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Abstract: In this paper we study the Baer-Kaplansky property of simple modules. We show that if R = F [x] , where

F is a subfield of an algebraically closed field C with 1 < [C : F ] < ∞ , and B is a Baer-Kaplansky class of simple

R -modules, then |B| ≤ 2. We also show that over many algebras (both hereditary and non-hereditary) and over many

matrix rings (which are not algebras) the class of simple modules is not a Baer-Kaplansky class.
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1. Introduction

The celebrated Baer-Kaplansky theorem states that if A and C are torsion groups whose endomorphism rings

are isomorphic, then every isomorphism Ψ between EndZ(A) and EndZ(C) is induced by a group isomorphism

ϕ : A −→ C i.e., Ψ : η 7−→ ϕηϕ−1 (See [7, Theorem 108.1] or [12, Theorem 24.1]).

Motivated by this result, Ivanov and Vámos introduced the notion of Baer-Kaplansky class in [8]. According

to [8], a class C of modules is called Baer-Kaplansky, if two of its modules are isomorphic whenever their

endomorphism rings are isomorphic as rings.

By [10, Proposition 2.12], we know that the class of simple right R -modules is Baer-Kaplansky if and only if

the class of semisimple right R -modules is Baer-Kaplansky, where R is any ring and recently it is proven in [11,

Theorem 2.6] that, over a right semi-artinian ring R , if the class of simple right R -modules is Baer-Kaplansky,

then the class of injective right R -modules is Baer-Kaplansky. As we see, the Baer-Kaplansky property of

simple right R -modules is very close to the Baer-Kaplansky property of the other classes of modules such as

semisimple modules or injective modules. Therefore, the aim of this paper is to investigate the Baer-Kaplansky

property of the class of simple modules.

We first prove that if R = F [x] , where F is a subfield of an algebraically closed field C with 1 < [C : F ] <∞ ,

and B is a Baer-Kaplansky class of simple R -modules, then |B| ≤ 2 (Theorem 2.1). We also construct

several examples of classes of simple modules satisfying or not satisfying the Baer-Kaplansky property. In

Example 2.3, we construct a hereditary F -algebra R of finite representation type such that the class of simple

right R -modules is not Baer-Kaplansky, and the class of indecomposable injective right R -modules is not
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Baer-Kaplansky. In Example 2.4 and Example 2.5, we construct two non-commutative and non-hereditary

F -algebras of finite representation type such that the class of simple right modules is not Baer-Kaplansky, but

the class of indecomposable injective right modules is Baer-Kaplansky. On the other hand, in Example 2.6,

we construct a commutative F -algebra R such that the class of simple R -modules is not Baer-Kaplansky, but

the class of finite dimensional (namely finitely generated) injective R -modules is Baer-Kaplansky. In Example

2.7, we prove that the class of simple modules over ring of Gaussian integers Z[i] is a Baer-Kaplansky class.

Moreover, in Proposition 2.1, Proposition 2.2 and Corollary 2.1 we show that over many subrings of

(
Z 0
0 C

)
the class of simple modules is not a Baer-Kaplansky class.

All rings are associative with identity and all modules are unital right modules. For a ring R and an R -module

M , EndR(M) will denote the endomorphism ring of M . If X is any set, let |X| denote the cardinal number

of X . For any term not defined, the reader is referred to [1], [4] and [13].

2. Examples and Results

According to [10, Example 2.15] the class of simple R -modules is Baer-Kaplansky, where R is the commutative

semisimple ring Z2⊕Z3 . On the other hand, the class of simple R -modules is not Baer-Kaplansky, where R is

the commutative semisimple ring

(
F 0
0 F

)
and F is any field, by [10, Example 2.16]. Indeed, if R = Z2⊕Z3 ,

then the simple R -modules are Z2 and Z3 . Since |EndR(Z2)| = 2 and |EndR(Z3)| = 3, it follows that {Z2,Z3}

is a Baer-Kaplansky class. And if R =

(
F 0
0 F

)
with F field, then the simple R -modules are S1 =

(
F 0
0 0

)
and S2 =

(
0 0
0 F

)
. Then dimF (Si) = 1 for i = 1, 2 and so we have EndR(Si) ⊆ EndF (Si) ∼= F . It follows

that EndR(S1) ∼= F ∼= EndR(S2). Hence {S1, S2} is not a Baer-Kaplansky class.

Lemma 2.1. Let R = R[x] and let B be a Baer-Kaplansky class of simple R -modules. Then |B| ≤ 2 .

Proof. Let S be a simple R -module. Then S ∼= R/(f) with f irreducible and monic. Now, one of the following
cases occurs:

Case 1: If f has degree 1, then we have EndR(S) ∼= R .

Case 2: If f has degree 2, then we have EndR(S) ∼= C .

Hence B contains at most two simple modules.

We know from ([2], [3], [5, Theorem 3.1]and [9, Theorem 11.14]) that if C is an algebraically closed field and F

is a subfield of C such that 1 < [C : F ] <∞ , then the characteristic of C is 0 and C is of the form C = F (i)

with i2 = −1. Hence, if we always replace R by F and C by C in the proof of Lemma 2.1, we obtain the

following result.

Theorem 2.1. Let C be an algebraically closed field with a subfield F such that 1 < [C : F ] < ∞ . Let

R = F [x] and let B be a Baer-Kaplansky class of simple R -modules. Then we have |B| ≤ 2 .

In the following we are giving more examples.
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Example 2.1. Let R = F [x] with F field. Let S = R/(x) and let T = R/(x − 1) . Then we have

S ≇ T as R -modules and dimF (S) = 1 =dimF (T ) . Consequently, we have EndR(S) =EndF (S) ∼= F ∼=
EndF (T ) =EndR(T ) . Hence {S, T} is not a Baer-Kaplansky class, and so the class of all simple R -modules

is not Baer-Kaplansky.

Example 2.2. Let X be a subset of positive integers and let F be a field such that F [x] contains an irreducible

polynomial fn of degree n for any n ∈ X . Then the class {F [x]/(fn) | n ∈ X} is a Baer-Kaplansky class.

Indeed, for any n ∈ X , the endomorphism ring of simple module F [x]/(fn) has dimension n .

For instance, let X = {1, 2, . . .} . If F = Q and p is a prime, then the polynomial fn = xn − p is irreducible

over Q for any n ∈ X . On the other hand, if F = Zp for some prime p and Ln = Zp(an) is an extension field

of Zp such that [Ln : Zp] = n , then the minimal polynomial fn of an over Zp has degree n and is irreducible

over Zp .

For the following two examples, see [6, Examples 2.1 and 2.3].

Example 2.3. There is a hereditary F -algebra R of finite representation type such that the class of simple right

R -modules is not Baer-Kaplansky. Indeed, let R be the F -algebra given by the quiver 1 → 3 ← 2 . Consider

the non-isomorphic simple right R -modules 1 and 2 . Note that EndR(1) ∼= EndR(2) ∼= F because 1 and 2 are

one dimensional vector spaces. Therefore, the class of simple right R -modules is not a Baer-Kaplansky class.

Since 1 and 2 are injective, it follows that the class of indecomposable injective modules is not Baer-Kaplansky,

either.

Example 2.4. There is a non-hereditary F -algebra R of finite representation type such that the class of simple

right R -modules is not Baer-Kaplansky. Indeed, let R be the F -algebra given by the quiver

1
a→2 bdd

with relations ab = b2 = 0 . Consider the non-isomorphic simple right R -modules 1 and 2 . Then we have

EndR(1) ∼= EndR(2) . Therefore the class of simple right R -modules is not a Baer-Kaplansky class. Here

the two indecomposable injective modules are I1 = 1 and I2 =
1 2
2

. Hence, we have EndR(I1) ∼= F and

EndR(I2) ∼= F [x]/(x2) , and so {I1, I2} is a Baer-Kaplansky class.

As we shall see in Example 2.5, the opposite of the algebra considered in Example 2.4 has similar properties, but

all its indecomposable injective modules are uniserial. We can compare the next examples with [11, Theorem

2.6].

Example 2.5. Let R be the F -algebra given by the quiver

b << 1
a→ 2

with relations ba = b2 = 0 . Then the simple right R -modules are the one dimensional modules 1 and 2 .

Hence we have that EndR(1) ∼= F ∼= EndR(2) . So, the class of simple right R -modules is not Baer-Kaplansky.

On the other hand, the two indecomposable injective right R -modules are I1 =
1
1

and I2 =
1
2

. Note that
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EndR(I1) ∼= F [x]/(x2) and EndR(I2) ∼= F . Therefore, the class of indecomposable injective right R -modules is

Baer-Kaplansky.

Example 2.6. Let R be the F -algebra given by the quiver

•
1x ::

•
2

with relation x2 = 0 . Then the simple R -modules are 1 and 2 and so EndR(1) ∼= F ∼= EndR(2) . Hence

the class of simple R -modules is not Baer-Kaplansky. On the other hand, the indecomposable injective R -

modules are I1 =
1
1

and I2 = 2 , and both of them are projective. Let L and M be two finite dimensional

injective R -modules different from 0 . Since R is commutative and noetherian, we may assume that L =

Ia1 ⊕ Ib2 and M = Ic1 ⊕ Id2 for some cardinals a, b, c, d by [14, Theorem 4.4]. Assume that EndR(L) and

EndR(M) are isomorphic as rings. Since EndR(I1) ∼= F [x]/(x2), EndR(I2) ∼= F and HomR(I1, I2) =

HomR(I2, I1) = 0 , we have dimF (EndR(L)) = 2a2 + b2 and dimF (EndR(M)) = 2c2 + d2 . We know

from [15, Lemma 1] that J(EndR(L)) = {f ∈ EndR(L) | f(L) is small in L } and J(EndR(M)) = {g ∈
EndR(M) | g(M) is small in M } . On the other hand, any small submodule of L (resp. of M ) is contained

in Soc(L) =Soc(Ia1 ) = 1a (resp. in Soc(M) =Soc(Ic1) = 1c ). Hence, we have dimF (J(EndR(L))) = a2 and

dimF (J(EndR(M))) = c2 . It follows that a = c , and hence b = d . Therefore, M ∼= L . So, the class of finite

dimensional injective right R -modules is Baer-Kaplansky.

Next, we give an example of a commutative ring (which is neither finite, as Z2 ⊕Z3 , nor an algebra) such that

the class of simple modules is Baer-Kaplansky.

Example 2.7. Let R be the ring of Gaussian integers Z[i] = {a + bi | a, b ∈ Z} . Let α be an irreducible

element of R . Then one of the following cases occurs:

Case 1: α = ±p or α = ±ip with p prime in Z and p ≡ 3(mod 4). Then the simple module R/(α) is a field

with p2 elements. Hence, we have |EndR(R/(α))| = p2 .

Case 2: α = a+ bi and αᾱ = a2 + b2 is a prime p ∈ Z . Then we have (p) & (α) and so R/(α) is a field with

p elements. Hence, we have |EndR(R/(α))| = p .

It follows that the class of simple modules is a Baer-Kaplansky class.

The next remark shows that Z[i] admits also a Baer-Kaplansky class of injective modules.

Remark 2.1. For any positive prime p ∈ Z , let Hp be the right Z[i]-module Hp =HomZ(Z[i],Z(p∞)) with

(hr)(s) = h(rs) for any h ∈ Hp and r, s ∈ Z[i] [9, Proposition 3.4]. Since Z(p∞) is an injective Z-

module, we deduce from [9, Lemma 2, page 159] that Hp is an injective module over Z[i] . Moreover, for any

x, y ∈ Z(p∞) , there is an element h ∈ Hp such that h(1) = x and h(i) = y and we have (hi)(1) = h(i) = y

and (hi)(i) = h(i2) = h(−1) = −x . Hence, the formula (x, y)i = (y,−x) defines the structure of Z[i]-module

Z(p∞) ⊕ Z(p∞) , while the map f : Hp → Z(p∞) ⊕ Z(p∞) sending any h ∈ Hp to (h(1), h(i)) becomes an

isomorphism of Z[i]-modules. We finally note that EndZ[i](Z(p∞)⊕Z(p∞)) is a subring of the ring of all 2× 2
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matrices

(
a b
c d

)
with a, b, c, d ∈ Jp , where Jp is the ring of p-adic integers. Since (x, y)i = (y,−x) for

any (x, y) ∈ Z(p∞) ⊕ Z(p∞) , the matrices describing an endomorphism of Z(p∞) ⊕ Z(p∞) have the property

that (ay − cx, by − dx) = (y,−x)
(
a b
c d

)
= ((x, y)i)

(
a b
c d

)
=

(
(x, y)

(
a b
c d

))
i = (ax + cy, bx + dy)i =

(bx+ dy,−ax− cy) . It follows that c = −b and d = a . Thus, we have EndZ[i](Z(p∞)⊕Z(p∞)) =

{ (
a b
−b a

)
| a, b ∈ Jp

}
. Since the additive group of

{(
a b
−b a

)
| a, b ∈ Jp

}
is isomorphic to Jp ⊕ Jp , it follows that the

class {Hp | p ∈ N , p prime } is a Baer-Kaplansky class of injective modules.

The examples of the semisimple algebra

(
F 0
0 F

)
suggest many examples of rings (which are neither semisimple

nor algebras) such that the class of simple modules is not Baer-Kaplansky.

Proposition 2.1. Let a, p, q be positive integers such that p and q are primes and a2 + p = q . Let Z[√pi] =

{r+ s
√
pi | r, s ∈ Z} and let R =

(
Z 0
0 Z[√pi]

)
. Then the class of simple R -modules is not Baer-Kaplansky.

Proof. We first note that q is an irreducible element of Z . Since (a +
√
pi)(a −√pi) = a2 + p = q , it follows

that a +
√
pi is an irreducible element of Z[√pi] . Let I1 =

(
(q) 0
0 Z[√pi]

)
and let I2 =

(
Z 0
0 (a+

√
pi)

)
.

Then R/I1 and R/I2 are two non-isomorphic modules with q elements. Hence, we have EndR(R/I1) ∼=
Zq
∼=EndR(R/I2).

Remark 2.2. We list in the sequel the primes q ≤ 100 of the form q = a2 + p with p prime: 3 = 12 + 2 ,

7 = 22 + 3 , 11 = 32 + 2 , 17 = 22 + 13 , 19 = 42 + 3 , 23 = 42 + 7 , 29 = 42 + 13 , 41 = 62 + 5 , 43 = 62 + 7 ,

47 = 62+11 , 53 = 62+17 , 59 = 62+23 , 67 = 82+3 , 71 = 82+7 , 73 = 62+37 , 79 = 62+43 , 83 = 62+47 ,

89 = 62 + 53 , 97 = 62 + 61 . Consequently, the primes ≤ 100 which are not of the form a2 + p with p prime

are 2, 5, 13, 31, 37, 61 .

Proposition 2.2. Let a and p be positive integers such that p is prime and a2 − p = 2 . Let R be the ring(
Z 0
0 Z[√p]

)
, where Z[√p] = {x+ y

√
p | x, y ∈ Z} . Then R admits two non-isomorphic simple modules with

two elements.

Proof. Let I1 =

(
(2) 0
0 Z[√p]

)
and let Let I2 =

(
Z 0
0 (a+

√
p)

)
. Then we have 2 = a2−p = (a+

√
p)(a−√p).

We also note that Z[√p] is the free abelian group generated by 1 and
√
p . It follows that the group

Z[√p]/(a+√p) is a vector space over Z2 generated by the vectors v1 = 1+ (a+
√
p) and v2 =

√
p+(a+

√
p).

Since v2 =
√
p+(a+

√
p) =

√
p−a−√p+(a+

√
p) = −[a+(a+

√
p)] = −a[1+(a+

√
p)] = −av1 , we conclude

that dimZ2(Z[
√
p]/(a+

√
p)) = 1 =dimZ2(R/I2). On the other hand, we clearly have dimZ2(R/I1) = 1. Hence

R/I1 and R/I2 are non-isomorphic simple R -modules with desired property.
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Remark 2.3. This is the list of the pairs (a, p) satisfying the hypotheses of Proposition 2.2 with a < 50 :

(2, 2) , (3, 7) , (5, 23) , (7, 47) , (9, 79) , (13, 167) , (15, 223) , (19, 359) , (21, 439) , (27, 727) , (29, 839) , (33, 1087) ,

(35, 1223) , (37, 1367) , (43, 1847) , (47, 2207) , (49, 2399) .

Corollary 2.1. Let a, p and q be positive integers with p and q primes such that a2 − p = q . Then the ring(
Z 0
0 Z[√p]

)
admits two non-isomorphic simple modules with q elements.

Proof. Repeat the proof of Proposition 2.2 with the following substitutions : 2 7→ q , (2) 7→ (q) and Z2 7→
Zq .

Remark 2.4. If q = 3 , this is the list of the pairs (a, p) with a < 50 satisfying the hypotheses of Corollary

2.1 : (4, 13) , (8, 61) , (10, 97) , (14, 193) , (20, 397) , (26, 673) , (32, 1021) , (34, 1153) , (40, 1597) , (44, 1933) ,

(46, 2113) .

Conclusions

In this paper, we studied the class of simple right R -modules. We constructed several examples showing that

the class of simple right R -modules is Baer-Kaplansky or not Baer-Kaplansky.
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