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1. Introduction

Huang and Zhang [4] introduced the cone metric space (CMS) in 2007. They proved several fixed point theorems

(FPT) in this space by replacing the real numbers with an ordered Banach space (BS). Many (FPT) have

been proven by numerous writers who have studied this topic (see [1], [5], [11], [3]). Branciari [2] first expanded

Banach (FPT) and introduced the contractive condition of integral type. Subsequently, in (CMS), Khojasteh

and et.al. [6] presented the concept of a cone integrable function and provided a proof of Branciari’s theorem.

This paper’s goal is to apply the idea of Khojasteh [6] to a few novel integral-type contractive conditions

in (CMS).

1.1. Preliminaries

We can prove the main results with the help of the following definitions and lemmas of (CMS) and (BA).

Definition 1.1. (See[12][10]) Consider A is always a real (BA), which means that A is a (BS) whereby a

multiplication operation has defined and applied the subsequent characteristics for every ζ, ξ, υ ∈ A and α

element of R .

(1) ζ(ξυ) = (ζξ)υ ;

(2) ζξ + ζυ = ζ(ξ + υ) and ζυ + ξυ = (ζ + ξ)υ ;

(3) (αζ)ξ = α(ζξ) = ζ(αξ);

(4) ||ζξ|| ≤ ||ζ||.||ξ|| .
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In the framework of a (BA), we postulate the presence of a unit (or multiplicative identity) denoted as e,

satisfying the condition that eζ = ζe = ζ for every element ζ ∈ A . An element ζ belonging to A is deemed

invertible if there exists an element ξ ∈ A that serves as its inverse, fulfilling the equation ζξ = ξζ = e . The

inverse of ζ is represented as ζ−1 .

Proposition 1.1. (See[12],[10]) Let A denote a (BA) equipped within a unit element e, and let ζ be an

element of A . If the spectral radius ρ(ζ) of the element ζ < 1 , that is,

ρ(ζ) = lim
n→∞

||ζn||
1
n = inf ||ζn|| 1

n < 1

Consequently, the expression (e− ζ) is invertible, and its inverse is given by (e− ζ)−1 =
∑∞

i=0 ζ
i.

A subset P of A is referred to as a cone if

(1) P is non-empty closed and {θ, e} ⊂ P , where θ is A ’s zero vector;

(2) PP = P2 ⊂ P ;

(3) For any non-negative real numbers β and α exists such that αP + βP ⊂ P ,

(4) (−P) ∩ (P) = {θ} .

For a specified cone P subset of A, a partial ordering ⪯ can be established in relation to P such that ζ ⪯ ξ

holds iff ξ − ζ ∈ P. The symbol ζ ≪ ξ is used to indicate that ξ − ζ ∈ Po , where Po represents the interior of

the cone P .

The cone P is referred to as usually if there is a constant K > 0 so that for any α, β ∈ A , the condition

α ⪯ β leads to the conclusion that ||α|| ≤ K||β|| .
The smallest positive value of K that satisfies the aforementioned inequality is referred to as the normal

constant (refer to [4]). It is important to note that for any normal cone P, the condition K ≥ 1 holds (see [11]).

In the subsequent discussion, we will assume that P represents a cone within a real (BA)A , where Po ̸= ϕ

(indicating that the cone P is solid) and that ⪯ denotes the partial ordering associated with P .

Definition 1.2. (See[7][4][8]) Let U represent a non-empty set. Assume that a function dc : U ×U → A fulfills

the following conditions:

(1) For all ζ, ξ ∈ X , θ ⪯ dc(ζ, ξ) and dc(ζ, ξ) = θ only in the event that ζ = ξ ;

(2) dc(ζ, ξ) = dc(ξ, ζ),∀ζ, ξ ∈ U ;

(3) dc(ζ, ξ) ⪯ dc(ζ, υ) + dc(υ, ξ) for each ζ, ξ, υ ∈ X .

A (CMS) on the set U is denoted by d , and the pair (U , dc) is referred to as a (CMS) over the (BA) A
(abbreviated as CMSBA). It is important to observe that for every pair of elements ζ, ξ ∈ U , the value dc(ζ, ξ)

belongs to the set P .

Definition 1.3. (See[4],[9]) Let (U , dc) represent a (CMS), where ζ ∈ U and {ζn} denotes a sequence within

U . Consequently:

(1) The sequence {ζn} is said to converge to ζ if, for every c ∈ A with θ ≪ c , there exists an integer n0 ∈ N
so that c ≫ dc(ζn, ζ) holds for every n0 < n . That is expressed as limn→∞ ζn = ζ or ζn → ζ as n → ∞ .
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(2) The sequence {ζn} is classified as a Cauchy sequence if, for every c ∈ A where c ≫ θ , there exists an

integer n0 ∈ N so that dc(ζn, ζm) ≪ c holds true for all n0 < n,m .

(3) A complete (CMS) is defined as (U , dc) if every Cauchy sequence contained in U converges..

Lemma 1.1. (See[4]) Let (U , dc) represent a (CMS), and let P denote a normal cone characterized by a

usual constant K . Consider the sequence ζn within the space U . Then.

(1) The sequence ζn is said to converge to ζ iff the distance dc(ζn, ζ) approaches 0 as n approaches infinity.

(2) A sequence ζn is classified as a Cauchy sequence iff the distance dc(ζn, ζm) approaches zero as both m and

n tend to infinity.

Definition 1.4. (See[4],[9]) Let (U , dc) represent a (CMS). If every Cauchy sequence within U converges,

then U is referred to as a complete (CMS).

Lemma 1.2. (See[4])Let (U , dc) represent a (CMS), and let P denote a normal cone characterized by a

normal constant K . Consider the sequences ζn and ζn within the space U .

(1) If the sequence ζn approaches the value ζ and simultaneously converges to the value ξ , it follows that ζ

must equal ξ . This indicates that the limit of the sequence ζn is unique, and it is evident that the limit of

the sequence ξn is also unique.

(2) The sequences ζn and ξn converge to ζ and ξ , respectively as n approaches infinity, then the distance

dc(ζn, ζm) converges to dc(ζ, ξ) as n approaches infinity.

Example 1.1. [4] Consider a (BS) E = R2, the cone P = {(ζ, ξ) ∈ E|ζ, ξ ≥ 0} ⊂ R2,U = R and

dc : U × U → E for β ≥ 0 a constant such that dc(ζ, ξ) = (|ζ − ξ|, α|ζ − ξ|), then (U , dc) is a (CMS).

The subsequent lemmas and findings will be instrumental in establishing the primary result.

Theorem 1.1. [4]Let (U , dc) be a complete cone metric space, and let P denote a normal cone characterized

by a normal constant K . Suppose the mapping J : U → U satisfies the contractive condition

dc(J ζ,J ξ) ≤ βdc(ζ, ξ)

for all ζ, ξ ∈ U , where β ∈ (0, 1) . Consequently, J possesses a singular fixed point. ζ0 ∈ U . For all ζ ∈ U ,

sequence {J n(ζ)} converges to ζ0 .

In 2002, Branciari [2] presented a comprehensive contractive condition of integral type within the frame-

work of (CMS) as detailed below.

Theorem 1.2. [2] Let (U , dc) represent a complete metric space, where β is a value in the interval (0, 1) , and

consider the mapping J : U → U , which holds for all elements ζ, ξ ∈ U ,∫ dc(J ζ,J ξ)

0

ϕ(t) dt ≤ β

∫ dc(ζ,ξ)

0

ϕ(t) dt

Let ϕ : [0,+∞) → [0,+∞) be a nonnegative and Lebesgue-integrable function that is summable on every

compact subset of [0,+∞) . It is required that for every ϵ > 0 , the integral
∫ ϵ

0
ϕ(t) dt is greater than zero. Under

these conditions, the function f possesses a unique fixed point δ ∈ U , such that limn→∞ J nζ = δ .
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In this section, we introduce an innovative concept of an integral associated with a cone and present

Branciari’s findings as outlined in (CMS) regarding Banach algebra.

Definition 1.5. [6]Let us consider that P represents a normal cone in the space E. Let δ, η ∈ E and δ < η .

We define
[δ, η = {ζ ∈ E : ζ = tη + (1− t)δ, t ∈ [0, 1]},

[δ, η) = {ζ ∈ E : ζ = tη + (1− t)δ, t ∈ [0, 1)},

Definition 1.6. [6] The set P1 = {δ = ζ0 ζ1 ζ2....ζn = η} is designated a divisin of [δ, η] iff the sets

{[ζj−1, ζj ]}nj=1 the sets are mutually exclusive and [δ, η] = {
⋃n

j−1[ζj=1, ζj)} ∪ {η} .

Definition 1.7. [6]Let P1 = {δ = ζ0ζ1ζ2....ζn = η} be a partition of [δ, η] and ϕ = [δ, η] → P an increasing

function is defined as one that consistently rises. We establish the concepts of cone lower sum and cone upper

sum as follows.

Lcon
n (ϕ,P1) =

n−1∑
j=0

ϕ(ζj)∥ζj − ζj+1∥

U con
n (ϕ,P1) =

n−1∑
j=0

ϕ(ζj+1)∥ζj − ζj+1∥

respectively.

The function ϕ is referred to as a cone integrable function on the interval [δ, η] if and only if it holds

true for every partition P1 of the interval [δ, η] .

lim
n→∞

Lcon
n (ϕ,P1) = Scon = lim

n→∞
U con
n (ϕ,P1)

where Scon is unique. We shall write con =
∫ η

δ
ϕdP or

∫ η

δ
ϕ(t)dP(t).

Lemma 1.3. [6]If [δ, η] ⊆ [δ, γ] then
∫ η

δ
ϕdP ≤

∫ γ

δ
ϕdp for ϕ ∈ l1(U ,P)

∫ η

δ

(hϕ1 + gϕ2) dP = h

∫ η

δ

ϕ1dP + g

∫ η

δ

ϕ2dP

for ϕ1, ϕ2 ∈ l1(U ,P) and g, h ∈ R. Where l1(U ,P) the notation represents the collection of all functions that

are integrable with respect to the cone.

Definition 1.8. [6] A function ϕ : P → E is classified as a subadditive cone integrable function iff for all

δ, η ∈ P ∫ δ+η

0

ϕdP ≤
∫ δ

0

ϕdP +

∫ η

0

ϕdP

2. Main Results

Theorem 2.1. Let (U , dC) represent a complete (CMS) equipped with a normal cone denoted as P . Consider

the function ϕ : P → P , which is a nonvanishing and subadditive cone integrable mapping defined on every

interval [δ, η] ⊂ P and
∫ ϵ

0
ϕdP ≫ 0, ϵ ≫ 0 . Let J : U → U be a mapping such that
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∫ dc(J δ, J η)

0

ϕdP ⪯ µ1

∫ dc(δ, J δ)+dc(η, J η)

0

ϕdP + µ2

∫ dc(δ, J η)+dc(J δ, η)

0

ϕdP

for each δ, η ∈ U and (µ1 + µ2) <
1
2 .µ1, µ2 ∈ (0, 1

2 ) . Then J it possesses a distinct fixed point in U .

Proof. Suppose δ ∈ U and δ1 ∈ U in a manner that δ1 = J (δ). Let δ2 ∈ U such that δ2 = J (δ). Continuing

in this way we can define δn+1 = J (δn) = J n(δ)∫ dc(δn+1, δn)

0

ϕdP =

∫ dc(J δn, J δn−1)

0

ϕdP

⪯ µ1

∫ dc(δn, J δn)+dc(δn−1, J δn−1)

0

ϕdP + µ2

∫ dc(δn, J δn−1)+dc(J δn, δn−1)

0

ϕdP

⪯ µ1

∫ dc(δn, δn+1)+dc(δn−1, δn)

0

ϕdP + µ2

∫ dc(δn, δn)+dc(δn+1, δn−1)

0

ϕdP

⪯ µ1

∫ dc(δn, δn+1)+dc(δn−1, δn)

0

ϕdP + µ2

∫ dc(δn+1, δn)+dc(δn, δn−1)

0

ϕdP

⪯ (µ1 + µ2)

[∫ dc(δn, δn+1)+dc(δn−1, δn)

0

ϕdP +

∫ dc(δn+1, δn)

0

ϕdP

]

⪯ µ

∫ dc(δn−1, δn)+dc(δn, δn+1)

0

ϕdP

Where µ = µ1+µ2

1−(µ1+µ2)
.Since ϕ is cone subadditive, so∫ dc(δn+1, δn)

0

ϕdP ⪯ µ

∫ dc(δn−1, δn)

0

ϕdP + µ

∫ dc(δn, δn+1)

0

ϕdP

⪯ µ(e− µ)−1

∫ dc(δn, δn−1)

0

ϕdP

⪯ β

∫ dc(δn, δn−1)

0

ϕdP

Where β = µ(e− µ)−1

∫ dc(δn+1, δn)

0

ϕdP ⪯ .......βn

∫ dc(δ1, δ0)

0

ϕdP

Now ∫ dc(δn+1, δn)

0

ϕdP ⪯ βn

∫ dc(J (δ), δ)

0

ϕdP

Since 0 ≤ β < 1 and
∫ ϵ

0
ϕdP ≫ 0, ϵ ≫ 0, so

lim
n→∞

∫ dc(δn+1, δn)

0

ϕdP = θ
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which implies, that limn→∞ dc(δn+1, δn) = θ

To demonstrate that the sequence {δn} is a Cauchy sequence, we will establish that.

lim
m,n→∞

dc(J (δm), J (δn)) = θ

By triangle inequality∫ dc(J (δm), J (δn))

0

ϕdP ⪯
∫ dc(J (δn), J (δn+1))+dc(J (δn+1), J (δn+2))+.....dc(J (δm−1), J (δm))

0

ϕdP

Consequently, by the principle of sub-additivity of ϕ , we obtain.∫ dc(J (δm), J (δn))

0

ϕdP ⪯
∫ dc(J (δn), J (δn+1))

0

ϕdP + ....+

∫ dc(J (δm−1), J (δm))

0

ϕdP

⪯ (βn + βn−1 + .....+ βm)

∫ dc(δ1, δ0)

0

ϕdP

⪯ βn(e− β)−1

∫ dc(δ1, δ0)

0

ϕdP → 0(n → ∞)

Thus

lim
m,n→∞

dc(J (δm), J (δn)) = θ

This indicates that the sequence {δn} is a Cauchy sequence. Given that U is a complete (CMS), it follows

that the sequence {δn} converges to some limit δ0 ∈ U . Ultimately, since.

∫ dc(δn+1, J (δ0))

0

ϕdP =

∫ dc(J (δn), J (δ0))

0

ϕdP ⪯ β

∫ dc(δn, δ0)

0

ϕdP

Thus limm,n→∞ dc((δn+1), (δ0)) = θ. This means that J (δ0) = δ0. If δ0, η0 are two separate fixed points of

J , then ∫ dc(δ0, η0)

0

ϕdP =

∫ dc(J (δ0), J (η0))

0

ϕdP ⪯ β

∫ dc(δ0, η0)

0

ϕdP

This presents a contradiction. Therefore, J possesses a unique fixed point, denoted as δ0 ∈ U .

Theorem 2.2. Let (U , dC) represent a complete (CMS) equipped with a normal cone denoted as P . Consider

the function ϕ : P → P , which is a nonvanishing and subadditive cone integrable mapping defined on every

interval [δ, η] ⊂ P and
∫ ϵ

0
ϕdP ≫ 0, ϵ ≫ 0 . Let J : U → U be a mapping such that

∫ dc(J δ, J η)

0

ϕdP ⪯ µ

∫ max{dc(δ, η),dc(δ, J δ),dc(η, J η)}

0

ϕdP

for each δ, η ∈ U and µ ∈ [0, 1) . Then J possesses a distinct fixed point in U .
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Proof. Suppose δ ∈ U and δ1 ∈ U such that δ1 = J (δ). Let δ2 ∈ U such that δ2 = J (δ). Continuing in this

way we can define δn+1 = J (δn) = J n(δ)∫ dc(δn+1, δn)

0

ϕdP =

∫ dc(J δn, J δn−1)

0

ϕdP

⪯ µ

∫ max{dc(δn, δn−1),dc(δn, J δn),dc(δn−1, J δn}

0

ϕdP

⪯ µ

∫ max{dc(δn, δn−1),dc(δn, δn+1),dc(δn−1, δn}

0

ϕdP

⪯ µ

∫ dc(δn, δn−1)

0

ϕdP

⪯ µn

∫ dc(δ1, δ0)

0

ϕdP

Since 0 ≤ µ < 1 and
∫ ϵ

0
ϕdP ≫ 0, ϵ ≫ 0, so

lim
n→∞

∫ dc(δn+1, δn)

0

ϕdP = θ

which implies, that limn→∞ dc(δn+1, δn) = θ

To demonstrate that the sequence {δn} is a Cauchy sequence, we will establish that.

lim
m,n→∞

dc(J (δm), J (δn)) = θ

By triangle inequality∫ dc(J (δm), J (δn))

0

ϕdP ⪯
∫ dc(J (δn), J (δn+1))+dc(J (δn+1), J (δn+2))+.....dc(J (δm−1), J (δm))

0

ϕdP

By virtue of the sub-additivity property of ϕ , we obtain.∫ dc(J (δm), J (δn))

0

ϕdP ⪯
∫ dc(J (δn), J (δn+1))

0

ϕdP + ....+

∫ dc(J (δm−1), J (δm))

0

ϕdP

⪯ (µn + µn−1 + .....+ µm)

∫ dc(δ1, δ0)

0

ϕdP

⪯ µn(e− µ)−1

∫ dc(δ1, δ0)

0

ϕdP → 0(n → ∞)

Thus

lim
m,n→∞

dc(J (δm), J (δn)) = θ

This indicates that the sequence {δn} is a Cauchy sequence. Given that U is a complete (CMS), it follows

that the sequence {δn} converges to some limit δ0 ∈ U . Ultimately, since.∫ dc(δn+1, J (δ0))

0

ϕdP =

∫ dc(J (δn), J (δ0))

0

ϕdP ⪯ β

∫ dc(δn, δ0)

0

ϕdP
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Thus limm,n→∞ dc((δn+1), (δ0)) = θ. This means that J (δ0) = δ0. If δ0, η0 are two separate fixed points of

J , then ∫ dc(δ0, η0)

0

ϕdP =

∫ dc(J (δ0), J (η0))

0

ϕdP ⪯ β

∫ dc(δ0, η0)

0

ϕdP

This presents a contradiction. Therefore, J possesses a unique fixed point, denoted as δ0 ∈ U .

Theorem 2.3. Let (U , dC) represent a complete (CMS) equipped with a normal cone denoted as P . Consider

the function ϕ : P → P , which is a nonvanishing and subadditive cone integrable mapping defined on every

interval [δ, η] ⊂ P and
∫ ϵ

0
ϕdP ≫ 0, ϵ ≫ 0 . Let J : U → U be a mapping such that

∫ dc(J δ, J η)

0

ϕdP ⪯ µ

∫ dc(δ, η)+dc(δ, J (δ))+dc(η, J (η))

0

ϕdP

for each δ, η ∈ U and µ ∈ (0, 1
3 ) . Then J demonstrates that J possesses a singular fixed point in U .

Proof. Assume δ ∈ U and δ1 ∈ U such that δ1 = J (δ). Let δ2 ∈ U such that δ2 = J (δ). Continuing in this

way we can define δn+1 = J (δn) = J n(δ)∫ dc(δn+1, δn)

0

ϕdP =

∫ dc(J δn, J δn−1)

0

ϕdP

⪯ µ

∫ dc(δn, δn)+dc(δn−1, δn+1)+dc(δn, δn−1)

0

ϕdP

⪯ µ

∫ dc(δn−1, δn+1)

0

ϕdP + µ

∫ dc(δn, δn−1)

0

ϕdP

Using triangular inequality and cone subadditivity.∫ dc(δn+1, δn)

0

ϕdP ⪯ µ

∫ dc(δn−1, δn)

0

ϕdP + µ

∫ dc(δn, δn+1)

0

ϕdP + µ

∫ dc(δn, δn−1)

0

ϕdP

⪯ 2µ(e− µ)−1

∫ dc(δn, δn−1)

0

ϕdP

⪯ β

∫ dc(δn, δn−1)

0

ϕdP

⪯ ......βn

∫ dc(δ1, δ0)

0

ϕdP

= βn

∫ dc(J (δ), δ)

0

ϕdP

Where β = 2µ(e− µ)−1 .If 0 < 2µ(e− µ)−1 < 1 that is µ < 1
3∫ dc(δn+1, δn)

0

ϕdP = θ

8



Anil Kumar Mishra and Padmavati

which implies that

lim
n→∞

dc(δn+1, δn) = θ

It can be readily demonstrated, similar to theorems (2.1), that the sequence {δn} qualifies as a Cauchy sequence.

Furthermore, the completeness of the space CMS U guarantees the existence of an element δ0 ∈ U for which

the limit limn→∞ δn = δ0 holds true.Now∫ dc(J (δ0), δn+1)

0

ϕdP =

∫ dc(J (δ0), J (δn))

0

ϕdP

⪯ µ

∫ dc(δ0, δn+1)+dc(δn, J (δ0))+dc(δ0, δn)

0

ϕdP

⪯ µ

∫ dc(δ0, δn+1)

0

ϕdP + µ

∫ dc(δn, J (δ0))

0

ϕdP + µ

∫ dc(δ0, δn)

0

ϕdP

As n → ∞ ∫ dc(J (δ0), δ0)

0

ϕdP ⪯ µ

∫ dc(δ0, J (δ0))

0

ϕdP

Given that 0 < µ < 1
3 , it follows that

∫ dc(J (δ0), δ0)

0
ϕdP = θ . This indicates that dc(J (δ0), δ0) = θ ,

which further leads to the conclusion that J (δ0) = δ0 .

Let J have two fixed points δ0 and η0 i.e. J (δ0) = δ0 and J (η0) = η0∫ dc(δ0, η0)

0

ϕdP =

∫ dc(J (δ0), J (η0))

0

ϕdP

⪯ µ

∫ dc(δ0, J (η0))+dc(η0, J (δ0))+dc(δ0, η0)

0

ϕdP

⪯ 3µ

∫ dc(δ0, η0)

0

ϕdP

= θ

Since 0 < µ < 1
3 therefore ∫ dc(δ0, η0)

0

ϕdP = θ

This implies dc(δ0, η0) = θ

δ0 = η0

It demonstrates that J possesses a singular fixed point.

Example 2.1. Let U = [0, 1] and let dc denote the standard metric with dc(δ, η) = ∥δ − η∥. Clearly (U , dc) is

a complete (CMS). Let J : U → U be provided by J δ = δ
2 for all δ ∈ [0, 1] . Once more, allow ϕ : R+ → R+

be provided by ϕ(t) = t2

2 for all t ∈ R+ . Then for each ϵ > 0∫ ϵ

0

ϕ(t) dt =

∫ ϵ

0

t2

2
dt =

ϵ3

6
> 0
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By setting µ = 1
16 , it can be readily confirmed that the condition of Theorem (2.1) is fulfilled, given that

0 < µ < 1 . Consequently, this leads to the existence of a unique fixed point for J .

3. Application

In biological systems, like population models or ecosystems, interactions between different species can be

intricate and multifaceted. The study of species stability and persistence in dynamic ecosystems, where growth

rates and interactions are controlled by various factors, is aided by fixed point results in CMS. Integral type

contractions are useful in modeling how populations stable in the face of varying environmental conditions

throughout time.

4. Conclusion

In this study, we have formulated specific fixed point theorems for generalized integral type contraction mappings

within the context of complete (CMS) over (BA), utilizing Banach’s principle. Additionally, we have explored

the ramifications of our primary results. The findings articulated in this paper expand upon and enhance various

elements of previous research documented in the literature.
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