Asia Mathematika, Vol 9, issue 2, pages: 2--20.

On generalized spiral-like pseudo starlike functions

A. A. Yusuf
Department of Mathematics, College of Physical Sciences,\\ Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
M. Darus
Department of Mathematical Sciences, Faculty of Science and Technology,\\ Universiti Kebangsaan Malaysia. Bangi-43600, Selangor.

Received: 31 May 2025 | Accepted: 18 Jul 2025 | Final Version: 31 Aug 2025

Abstract

This present work is to investigate the following properties namely: inclusion, integral representation, condition for univalency, coefficient ineqaulities and Fekete-Szego ineqaulity of the class of function \(f(0)=0\), \(f^{\prime}(0)=1\) define by Opoola differential operator denoted as \(\mathring{B^{n,t}_{\zeta, \mu}(\lambda, \theta, \beta)}\) via a functions of positive real part. Our results are accompanied with corollaries which satisfy some of the existing ones.

Keywords:
Opoola differential operator, Opoola integral operator, Spiral-like functions, Pseudo starlike functions.

1. Introduction

The concept of theory of geometry functions is an area of complex analysis which deals with geometric structure of analytic functions in the image domain and determines the geometric properties...

References

  1. S. Abdulhalim, On a class of analytic functions involving the Salagean differential operator. Tamkang Journal of Mathematics, 23(1), 51–58, 1992.
  2. H. S. Al-Amiri & M. O. Reade, On Linear Combination of some expressions in the theory of univalent functions. Monatshefte für Mathematik, 80, 257–264, 1975.
  3. S. O. Altintaş, On a Subclass of Certain Starlike Functions with Negative Coefficients. J. Math. Soc. Japan, 36, 489–495, 1991.
  4. M. Al-Kaseasbeh & M. Darus, On subclass of harmonic univalent functions defined by generalized Salagean operator and Ruscheweyh operator. Transylvanian Journal of Mathematics and Mechanics, 7(2), 95–100, 2015.
  5. F. M. Al-Oboudi, On Univalent Functions Defined by a Generalised Salagean Operator. Intern. J. Math. Math. Sci., 17(2), 5–25, 2004.
  6. F. M. Al-Oboudi & Z. M. Al-Qahtani, Application of Differential Subordinations to some Properties of Linear Operators. Intern. J. Open Probl. Compl. Anal., 2, 189–202, 2010.
  7. K. O. Babalola, On λ-Pseudo-Starlike Functions. J. Class. Anal., 3, 137–147, 2013.
  8. S. D. Bernardi, Convex and Starlike Univalent Functions. Trans. Amer. Math. Soc., 135, 429–446, 1969.
  9. M. Darus & K. Thomas, A logarithmically convex functions. Indian J. Pure Appl. Math., 29, 1049–1059, 1998.
  10. M. Darus & R. W. Ibrahim, On applications of differential subordination and differential operator. J. Math. Statist., 8, 165–168, 2012.
  11. M. Darus & K. Thomas, A logarithmically convex functions. Indian J. Pure Appl. Math., 29, 1049–1059, 1998.
  12. B. A. Frasin, A new differential operator of analytic functions involving binomial series. Bol. Soc. Parana. Mat., 3, 205–213, 2020.
  13. J. O. Hamzat & A. T. Oladipo, On a Comprehensive Class of Analytic p-Valent Functions Associated with Shell-like curve and Modified Sigmoid Function. Malays. J. Comput., 7, 995–1010, 2022.
  14. J. O. Hamzat & S. O. Sangoniyi, Fekete-Szegö inequalities Associated with Certain Generalized Class of Non-Bazilevic Functions. Int. J. Math. Sci. Opt. Theory Appl., 6, 874–885, 2021.
  15. R. Libera, Univalent β-spiral functions. Canad. J. Math. Soc., 19, 449–456, 1967.
  16. A. O. Lasode, T. O. Opoola, I. Al-Shbeil, T. G. Shaba & H. Alsaud, Concerning a Novel Integral Operator and a Specific Category of Starlike Functions. Mathematics, 11, 4519, 2023.
  17. P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme. Mathematica (Cluj), 11(34), 127–133, 1969.
  18. W. Ma & D. A. Minda, Unified treatment of some special classes of univalent functions. In Proceedings of Conference on Complex Analytic; Li, Z., Ren, F., Lang, L., Zhang, S., Eds.; International Press: New York, NY, USA, vol. 1, pp. 157–169, 1994.
  19. S. Ruscheweyh, New criteria for univalent functions. Proc. Amer. Math. Soc., 49(1), 109–115, 1975.
  20. T. O. Opoola, On a subclass of univalent functions defined by a generalized differential operator. Int. J. Math. Anal., 8, 869–876, 2017.
  21. G. S. Salagean, Subclasses of univalent functions. Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg and New York, 1013, 362–372, 1983.
  22. H. M. Srivastava & A. A. Attiya, Some Subordination Results Associated with Certain Subclasses of Analytic Functions. J. Inequal. Pure Appl. Math., 5, 1–14, 2004.
  23. R. Singh, On Bazilevic Functions. Proc. Amer. Math. Soc., 38, 261–271, 1973.
  24. R. Singh, A note on spiral-like functions. J. Indian Math. Soc., 33, 49–55, 1969.
  25. A. Yusuf & M. Darus, On Subclass of Harmonic Univalent Functions defined by a Generalised Operator. Int. J. Math. Comput. Sci., 14(2), 465–472, 2019.
  26. A. A. Yusuf & M. Darus, On \(Q_\beta\)-pseudo starlike functions. Asia Mathematika, 8(3), 1–9, 2024.