ .
Obviously, M ′ ∩X ̸= ∅δ , so bδ is a picture limit point of M .

Remark 3.10. There is a natural temptation to think that if xδ is a picture limit point of some picture set M ,
then it means that each picture open neighborhood of xδ contains some yδ that belongs to M and is different
than xδ . However, Example 3.5 shows that this is not true. We have proven that bδ is a limit point of M

but now let us think about D . This set is one of the open neighborhoods of bδ . However, it contains only one
picture point, namely bδ . It does not change the fact that D ∩M ′ is not empty in a picture sense (albeit its
first component is empty classical set).

We shall prove the following lemma.

Lemma 3.11. Let M and N be the picture subsets of X . Let Dδ(M) and Dδ(N) denote picture derived sets
of M and N respectively. Then the following statement is true: if M ⊆ N , then Dδ(M) ⊆ Dδ(N) .

Proof. Assume that Dδ(M) ⊈ Dδ(N) . It means that there is some picture point xδ such that xδ is a limit
point of M but not a limit point of N . It means that there is some picture open neighborhood A of xδ such
that A ∩ (N ∩ xc

δ) = ∅δ . On the other hand, we have that A ∩ (M ∩ xc
δ) ̸= ∅δ . But M ∩ xc

δ ⊆ N ∩ xc
δ , so

A ∩ (M ∩ xc
δ) ⊆ A ∩ (N ∩ xc

δ) and this is contradiction.

In the next lemma we should distinguish between two situations. When we say that xδ ∈ Dδ(M) then
we mean that xδ is a member of a classical set Dδ(M) (a collection of picture limit points of M ). But when
we say that xδ ∈ B (where B is a picture set) then we mean belonging defined as in Definition 3.3.

Lemma 3.12. Let M and N be the picture subsets of X . Then Dδ(M ∪N) = Dδ(M) ∪Dδ(N) .

Proof. (⊆).
We want to show that if xδ ∈ Dδ(M ∪N) then xδ must be in Dδ(M) or Dδ(N) . By the assumption:

for any A ∈ τδ such that xδ ∈ A we have A ∩ ((M ∪N) ∩ xc
δ) ̸= ∅δ . Now assume that xδ /∈ Dδ(M) ∪Dδ(N) .

Hence, xδ /∈ Dδ(M) and xδ /∈ Dδ(N) . The first part of this conjunction says that there is some B ∈ τδ such
that xδ ∈ B and B ∩ (M ∩ xc

δ) = ∅δ . Analogously, the second part says that there is some C ∈ τδ such that
xδ ∈ C and C ∩ (M ∩ xc

δ) = ∅δ .
But for any A ∈ τδ such that xδ ∈ A we have A ∩ ((M ∪ N) ∩ xc

δ) = A ∩ ((M ∩ xc
δ) ∪ (N ∩ xc

δ)) =

(A∩ (M ∩ xc
δ))∪ (A∩ (N ∩ xc

δ)) . But both components of this final disjunction are non-empty in picture sense
(for any A ∈ τδ ). Hence, there is no place for B and C .
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(⊇). Assume that xδ ∈ Dδ(M) ∪ Dδ(N) . Without loss of generality, assume that xδ ∈ Dδ(M) . This
means that for any A ∈ τδ such that xδ ∈ A , we have A∩(M∩xc

δ) ̸= ∅δ . Now assume that xδ /∈ Dδ(M∪N) . But
this means that there is some B ∈ τδ such that xδ ∈ B and B∩((M∪N)∩xc

δ) = (B∩(M∩xc
δ))∪(B∩(N∩xc

δ)) =

∅δ . However, at least the first component of this last union is non-empty in picture sense. Thus, the whole
union cannot be empty. Contradiction.

The reader is encouraged to prove the next lemma in a similar manner:

Lemma 3.13. Let M and N be the picture subsets of X . Then Dδ(M ∩N) ⊆ Dδ(M) ∩Dδ(N) .

3.8. Picture contact points

No we define another notion, slightly different that the notion of picture limit point (but similar).

Definition 3.13. A picture point pδ is said to be a picture contact point of M if and only if for each picture
neighborhood Nδ of pδ we have Nδ ∩M ̸= ∅δ . Picture union of all the picture contact points of M is called
the picture point closure of M , that is P p

δ cl(M) . We say that M is picture point closed if M = P p
δ cl(M) .

This notion is a counterpart of the notion of picture point interior (not necessarily of picture interior).
The latter two are not identical, as we already know. However, is we say ”counterpart”, then we should be
aware of some limitations of this term. The next remark is important:

Remark 3.11. The fact that a picture set is picture point open does not necessarily mean that its complement
is picture point closed. Take topology from Example 3.1. Take N = ⟨X, {a, b}, {c, d, e, f}, {c, d, e, f}⟩ . One
can easily check that P p

δ Int(N) = N (just sum up aδ and bδ ). Now take N c = ⟨X, {c, d, e, f}, {a, b}, {a, b}⟩ .
Consider picture point aδ . On the one hand, it does not belong to N c (because a /∈ {c, d, e, f}). On the other,
let us calculate the intersections of N c with all non-trivial 8 open neighborhoods of aδ . These neighborhoods
are A = ⟨X, {a, b}, {c}, {d}⟩ and C = ⟨X, {a, b, d}, ∅, ∅⟩ . Thus:

N c ∩A = ⟨X, ∅, {a, b, c}, {a, b, d}⟩ ̸= ∅δ .
N c ∩ C = ⟨X, {d}, {a, b}, {a, b}⟩ ̸= ∅δ .
It means that aδ is a picture contact point of N c but it does not belong to N c . So N c is not picture

point closed.
Besides, think about Ac = ⟨X, {d}, {a, b, d, e, f}, {a, b}⟩ . Take (again) picture point aδ . It does not

belong to Ac . However, it is a picture contact point of Ac because Ac ∩ A = ⟨X, ∅, X, {a, b, d}⟩ ̸= ∅δ and
Ac ∩C = ⟨X, {d}, {a, b, d, e, f}, {a, b}⟩ ̸= ∅δ . This means that aδ is a picture contact point of Ac , so Ac is not
picture point closed. However, as a complement of picture point open A , it is picture closed. Hence, picture
closed set need not to be picture point closed.

Now let us calculate A ∩ (Ac \ aδ) = A ∩ (Ac ∩ acδ) = (A ∩ Ac) ∩ acδ . This will be: ⟨X, ∅, X, {a, b, d}⟩ ∪
⟨X, {a}c, {a}, {a}⟩ = ⟨X, ∅, X, {a, b, d}⟩ ∪ ⟨X, {b, c, d, e, f}, {a}, {a}⟩ = ⟨X, ∅, X, {a, b, d}⟩ ̸= ∅δ . This shows that
aδ is a picture limit point of Ac .

Remark 3.12. One could think that any picture contact point is a picture point of M or it’s picture limit
point, e.g. that Pt(P p

δ cl(M)) = Pt(M) ∪Dδ(M) . However, we already know that picture points do not always
8We consider X as trivial.
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behave as classical points. We leave this question as a small open problem for the reader and for our future
work. Let us give some initial clues. Assume that aδ ∈ Pt(P p

δ cl(M)) but is does not belong to Pt(M) nor
Dδ(M) . The last assumption implies that there is some K ∈ τδ such that a ∈ k and K ∩ (M ∩ acδ) = ∅δ .
However, the fact that aδ ∈ Pt(P p

δ cl(M)) implies that K ∩M ̸= ∅δ . Clearly, aδ /∈ M (by the assumption), so
K ∩M = ⟨X, ∅, (K ∩M)2, (K ∩M)3⟩ where both (K ∩M)2 and (K ∩M)3 are different than X . However,
their union with {a} must give X because K ∩M ̸= ∅δ (we know that the second and the third component of
intersection of picture sets are calculated as the unions of corresponding components of the sets in question).
Hence, they are both of the form X \ {a} .

Thus, the task is to find such universe X , such picture topology τδ , such picture point aδ , such
picture set M and such picture open neighborhood K (of aδ ) that K ∩ M = ⟨X, ∅, X \ {a}, X \ {a}⟩ while
(K ∩M) ∩ acδ = ⟨X, ∅, X,X⟩ . Alternatively, one can try to prove that it is not possible.

4. Picture product and subspace topology

In the last section we briefly introduce the product and subspace topologies in picture environment.

4.1. Picture product topologies

Definition 4.1. Assume that M = ⟨X,M1,M2,M3⟩ and N = ⟨Y,N1, N2, N3⟩ are picture subsets of universes
X and Y respectively. Then the picture Cartesian product of these sets is defined as: M ×δ N = ⟨X×Y,M1×
N1,M2 ×N2,M3 ×N3⟩ .

As we can see, we use classical products to define picture product. Now let us think about the topological
aspect.

Definition 4.2. Assume that (X, τδ) and (Y, µδ) are picture topological spaces. A picture product topology
on X ×δ Y is a picture topology whose basis is a collection D of all picture sets of the form U ×δ V with the
assumption that U and V are picture open subsets of X and Y respectively.

Theorem 4.1. Assume that B is a basis for the picture topology τδ on X while C is a basis for the picture
topology µδ on Y . Then the following collection D = {B×δC;B ∈ B, C ∈ C} is a basis for the picture topology
X ×δ Y .

Proof. Picture elements of the form B ×δ C from the collection D are picture open in the picture product
topology (since each B ∈ B and C ∈ C are picture open in Y ).

Now let (xδ, yδ) ∈ W ⊆ X ×δ Y (where W is picture open in the picture product topology). By the
very definition of picture product topology generated by a basis, there exists a basis element U ×δ V such that
(xδ, yδ) ∈ U ×δ V ⊆ W . Since xδ ∈ U , U is picture open in X and B is a basis for the picture topology on
X , there exists a basis element B ∈ B such that xδ ∈ B ⊆ U . Analogously, there exists a basis element C ∈ C
such that yδ ∈ C ⊆ V . Thus, B ×δ C is in the collection D and (xδ, yδ) ∈ B ×δ C ⊆ U ×δ v ⊆ W .

4.2. Picture subspaces: initial remarks

Definition 4.3. Assume that (X, τδ) is a picture topological space and Y is a picture subset of X (that is,
Y ⊆ Xδ ). Then the following collection τYδ = {G ∩ Y ;G ∈ τδ} is called picture topology on Y . The picture
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topological space (Y, τYδ ) is called picture subspace of (X, τδ) . Its elements are picture open in Y , while their
picture complements with respect to Y (that is, picture sets of the form Y \M ) are picture closed in Y .

The following remark seems to be important in our opinion. It contains certain problem to solve.

Remark 4.1. Note that in classical topological spaces we are able to prove the following theorem: a subset M

of Y is closed in Y if and only if there exists a set F which is closed in X such that M = F ∩ Y .
The proof goes as follows: M is closed in Y ⇔ Y \M is open in Y ⇔ Y \M = G∩Y for some set G

that is open in X ⇔ M = Y \ (G ∩ Y ) = (Y \G) ∪ (Y \ Y ) ⇔ M = Y \G ⇔ M = Y ∩Gc ⇔ M = Y ∩ F ,
where F = Gc is closed in X .

However, in our picture environment there is a problem with this sequence of meta-equivalences. Note
that we used the fact that Y \ Y = ∅δ , hence we were able to write that Y \ (G ∩ Y ) = Y \ G . However, we
already know that in the algebra of picture sets Y \ Y = Y ∩ Y c can be different than ∅δ .

Alternatively, we we can compute Y \ G = Y ∩ Gc = ⟨X,Y1 ∩ G3, Y2 ∪ Gc
2, Y3 ∪ G1⟩ and compare this

with Y \ (G ∩ Y ) = Y ∩ ⟨X,G1 ∩ Y1, G2 ∪ Y2, G3 ∪ Y3⟩c = ⟨X,Y1 ∩ (G3 ∪ Y3), Y2 ∪ (G2 ∪ Y2)
c, Y3 ∪ (G1 ∩ Y1)⟩ =

⟨X, (Y1 ∩G3) ∪ (Y1 ∩ Y3), (Y2 ∪Gc
2) ∩ (Y2 ∪ Y c

2 ), (Y3 ∪G1) ∩ (Y3 ∪ Y1)⟩ = ⟨X, (Y1 ∩G3) ∪ ∅, (Y2 ∪Gc
2) ∩X, (Y3 ∪

G1)∩ (Y3∪Y1)⟩ = ⟨X,Y1∩G3, Y2∪Gc
2, (Y3∪G1)∩ (Y3∪Y1)⟩ . Now the difference between these two final picture

sets is visible: in general, we do not have any guarantee that Y3 ∪ Y1 = X . Only in this case it would be that
Y \G = Y \ (G ∩ Y ) .

Our conjecture is that the theorem in question (the one about closed sets) cannot be repeated in the
framework of picture sets. The reader is encouraged to check this hypothesis. However, it seems that it would
be enough to find a simple counter-example.

However, we are able to prove the following two lemmas. By P p
δ intY (M) we mean picture point interior

of M with respect to Y , while P p
δ intX(M) means picture point interior of M with respect to the initial

topology on X .

Lemma 4.1. A picture subset M of Y is a τYδ -picture neighborhood of a picture point yδ ∈ Y if and only if
M = N ∩ Y for some τδ -picture neighborhood N of yδ .

Proof. (⇒).
Let M be a τYδ -picture neighborhood of yδ . Then there is some τYδ -picture open set H such that

yδ ∈ H ⊆ M . But then there is a τδ -picture open set G such that H = G ∩ Y . Let N = M ∪ G . Now
N is a τδ -picture neighborhood of yδ since G is a τδ -picture open set such that yδ ∈ G ⊆ N . Hence:
N ∩Y = (M ∪G)∩Y = (M ∩Y )∪ (G∩Y ) = M ∪ (G∩Y ) = M . This is true because M ⊆ Y and G∩Y ⊆ M .

(⇐).
Conversely, assume that M = N ∩ Y for some τδ -picture neighborhood N of yδ . Then there exists a

τδ -picture open set G such that yδ ∈ G ⊆ N which implies that yδ ∈ G ∩ Y ⊆ N ∩ Y = M . Since G ∩ Y is
τYδ -picture open, M can be treated as a τYδ -picture neighborhood of yδ .

Lemma 4.2. Let (Y, τYδ ) be a picture subspace of (X, τδ) and M be a picture set in X . Then P p
δ intX(M) ≤

P p
δ intY (M) .
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Proof. Let xδ ∈ P p
δ intX(M) . Then there exists some picture set U ∈ τδ such that U ⊆ M and xδ ∈ U .

Thus, M is a τδ -picture neighborhood of xδ . Consequently, U ∩ Y ∈ τYδ (by the very definition of subspace
topology) and (taking into account the fact that U ∩ Y ⊆ M ∩ Y ) we have that M ∩ Y is a τδ -picture
neighborhood of xδ . However, M ⊆ Y , so M ∩ Y = M (by virtue of Lemma 3.5). But then we can say that
xδ ∈ P p

δ intY (M) . Hence, every picture point belonging to P p
δ intX(M) is a picture point of P p

δ intY (M) . Thus
P p
δ intX(M) ≤ P p

δ intY (M) .

Lemma 4.3. A picture point yδ ∈ Y is a τYδ -picture limit point of M ⊆ Y if and only if yδ is a picture limit
point of M .

Proof. Suppose that yδ is a τYδ -picture limit point of M . Equivalently, it means that (M \ yδ) ∩N ̸= ∅δ for
every τYδ -picture neighborhood N of yδ . But any such N can be rewritten as L ∩ Y for some τδ -picture
neighborhood L of yδ . But M ⊆ Y , so we can write that (M \ yδ) ∩ L ̸= ∅δ . But then our thesis becomes
true.

Lemma 4.4. Let Y be a picture subspace of a picture topological space (X, τδ) . If M ⊆ Y is picture open in
X , then M is picture open in Y too.

Proof. Since M ⊆ Y , we have M = M ∩ Y . But then M is exactly of the form that is expected from picture
sets that are open in Y .

Theorem 4.2. Let (Y, τYδ ) be a picture subspace of a picture topological space X . Then every τYδ -picture open
subset is picture open in X if and only if Y is picture open in X .

Proof. (⇒)

Assume that every picture subset M of Y that is picture open in Y is also picture open in X . But
Y ⊆ Y and Y = Y ∩X , so Y is picture open in Y . It follows that Y is picture open in X .

(⇐)

Conversely, let M be a subset of Y that is picture open in Y and assume that Y is picture open in X .
There must be a picture subset G , picture open in X , such that M = G ∩ Y . But then M is an intersection
of two sets that are picture open in X .

The last theorem is about subspace basis.

Theorem 4.3. Let (Y, τδ) be a picture subspace of a picture topological space X and assume that B is a basis
for the picture topology τδ on X . Then BY = {B ∩ Y : B ∈ B} is a base for τYδ .

Proof. Let H be a τYδ -picture open subset of Y and let xδ ∈ H . Then there exists (by the very definition of
subspace) a τδ -picture open subset G of X such that H = G ∩ Y . Since B is a basis for τδ , there is a set
B ∈ B such that xδ ∈ B ⊆ G . But x ∈ Y (because H ⊆ Y ), so x ∈ B ∩ Y ⊆ G ∩ Y = H . Hence there is
B ∩ Y ∈ BY such that x ∈ B ∩ Y ⊆ H .

Now, if xδ ∈ C1 ∩ C2 where C1, C2 ∈ BY , then C1 = B1 ∩ Y and C2 = B2 ∩ Y for some B1, B2 ∈ B .
Clearly, xδ ∈ B1∩B2 . But then there is B3 ∈ B such that xδ ∈ B3 ⊆ B1∩B2 and thus B3∩Y ⊆ (B1∩B2)∩Y .
Thus the second condition of basis is satisfied.
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5. Conclusion
This paper introduces a novel type of sets known as picture sets. They can be considered as a crisp version of
picture fuzzy sets. On the other hand, they can be viewed as a generalization of intuitionistic sets. They have
some connections with neutrosophic crisp sets too. The reader is encouraged to compare picture sets with triple
sets (see [17]) that are similar but not identical.

Utilizing these sets, the authors defined the concept of picture topological spaces (together with cor-
responding product and subset spaces). Many algebraic and topological properties have been checked and
proved. In some cases it appeared that some classical theorems are not true in picture space. The authors gave
appropriate counter-examples. Some conjectures and suggestions for the readers have been stated too.
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