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Abstract: In this paper we obtain, a fixed point theorem on extended B-K(Banach - Kannan) fixed point theorem on
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improved results of some of the existing results in this literature.
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1. Introduction

In a non- linear analysis fixed point theory is one of the important topic. We considered The Banch fixed

point theorem is first fixed point theorem. After that subsequently many authors (see for e.g. 1-5, 6-12) were

extended and improved in different ways. In 1968, Kannan [4] obtained a fixed point theorem which is the most

important theorem for further extension. And in 2000, Branciari [3] introduced a class of generalized metric

spaces and prove some theorems. Recently S. Moradi[5] established a Kannan fixed point theorem on complete

metric spaces and generalized metric spaces depend an another function . in this paper we obtained a fixed

point theorem for extenended B-K contraction mapping on CGM-Spaces(Complete Generalized Metric) spaces

depend on an another function.

1.1. Preliminaries

For our main results we need some of the following definitions.

Definition 1.1 (2). Let (X, ρ) be a metric space. A mapping A : X −→ X is said sequentially convergent if we

have, for every sequence {yn} , if {Ayn} is convergence then {yn} is also convergence.A is said sub sequentially

convergent if we have , for every sequence {yn} , if {Ayn} is convergence then {yn} has a convergent sub
sequence.

Definition 1.2 (1). Let X be a non empty set .Suppose that the map ρ : X×X −→ N satisfies the following:

(1) 0 ≤ ρ(α, β) for all α, β ∈ X and ρ(α, β) = 0 if and only if α = β ;

(2) ρ(α, β) = ρ(β, α) for all α, β ∈ X ;
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(3) ρ(α, β) ≤ ρ(α, ξ) + ρ(ξ, γ) + ρ(γ, β) for all α, β ∈ X and for all distinct points γ, ξ ∈ X \ {α, β} .
Then ρ is called a GM-(Generalized Metric) and (X, ρ) is a GM-Space (Generalized Metric Space).

2. Main Results

Now we obtain our main theorem.

Theorem 2.1. Let (X, ρ) be a CGM-Space(Complete Generalized Metric Space) and A,B : X −→ X be a

mappings such that A is continuous one- to-one and subsequently convergent. If a1 + a2 < 1 and

ρ(ABx,ABy) ≤ a1ρ(Ax,Ay) + a2ρ(Ax,ABx) + ρ(Ay,ABy), (1)

for all x, y ∈ X , then B has a unique fixed point. Also if A is sequentially convergent, then for every x0 ∈ X

the sequence of iterates {Bnx0} converges to this fixed point.

Proof. Let x0 ∈ X be any arbitrary point in X . We define the iterative sequence {xn} by

xn+1 = Bxn =Bnx0, n = 1, 2, 3. . . .Usingby(1)wegetthat

ρ(Axn, Axn+1) =ρ(ABxn−1, ABxn),

≤a1ρ(Axn−1, Axn) + a2ρ(Axn−1, ABxn−1) + ρ(Axn, ABxn),

=a1ρ(Axn−1, Axn) + a2ρ(Axn−1, Axn) + ρ(Axn, Axn+1),

=(a1 + a2)ρ(Axn−1, Axn) + a2ρ(Axn, Axn+1,

≤(a1 + a2)/(1− a2)ρ(Axn−1, Axn),

≤ h(ρ(Axn−1, Axn). (2)

Where , h = a1 + a2)/(1− a2) < 1.

By the similar argument we get that

ρ(Axn, Axn+1) ≤ hρ(Axn−1, Axn) ≤ h2ρ(Axn−2, Axn−1) ≤ ... ≤ hnρ(Axn−1, Axn). (3)

By (3) fro all m,n ∈ N such that m > n , we get that

ρ(Axm, Axn) ≤ρ(Axm, Axm−1) + ρ(Axm−1, Axm−2) + ...+ ρ(Axn+1, Axn),

≤hm−1 + hm−2 + ...+ hnρ(Ax0, Ax1),

≤ hn/(1− h)ρ(Ax0, Ax1). (4)

Letting m,n −→ ∞ in (4) we get that {Axn} is a Cauchy sequence and since X is complete there exists

p ∈ X such that

limn→∞Axn = p. (5)

Since A is a sub sequentially convergent {xn} has a convergent sub sequence.So there exists q ∈ X and {xn(r)} ,
r = 1, 2, , ,∞ such that limr→∞Axn(r) = q .

Since A is continuous and limr→∞Axn(r) = Aq. (6)
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By (5) and (6) we conclude that Aq = p .

ρ(ABq,Aq) ≤ ρ(ABq,ABn(r)x0) + ρ(ABn(r)x0, ABn(r)+1x0) + ρ(ABn(r)+1x0, Aq),

≤ a1ρ(Aq,AB
n(r)−1x0) + a2[ρ(Aq,ABq) + ρ(ABn(r)−1x0, ABn(r)x0)] + hn(r)ρ(Ax1, Ax0) + ρ(Axn(r)+1, Aq),

≤ a1ρ(Aq,AB
n(r)−1x0) + a2ρ(Aq,ABq) + a2h

n(r)ρ(Ax0, Ax1) + hn(r)ρ(Ax1, Ax0) + ρ(Axn(r) + 1, Aq),

(1− a2)ρ(Aq,ABq) ≤ a1ρ(Aq,ABn(r)−1x0) + (a2 + 1)hn(r)ρ(Ax0, Ax1) + ρ(Axn(r) + 1, Aq),

ρ(Aq,ABq) ≤ a1/(1− a2)ρ(Aq,ABn(r)−1x0) + (a2 + 1)/(1− a2)h
n(r)ρ(Ax0, Ax1)

+ 1/(1− a2)ρ(Axn(r) + 1, Aq). −→ 0asr −→ ∞.

Thus, ρ(Aq,ABq) = 0, that is ABq = Aq . Since A is one- to- one, that implies, Bq = q . Therefore B

has a fixed point. Since (1) holds and A is one –to- one. Therefore B has a unique fixed point.

Now if A is sequentially convergent, by replacing {n} by {n(r)} we conclude that limr→∞ xn = q and

this shows that {xn} converges to the fixed point of B .

Remark 2.1. If we take a1 = 0 and a2 = λ in the above theorem 2.1 we can get the theorem 2.1 of [5].

3. Conclusion

In this paper our results are generalized results and are more general than the results of [5].
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