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Abstract: This research paper’s goal is to present and examine an innovative type of continuous map is named as δgα

continuous map in TSs. Also discuss some basic properties of this continuous map. Further investigate the relationship

between the newly defined map and the existing continuous map with suitable examples.
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1. Introduction

Continuous function plays a vital role in Topology. Many mathematicians have introduced and studied various

stronger and weaker forms of the continuous functions. Levine [1] introduced and studied the weaker forms

of continuity, namely semi-continuity, in the year 1963. R. Devi et al. [2–4, 6, 15–17] introduced generalized

continuous maps in TSs and generalized α -continuous maps in TS(TSs) during the years 1991-1997. In the year

1961, Levine N [5] introduced the concepts of decomposition of continuity in TSs. D. Sivaraj and V.E. Sasikala

[8, 11] introduced the study on Soft α–OSs and Soft Pre-OSs in 2017 and also introduced Beta Generalized CSs

in TSs in the year 2022. In 2002, A. Csaszar [13] introduced Generalized topology and generalized continuity.

M. Lellis Thivagar [18] developed the Generalization of pairwise α -continuous functions. N. Biswas [19] studied

characterizations of semi-continuous functions. V.E. Sasikala, D. Sivaraj, and R. Thirumalaisamy [20–22]

studied notes on soft g-CSs.

Dontchev J and Jafari S, Noiri T [4, 9] defined the concept of contra-pre continuous functions. S.N.

Maheswari and S.S. Thakur introduced the notion of α -irresolute mappings. V.E. Sasikala, D. Sivaraj, and

A.P. Ponraj [14, 23] introduced soft semi weakly generalized CS in soft TSs and also defined the Soft swg-

Separation Axioms in Soft TSs. Y. Gnanambal et al. [22] introduced the concept of gpr-continuous functions

in TSs.

2. Preliminaries

Definition 2.1: A function f : (I, τ1) → (J, τ2) is claimed to be:

1. Semi continuous [2] if f−1(L) in semi-OS is (I, τ1) for all OS L of (J, τ2).

2. Pre continuous [14] if f−1(L) in pre-CS is (I, τ1) for all CS L of (J, τ2).

©Asia Mathematika, DOI: 10.5281/zenodo.15683318
*Correspondence: sasikala.sbs@velsuniv.ac.in

29

https://www.asiamath.org/article/vol9iss1/AM-2504-9106.pdf


M. Madhesan and V.E. Sasikala

3. α -continuous [6] if f−1(L) in α -CS is (I, τ1) for all CS L of (J, τ2).

4. β -continuous [5] if f−1(L) in semi pre-OS is (I, τ1) for all OS L of (J, τ2).

5. g-continuous [4] if f−1(L) in g-CS is (I, τ1) for all CS L of (J, τ2).

6. gα -continuous [3] if f−1(L) in gα -CS is (I, τ1) for all CS L of (J, τ2).

7. αg-continuous [3] if f−1(L) in αg-CS is (I, τ1) for all CS L of (J, τ2).

8. gp-continuous [9] if f−1(L) in gp-CS is (I, τ1) for all CS L of (J, τ2).

9. gpr-continuous [15] if f−1(L) in gpr-CS is (I, τ1) for all CS L of (J, τ2).

Definition 2.2: A function f : (I, τ1) → (J, τ2) is said to be:

1. Irresolute [1] if f−1(L) in semi OS is (I, τ1) for all semi OS L of (J, τ2).

2. gp-irresolute [9] if f−1(L) in gp-CS is (I, τ1) for all gp-CS L of (J, τ2).

3. α -irresolute [18] if f−1(L) in α -OS is (I, τ1) for all α -OS L of (J, τ2).

3. δgα-Continuous Functions

This part presents the new class of δgα irresolute and continuous maps and examines some of their character-

istics. Also, we provided some characterizations of δgα -continuous mappings and δgα irresolute mappings in

TSs.

Definition 3.1: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). A function f : (I, τ1) → (J, τ2)

is called δgα Continuous if each CS’s inverted image in J is a δgα CS in I , i.e., if f−1(L) is a δgα CS in

(I, τ1) for all CS L in (J, τ2).

Example 3.2: Let I = {o1, p2, q3} with τ1 = {I, ∅, {o1}, {p2}, {o1, p2}} and the CSs are {I, ∅, {p2, q3}, {o1, q3},
{q3}} . Then, the δgα -CSs are {∅, I, {o1}, {p2}, {q3}, {o1, p2}, {p2, q3}, {o1, q3}} . Let J = {o1, p2, q3} with

τ2 = {J, ∅, {o1}, {p2}, {o1, p2}, {o1, q3}} and the CSs are {∅, J, {p2, q3}, {o1, q3}, {q3}, {p2}} . Then, the δgα -CSs

are {J, ∅, {o1}, {q3}, {o1, q3}} . Let f : (I, τ1) → (J, τ2) be defined by f(o1) = p2, f(p2) = q3, f(q3) = o1

Then,f−1(p2) = {o1}, f−1(q3) = {p2}, f−1(o1) = {q3} Here, the inverse images of CSs in V are as

follows: f({q3}) = {q3}, f({p2}) = {p2}, f({o1, q3}) = {o1, q3} Then,f−1({q3}) = {q3}, f−1({p2}) =

{p2}, f−1({o1, q3}) = {p1, q3} are δgα -CSs in (I, τ1), thus f is δgα -continuous.

Theorem 3.3: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). Let f : (I, τ1) → (J, τ2) be an

f -continuous function, then δgα is continuous.

Proof: Let L be a CS in (J, τ2). Then f−1(L) is a CS in (I, τ1) since f is continuous. However, every CS

is a δgα CS. Therefore, f−1(L) is a δgα CS. Hence, f is δgα continuous. The following example illustrates

that the converse of the above theorem is not true.

Illustration 3.4:

Let I = {l1, l2, l3} with τ1 = {I, ∅, {l1}, {l2}, {l1, l2}} and the CSs are {I, ∅, {l2, l3}, {l1, l3}, {l3}} . Then δgα

CSs are {∅, I, {l1}, {l2}, {l3}, {l1, l2}, {l2, l3}, {l1, l3}}. Let J = {o1, o2, o3} with τ2 = {J, ∅, {o1}, {o2}, {o1, o2},
{o1, o3}} and the CSs are{∅, J, {o2, o3}, {o1, o3}, {o3}, {o2}}. Then δgα CSs are {J, ∅, {o1}, {o3}, {o1, o3}}. Let
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f : (I, τ1) → (J, τ2) be defined byf(l1) = o2, f(l2) = o3, f(l3) = o1. Then the inverse mappings are

f−1(o2) = {l1}, f−1(o3) = {l2}, f−1(o1) = {l3}. Here, the inverse images of CSs in J are f−1({l3}) =

{o3}, f−1({l2}) = {o2}, f−1({l1, l3}) = {o1, o3}. By Example 3.2, f is δgα -continuous but not continuous

since the inverse image f−1({o2}) = {l2} is not a CS in (I, τ1).

Theorem 3.5: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). Let f : (I, τ1) → (J, τ2) be a

δgα -continuous function. Then f is continuous if (I, τ1) exists as a δgα -space.

Proof: Let f : (I, τ1) → (J, τ2) be a δgα -continuous function. Let L be any closed set (CS) in (J, τ2). Then

f−1(L) is a δgα -CS in (I, τ1). Since (I, τ1) is a δgα -space, it follows that f−1(L) is a CS in (I, τ1). Hence,

f is continuous.

Theorem 3.6: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). Let f : (I, τ1) → (J, τ2) be a

δ -continuous function. Then f is δgα -continuous.

Proof: Let L be any closed set (CS) in (J, τ2). Since f is δ -continuous, f−1(L) is a δ -CS in (I, τ1). However,

every δ -CS is also a δgα -CS, which implies that f−1(L) is a δgα -CS in (I, τ1).

∴ f is δgα -continuous.

The following example illustrates that the converse of the above theorem is not true.

Example 3.7: Let I = {l1,m2, n3, o4} with τ1 = {I, ∅, {l1}, {m2}, {l1,m2}, {l1,m2, n3}} and the δ -CSs

are {∅, I, {m2, n3, o4}, {l1,m3, o4}, {n3, o4}, {o4}}. Then δgα -CSs are {∅, I, {l1}, {n3}}. Let J = {p1, p2, p3, p4}
with τ2 = {J, ∅, {p1}, {p2}, {p1, p2}, {p1, p3}, {p1, p4}, {p1, p2, p3}, {p1, p2, p4}, {p1, p3, p4}} and the CSs are

{∅, J, {p2, p3, p4}, {p1, p3, p4}, {p3, p4}, {p2, p4}, {p2, p3}, {p4}, {p3}, {p2}}. Let f : (I, τ1) → (J, τ2) be defined

by f(l1) = p2, f(m2) = p4, f(n3) = p1, f(o4) = p3. Then the inverse mappings are f−1(p2) =

{l1}, f−1(p4) = {m2}, f−1(p1) = {n3}, f−1(p3) = {o4}. Here, f is δgα -continuous but not δ -continuous

since the inverse image f−1({p2}) = {l1} is δgα -continuous but not a δ -CS in (I, τ1).

Theorem 3.8: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). Let f : (I, τ1) → (J, τ2) be a

δgα -continuous function. Then f is δ -continuous.

Proof: Let L be any closed set (CS) in (J, τ2). Since f is δgα -continuous, f−1(L) is a δgα -CS in (I, τ1).

But every δgα -CS is also a δ -CS.

∴ f−1(L) is a δ -CS in (I, τ1). Hence, f is δ -continuous.

The following example illustrates that the above theorem’s converse is untrue.

Illustration 3.9: Let I = {o1, p2, q3, r4} with τ1 = {I, ∅, {o1}, {p2}, {o1, p2}, {o1, p2, q3}} and the δ -CSs are

{∅, I, {p2, q3, r4}, {o1, q3, r4}, {q3, r4}, {r4}}. Then δgα -CSs are {∅, I, {o1}, {q3}}. Let J = {r1, r2, r3, r4} with

τ2 = {J, ∅, {r1}, {r2}, {r1, r2}, {r1, r3}, {r1, r4}, {r1, r2, r3}, {r1, r2, r4}, {r1, r3, r4}} and the CSs are

{∅, J, {r2, r3, r4}, {r1, r3, r4}, {r3, r4}, {r2, r4}, {r2, r3}, {r4}, {r3}, {r2}}. Let f : (I, τ1) → (J, τ2) be defined by

f(o1) = r2, f(p2) = r4, f(q3) = r1, f(r4) = r3. Then the inverse mappings are f−1(r2) = {o1}, f−1(r4) =

{p2}, f−1(r1) = {q3}, f−1(r3) = {r4}. Here, f is δ -continuous but not δgα -continuous since the inverse

image f−1({r1, r3, r4}) = {p2, q3, r4} is δ -continuous but not a δgα -CS in (I, τ1).

Theorem 3.10: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). Let f : (I, τ1) → (J, τ2) be an

α -continuous function. Then f is δgα -continuous.

Proof: Let L be any closed set (CS) in (J, τ2). Since f is α -continuous, f−1(L) is an α -CS in (I, τ1). But

every α -CS is also a δgα -CS.
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∴ f−1(L) is a δgα -CS in (I, τ1). Hence, f is δgα -continuous.

The following example illustrates that the converse of the above theorem is not true.

Illustration 3.11: Let I = {k1, k2, k3} with τ1 = {I, ∅, {k1}, {k2}, {k1, k2}} and the α -CSs are {∅, I, {k3}, {k2, k3},
{k1, k3}}. Then δgα -CSs are {∅, I, {k1}, {k2}, {k3}, {k1, k2}, {k2, k3}, {k1, k3}}. Let J = {k1, k2, k3} with

τ2 = {J, ∅, {k1}, {k2}, {k1, k2}, {k1, k3}} and the CSs are {∅, J, {k2, k3}, {k1, k3}, {k3}, {k2}}. Then δgα -CSs are

{J, ∅, {k1}, {k3}, {k1, k3}}. Let f : (I, τ1) → (J, τ2) be defined by f(k1) = k3, f(k2) = k2, f(k3) = k1. Then

the inverse mappings are f−1(k3) = {k1}, f−1(k2) = {k2}, f−1(k1) = {k3}. Here, f is δgα -continuous but

not α -continuous since the inverse image f−1({k2}) = {k2} is not an α -CS in (I, τ1).

Theorem 3.12: Let (I, τ1) and (J, τ2) be any two topological spaces. Let f : (I, τ1) → (J, τ2). If f is a

g -continuous function, then f is δgα -continuous.

Proof: Let L be any CS in (J, τ2). Then f−1(L) is a g -CS in (I, τ1) as f is g -continuous. But every g -CS

is a δgα -CS, hence f−1(L) is a δgα -CS in (I, τ1).

∴ f is δgα -continuous.

The following example demonstrates that the converse of the above theorem does not hold.

Illustration 3.13: Let I = {k1, k2, k3} with τ1 = {I, ∅, {k1}, {k2}, {k1, k2}} and the g -CSs are {∅, I, {k3}, {k2, k3},
{k1, k3}}. Then δgα -CSs are {∅, I, {k1}, {k2}, {k3}, {k1, k2}, {k2, k3}, {k1, k3}}. Let J = {k1, k2, k3} with

τ2 = {J, ∅, {k1}, {k2}, {k1, k2}, {k1, k3}} and the CSs are {∅, J, {k2, k3}, {k1, k3}, {k3}, {k2}}. Let f : (I, τ1) →
(J, τ2) be defined by f(k1) = k3, f(k2) = k2, f(k3) = k1. Then the inverse mappings are f−1(k3) =

{k1}, f−1(k2) = {k2}, f−1(k1) = {k3}. Here, f is δgα -continuous but not g -continuous since the inverse

image f−1({k2}) = {k2} is not a g -CS in (I, τ1).

Theorem 3.14: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). If a function f : (I, τ1) → (J, τ2)

is δg -continuous, then f is δgα -continuous.

Proof: Let B be a closed set (CS) in (J, τ2). Since f is δg -continuous, f−1(B) is a δg -CS in (I, τ1). But

every δg -CS is also a δgα -CS.

∴ f−1(B) is a δgα -CS in (I, τ1). Hence, f is δgα -continuous.

The following example illustrates that the converse of the above theorem is not true.

Illustration 3.15: Let I = {o1, o2, o3, o4} with τ1 = {I, ∅, {o1}, {o2}, {o1, o2}, {o1, o2, o3}} and the CSs are

{∅, I, {o2, o3, o4}, {o1, o3, o4}, {o3, o4}, {o4}}. The δg -CS is {∅, I}. Then δgα -CSs are {∅, I, {o1}, {o3}}. Let

J = {o1, o2, o3, o4} with τ2 = {J, ∅, {o1}, {o2}, {o1, o2}, {o1, o3}, {o1, o4}, {o1, o2, o3}, {o1, o2, o4}, {o1, o3, o4}}
and the CSs are {∅, J, {o2, o3, o4}, {o1, o3, o4}, {o3, o4}, {o2, o4}, {o2, o3}, {o4}, {o3}, {o2}}. Then δgα -CSs are

{J, ∅, {o1}, {o2}, {o3}, {o1, o2, o3}}. Let f : (I, τ1) → (J, τ2) be defined by f(o1) = o2, f(o2) = o4, f(o3) =

o3, f(o4) = o1.

Then the inverse mappings are f−1(o2) = {o1}, f−1(o4) = {o2}, f−1(o3) = {o3}, f−1(o1) = {o4}.
Here, f is δgα -continuous but not δg -continuous since the inverse image f−1({o3}) = {o3} is δgα -continuous

but not a δg -CS in (I, τ1).

Theorem 3.16: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). If a function f : (I, τ1) → (J, τ2)

is gδ -continuous, then f is δgα -continuous.

Proof: Let B be a closed set (CS) in (J, τ2). Since f is gδ -continuous, f−1(B) is a gδ -CS in (I, τ1). But

every gδ -CS is also a δgα -CS⇒ f−1(B) is a δgα -CS in (I, τ1).

∴ f is δgα -continuous.
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The following example illustrates that the above theorem’s converse is untrue.

Illustration 3.17: Let I = {n1,m2, o3, p4} with τ1 = {I, ∅, {n1}, {m2}, {n1,m2}, {n1,m2, o3}} and the closed

sets (CSs) are {∅, I, {m2, o3, p4}, {n1, o3, p4}, {o3, p4}, {p4}} . The gδ -CSs are {∅, I} and the δgα -CSs are

{∅, I, {n1}, {o3}} . Let J = {n1,m2, o3, p4} with τ2 = {J, ∅, {n1}, {m2}, {n1,m2}, {n1, o3}, {n1, p4}, {n1,m2, o3},
{n1,m2, p4}, {n1, o3, p4}} and the CSs are {∅, J, {m2, o3, p4}, {n1, o3, p4}, {o3, p4}, {m2, p4}, {m2, o3}, {p4}, {o3},
{m2}} . The gδ -CSs are {∅, J, {m2}, {o3}, {m2, o3}} and the δgα -CSs are {J, ∅, {n1}, {m2}, {o3}, {n1,m2, o3}} .
Let the function f : (I, τ1) → (J, τ2) be defined by f(n1) = m2, f(m2) = p4, f(o3) = o3, f(p4) = n1 .

Then the inverse images are f−1(m2) = n1, f−1(p4) = m2, f−1(o3) = o3, f−1(n1) = p4 . Thus, f is

δgα -continuous but not gδ -continuous, since the inverse image f−1({o3}) = {o3} is not a gδ -CS in (I, τ1).

Theorem 3.18: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). A function f : (I, τ1) → (J, τ2)

is δgα -continuous if and only if it is αg -continuous.

Proof: Let f : (I, τ1) → (J, τ2) be a δgα -continuous map. Let G be a closed set (CS) in (J, τ2). Since f is

δgα -continuous, f−1(G) is a δgα -CS in (I, τ1). Since every δgα -CS is an αg -CS, it follows that f−1(G) is an

αg -CS in (I, τ1).

∴ f is αg -continuous.

The following example illustrates that the above theorem’s converse is untrue.

Illustration 3.19: Let I = {j1, j2, j3, j4} with τ = {I, ∅, {j1}, {j3}, {j4}, {j1, j3}, {j1, j4}, {j3, j4}, {j1, j2, j3}} .
The CSs are {I, ∅, {j2, j3, j4}, {j1, j2, j4}, {j1, j2, j3}, {j2, j4}, {j2, j3}, {j1, j2}, {j2}} . The δgα -CSs are {I, ∅, {j1},
{j3}, {j4}, {j1, j3}, {j1, j4}, {j3, j4}} . The αg -CSs are {I, ∅, {j2, j3, j4}, {j1, j2, j4}, {j1, j2, j3}, {j2, j4}, {j2, j3},
{j1, j2}, {j2}} . Let J = {j1, j2, j3, j4} with τ2 = {J, ∅, {j1}, {j1, j2}} . The CSs are {J, ∅, {j2, j3, j4}, {j3, j4}} .
Define a function f : (I, τ1) → (J, τ2) by:

f(j1) = j3, f(j2) = j4, f(j3) = j2, f(j4) = j1.

Then the inverse images are f−1(j3) = j1, f−1(j4) = j2, f−1(j2) = j3, f−1(j1) = j4. We have f−1({j3, j4})
= {j1, j2} , which is an αg -CS but not a δgα -CS in (I, τ1).

∴ f is αg -continuous but not δgα -continuous.

Theorem 3.20: Let (I, τ1) and (J, τ2) be any two topological spaces. A function f : (I, τ1) → (J, τ2) is

gα -continuous if and only if f is δgα -continuous.

Proof: Let B be a closed set (CS) in (J, τ2). Then, since f is gα -continuous, the preimage f−1(B) is a

gα -CS in (I, τ1). But every gα -CS is a δgα -CS, which implies that f−1(B) is a δgα -CS in (I, τ1).

∴ f is δgα -continuous.

The following example illustrates that the above theorem’s converse is untrue.

Illustration 3.21: Let I = {l1,m2, n3} with τ1 = {I, ∅, {l1}, {m2}, {n3}, {l1,m2}, {m2, n3}} and the CSs

are {∅, I, {l1, n3}, {m2, n3}, {l1,m2}, {n3}, {l1}} . The gα -CSs are {∅, I, {l1}, {m2}} . Then, the δgα -CSs are

{∅, I, {l1}, {m2}, {m2, n3}} . Let J = {l1,m2, n3} with τ2 = {J, ∅, {l1}} and the CSs are {∅, J, {m2, n3}} . Then,
the δgα -CSs are {J, ∅, {l1}, {m2}, {n3}, {l1,m2}, {m2, n3}, {l1, n3}} . Define the function f : (I, τ1) → (J, τ2)

by f(l1) = l1 , f(m2) = m2 , f(n3) = n3 . Then, f−1(l1) = {l1} , f−1(m2) = {m2} , f−1(n3) = {n3} . Here, f

is δgα -continuous but not gα -continuous since the inverse image f−1({m2, n3}) = {m2, n3} is not a gα -CS in

(I, τ1).

Theorem 3.22: Let (I, τ1) and (J, τ2) be any 2-TSs. A function f : (I, τ1) → (J, τ2) is g∗ -continuous, then
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it is δgα -continuous.

Proof: Let L be a CS in (J, τ2). Then f−1(L) is g∗ -closed in (I, τ1) since f is g∗ -continuous. But every

g∗ -CS is δgα -closed.

∴ f−1(L) is δgα -closed. Hence, f is δgα -continuous.

The following example illustrates that the above theorem’s converse is untrue.

Illustration 3.23: Let I = {h1, i2, j3, k4} with τ = {I, ϕ, {h1}, {i2}, {h1, i2}, {h1, j3}, {h1, k4}, {h1, i2, j3}, {h1, i2, k4},
{h1, j3, k4}} . CSs are {I, ϕ, {i2, j3, k4}, {h1, j3, k4}, {j3, k4}, {i2, j3}, {k4}, {j3}, {i2}} . δgα -CSs are {I, ϕ, {h1}, {i2},
{j3}, {h1, i2, j3}} . g∗ -CSs are {I, ϕ, {i2}, {j3}, {i2, j3}} . Let J = {h1, i2, j3, k4} with τ2 = {J, ϕ, {h1}, {i2}, {h1, i2},
{h1, i2, j3}} . CSs are {J, ϕ, {i2, j3, k4}, {h1, j3, k4}, {j3, k4}, {k4}} . Define a function f : (I, τ1) → (J, τ2) by

f(h1) = k4 , f(i2) = j3 , f(j3) = h1 , f(k4) = i2 . Then f−1(k4) = {h1} , f−1(j3) = {i2} , f−1(h1) = {j3} ,
f−1(k4) = {i2} . Then f−1(k4) = {h1} is δgα -CS but not g∗ -CS in (I, τ1).

Theorem 3.24: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). A function f : (I, τ1) → (J, τ2)

is pre-continuous if it is δgα -continuous.

Proof: Let L be a closed set (CS) in (J, τ2). Then f−1(L) is pre-closed in (I, τ1) since f is pre-continuous.

But every pre-closed set is a δgα closed set (CS).

∴ f−1(L) is a δgα closed set. Hence, f is δgα -continuous.

The converse of the above theorem need not be true as illustrated by the following example.

Illustration 3.25: Let I = {m1,m2,m3} and τ1 = {I, ∅, {m1}, {m1,m2}} . The closed sets (CSs) are

{I, ∅, {m2,m3}, {m3}} . The δgα -closed sets (CSs) are {I, ∅, {m1}, {m2}, {m3}, {m1,m2}, {m1,m3}, {m2,m3}} .
The pre-closed sets (pre-CSs) are {I, ∅, {m1}, {m3}, {m1,m3}, {m2,m3}} . Let J = {m1,m2,m3} and τ2 =

{J, ∅, {m1}, {m2}, {m3}, {m1,m2}, {m1,m3}, {m2,m3}} . The closed sets (CSs) of (J, τ2) are {J, ∅, {m1}, {m2},
{m3}, {m1,m2}, {m1,m3}, {m2,m3}} . Define a function f : (I, τ1) → (J, τ2) by f(m1) = m1 , f(m2) = m2 ,

f(m3) = m3 . Then, f−1({m1}) = {m1} , f−1({m2}) = {m2} , f−1({m3}) = {m3} . Also, f−1({m1,m2}) =
{m1,m2} . Here, {m1,m2} is a δgα -closed set (CS) but not a pre-closed set (pre-CS) in (I, τ1).

Theorem 3.26: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). A function f : (I, τ1) → (J, τ2)

is δgα -continuous if it is gp-continuous.

Proof: Let f : (I, τ1) → (J, τ2) be a δgα -continuous map. Let L be a closed set (CS) in (J, τ2). Since f is

δgα -continuous, f−1(L) is a δgα -closed set (CS) in (I, τ1). Since every δgα -closed set is a gp-closed set (CS),

it follows that f−1(L) is a gp-closed set in (I, τ1).

∴ f is gp-continuous.

The following example illustrates that the converse of the above theorem need not be true.

Illustration 3.27: Let I = {f1, f2, f3, f4} and τ1 = {I, ∅, {f1}, {f2}, {f1, f2}, {f1, f3}, {f1, f4}, {f1, f2, f3},
{f1, f2, f4}, {f1, f3, f4}} . The closed sets (CSs) are {I, ∅, {f2, f3, f4}, {f1, f3, f4}, {f3, f4}, {f2, f4}, {f2, f3}, {f4},
{f3}, {f2}} . The δgα -closed sets (CSs) are {I, ∅, {f1}, {f2}, {f3}, {f1, f2, f3}} . The gp-closed sets (gp-

CSs) are {I, ∅, {f1}, {f2}, {f3}, {f1, f2}, {f1, f3}, {f2, f3}, {f1, f2, f3}} . Let J = {f1, f2, f3, f4} and τ2 =

{J, ∅, {f1}, {f2}, {f1, f2}, {f1, f2, f3}} . The closed sets (CSs) of (J, τ2) are {{f2, f3, f4}, {f1, f3, f4}, {f3, f4}, {f4}} .
Define a function f : (I, τ1) → (J, τ2) by f(f1) = f2 , f(f2) = f3 , f(f3) = f4 , f(f4) = f1 . Then,

f−1({f2}) = {f1} , f−1({f3}) = {f2} , f−1({f4}) = {f3} , f−1({f1}) = {f4} . Also, f−1({f3, f4}) = {f2, f3} .
Here, {f2, f3} is a gp-closed set (gp-CS) but not a δgα -closed set (CS) in (I, τ1).

Theorem 3.28: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). A function f : (I, τ1) → (J, τ2)
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is gpr -continuous if it is δgα -continuous.

Proof: Let L be a closed set (CS) in (J, τ2). Then f−1(L) is a gpr -closed set (gpr-CS) in (I, τ1) since f is

gpr -continuous. But every gpr -closed set is a δgα -closed set (CS).

∴ f−1(L) is a δgα -closed set (CS). Hence, f is δgα -continuous.

The following example illustrates that the converse of the above theorem need not be true.

Illustration 3.29: Let I = {g1, h2, i3, j4} and τ1 = {I, ∅, {g1}, {h2}, {g1, h2}, {g1, h2, i3}} . The closed sets

(CSs) are {I, ∅, {h2, i3, j4}, {g1, i3, j4}, {i3, j4}, {j4}} . The δgα -closed sets (CSs) are {I, ∅, {g1}, {i3}} . The

gpr -closed sets (gpr-CSs) are {I, ∅, {i3}} .
Let J = {g1, h2, i3, j4} and τ2 = {J, ∅, {g1}, {h2}, {g1, h2}, {g1, h2, i3}} . The closed sets (CSs) of (J, τ2)

are {{h2, i3, j4}, {g1, i3, j4}, {i3, j4}, {j4}} . Define a function f : (I, τ1) → (J, τ2) by f(g1) = j4 , f(h2) = g1 ,

f(i3) = h2 , f(j4) = i3 . Then, f−1({j4}) = {g1} , f−1({g1}) = {h2} , f−1({h2}) = {i3} , f−1({i3}) = {j4} .
Also, f−1({j4}) = {g1} . Here, {g1} is a δgα -closed set (CS) but not a gpr -closed set (gpr-CS) in (I, τ1).

Theorem 3.28: Let (I, τ1) and (J, τ2) be any two topological spaces (2-TSs). A function f : (I, τ1) → (J, τ2)

is β -continuous if it is δgα -continuous.

Proof: Let L be a closed set (CS) in (J, τ2). Then f−1(L) is β -closed in (I, τ1) since f is β -continuous. But

every β -closed set (CS) is a δgα -closed set (CS).

∴ f−1(L) is a δgα -closed set (CS). Hence, f is δgα -continuous.

The following example illustrates that the converse of the above theorem need not be true.

Illustration 3.29: Let I = {a1, b2, c3} and τ1 = {I, ∅, {a1}, {b2}, {a1, b2}} . The closed sets (CSs) are

{I, ∅, {b2, c3}, {a1, c3}, {c3}} . The δgα -closed sets (CSs) are {I, ∅, {a1}, {b2}, {c3}, {a1, b2}, {b2, c3}, {a1, c3}} .
The β -closed sets (CSs) are {{a1}, {b2}, {c3}, {b2, c3}, {a1, c3}} . Let J = {a1, b2, c3} and τ2 = {J, ∅, {a1}, {b2},
{a1, b2}, {a1, c3}} . The closed sets (CSs) of (J, τ2) are {J, ∅, {b2, c3}, {a1, c3}, {c3}, {b2}} . Define a function

f : (I, τ1) → (J, τ2) by f(a1) = a1 , f(b2) = c3 , f(c3) = b2 . Then, f−1({a1}) = {a1} , f−1({c3}) = {b2} ,
f−1({b2}) = {c3} . Also, f−1({a1, c3}) = {a1, b2} . Here, {a1, b2} is a δgα -closed set (CS) but not a β -closed

set (CS) in (I, τ1).

Result 3.30: The composition of two δgα -continuous needs not always is a δgα -continuous as seen from the

following example.

Illustration 3.31: Let I = {u1, v2, w3} with τ1 = {I, ∅, {u1}, {v2}, {w3}, {u1, v2}, {v2, w3}} . The closed sets

(CSs) are {∅, I, {u1, w3}, {v2, w3}, {u1, v2}, {w3}, {u1}} . The δgα -closed sets (CSs) are {∅, I, {u1}, {v2}, {v2, w3}} .
Let J = {u1, v2, w3} with τ2 = {J, ∅, {u1}} . The closed sets (CSs) are {∅, J, {v2, w3}} . The δgα -closed sets

(CSs) are {J, ∅, {u1}, {v2}, {w3}, {u1, v2}, {v2, w3}, {u1, w3}} . Let W = {u1, v2, w3} with τ3 = {W, ∅, {u1}, {v2},
{u1, v2}, {u1, w3}} . The closed sets (CSs) are {∅,W, {v2, w3}, {u1, w3}, {w3}, {v2}} . The δgα -closed sets (CSs)

are {∅,W, {u1}, {w3}, {u1, w3}} . Define two functions f : (I, τ1) → (J, τ2) and g : (J, τ2) → (W, τ3). By the

above examples, it is clear that these two functions are δgα -continuous.

However, their composition (g ◦ f) : (I, τ1) → (W, τ3) is not δgα -continuous because for the closed set

{u1, w3} in (W, τ3), (g ◦ f)−1({u1, w3}) = f−1(g−1({u1, w3})) = f−1({u1, w3}) = {u1, w3} is not a δgα -closed

set (CS) in (I, τ1). Hence, (g ◦ f) : (I, τ1) → (W, τ3) is not δgα -continuous. Thus, the composition of two

δgα -continuous functions need not always be δgα -continuous.

Theorem 3.32: Let f : (I, τ1) → (J, τ2) and g : (J, τ2) → (W, τ3) be two δgα -continuous functions. Then

their composition g ◦ f : (I, τ1) → (W, τ3) is δgα -continuous if (J, τ2) belongs to the class of T − δgα -TSs.
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Proof: Let L be any closed set (CS) in (J, τ2). Since f : (I, τ1) → (J, τ2) is δgα -continuous, f−1(L) is a

δgα -CS in (I, τ1). Let L be a CS in (W, τ3). Since g : (J, τ2) → (W, τ3) is δgα -continuous, g−1(L) is a δgα -CS

in (J, τ2).

Now consider the composition g ◦ f : (I, τ1) → (W, τ3). Let L be a CS in (W, τ3). Then, (g ◦ f)−1(L) =

f−1(g−1(L)), where g−1(L) is a δgα -CS in (J, τ2). Since (J, τ2) is a T −δgα -space, we have g−1(L) is a CS in

(J, τ2). Thus, f
−1(g−1(L)) is a δgα -CS in (I, τ1), since f is δgα -continuous. Hence, g ◦ f : (I, τ1) → (W, τ3)

is δgα -continuous.

4. δgα irresolute functions

In this section, we introduce the new concepts of δgα irresolute functions in TSs and characterized some of

their properties.

Definition 4.1: A function f : (I, τ1) → (J, τ2) is called δgα irresolute function if the inverse image of every

δgα CS in (J, τ2) is δgα CS in (I, τ1).

Illustration 4.2: Let I = {n1,m2, l3} , τ1 = {I, ϕ, {n1}, {m2}, {l3}, {n1,m2}, {m2, l3}} and CSs are {I, ϕ, {n1, l3},
{m2, l3}, {n1,m2}, {l3}, {n1}} . δgα CSs are {I, ϕ, {n1}, {m2}, {m2, l3}} . Let J = {n1,m2, l3} , τ2 = {J, ϕ, {n1}} .
CSs are {J, ϕ, {m2, l3}} . δgα CSs are {I, ϕ, {n1}, {m2}, {l3}, {n1,m2}, {m2, l3}, {n1, l3}} . Define a function

f : (I, τ1) → (J, τ2) by f(n1) = l3 , f(m2) = n1 , f(l3) = m2 . Then f−1({n1,m2}) = {m2, l3} is δgα CS in

(I, τ1).

∴ f is a δgα -irresolute function.

Theorem 4.3: If f : (I, τ1) → (J, τ2) is a δgα -irresolute function, then f is δgα continuous, but not conversely.

Proof: Let f : (I, τ1) → (J, τ2) be a δgα -irresolute function. Let L be a CS in (J, τ2). Since every CS is

a δgα -CS and f is an irresolute map, it follows that f−1(L) is a δgα -CS in (I, τ1). This =⇒ that f is

δgα -continuous. Hence, every δgα -irresolute map is a δgα -continuous map.

Illustration 4.4: Let I = {r1, s2, t3} , τ1 = {I, ϕ, {r1}, {s2}, {r1, s2}, {r1, t3}} . CSs are {I, ϕ, {s2, t3}, {r1, t3},
{t3}, {s2}} . δgα -CSs are {I, ϕ, {r1}, {t3}, {r1, t3}} . Let J = {r1, s2, t3} , τ2 = {J, ϕ, {r1}, {s2}, {r1, s2}} . CSs

of J are {J, ϕ, {s2, t3}, {r1, t3}, {t3}} . δgα -CSs are {J, ϕ, {r1}, {s2}, {t3}, {r1, t3}, {s2, t3}, {r1, s2}} . Define a

function f : (I, τ1) → (J, τ2) by f(r1) = t3, f(s2) = s2, f(t3) = r1. The function f is δgα -continuous

but not δgα -irresolute. Then, f−1({r1, s2}) = {s2, t3} is not a δgα -CS in (I, τ1), indicating that f is not a

δgα -irresolute function.

Theorem 4.5: A map f : (I, τ1) → (J, τ2) is a δgα -irresolute function if and only if f−1(L) is a δgα -OS in

(I, τ1) for every δgα -OS in (J, τ2).

Proof: Let f : (I, τ1) → (J, τ2) be a δgα -irresolute map. Let H be a δgα -OS in (J, τ2). Then f−1(Hc) is

a δgα -CS in (I, τ1). But f−1(Hc) = (f−1(L))c and so f−1(L) is a δgα -OS in (I, τ1). The converse follows

similarly.

Theorem 4.6: Let f : (I, τ1) → (J, τ2) and g : (J, τ1) → (W, τ2) be any two maps. Then:

1. (g ◦ f) is a δgα -irresolute function if both f and g are δgα -irresolute functions.

2. (g ◦ f) is a δgα -continuous function if g is δgα -continuous and f is δgα -irresolute.

Proof:
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1. Let F be a δgα -CS in (W, τ2). Since g is a δgα -irresolute map, g−1(L) is a δgα -CS in (J, τ2). Since f

is δgα -irresolute,

f−1(g−1(L)) = (g ◦ f)−1(L)

is a δgα -CS in (I, τ1). Thus, (g ◦ f) is a δgα -irresolute function.

2. Let F be a δgα -CS in (W, τ2). Since g is δgα -continuous,

g−1(L) is a δgα-CS in (J, τ2).

Since f is δgα -irresolute,

f−1(g−1(L)) = (g ◦ f)−1(L)

is a δgα -CS in (I, τ1). Thus, (g ◦ f) is a δgα -continuous function.

5. Conclusion

In this study, we present the notion of δgα -continuous maps in TSs and investigate their connections to

well-known continuous map types. By defining this new class of continuous maps, we aim to enhance the

understanding of continuity in topology and highlight connections to existing frameworks. Our investigation

provides insights into the properties and implications of δgα -continuity, contributing to the broader discourse

in the field.
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