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Abstract: In this paper, we obtain a fixed point result for G(Generalized)- Expansion onto self- mappings on CCM(Complete

Cone Metric)-Spaces. This result is an extension and improved result of the some of the existing results in this literature.
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1. Introduction and Preliminaries

Cone metric space was introduced by the mathematicians Huang and Zhang [7]. They obtained some fixed point
results in cone metric space. Later on many authors were inspired by these results, they have been extending
these results in different dimensions ( see for e.g. [1-15 ]). In recent developments in this area for non explosive
map in cone metric spaces (see for e.g. [1-6], [8-11] ). Recently, Aaage and Salunke [ 6 ] proved some fixed point
theorems for expansion onto mappings on cone metric spaces. In this paper, we obtained affixed point theorem

for expansion mappings on cone metric spaces. The following ar useful in our main results which are due to [7].

1.1. Sections and subsections

Definition 1.1. Let B be a real Banach space and @) a subset of B. @ is called a cone if and only if:

(a). @ is closed, non empty, and @ # 0.
(b). a,BER, a,8 >0, x,y € Q implies ax + Py € Q.
(¢). z € @ and —z € @ implies = = 0.

Definition 1.2. Given a cone ) C B, we define a partial ordering < with respect to @ by : x <y iff
y—x € . We shall write x < y to indicate that < y but = # y, while x << y will stand for y — z €
interior of Q.

Definition 1.3. The cone @ is called normal if there is a number M > 0 such that for all z,y € B, 0 <z <y

implies ||z|| < M||y||, where |.|| is the norm in B. In this case the number M is called the normal constant

of Q.

Definition 1.4. Let X be a non- empty set. Suppose the p: X — X satisfies the following:
(a). p(x,y) >0 for all z,y € Xand p(z,y) =0 if and only if z=y.
(b). p(z,y) = p(y,x), for all z,yeX.
(©). p(z,y) < plx,2) + p(z,y), for all z,y,z€ X.
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Then p is called a cone metric on X, and (X, p) is called a cone metric space.

Definition 1.5. Let (X, p) be a cone metric space. Let (z,) be a sequence in X and x € X. If for every
d e M, d>> 0 there is N such that for all n > N, p(z,,x) << d, then (z,) is said to be convergent to x
and z is the limit of (z,,). We denote this z,, — x as n — oo.

Definition 1.6. Let (X, p) be a cone metric space. Let (z,) be a sequence in X and z € X. If for every
de M, d>> 0 there is N such that for all n,m > N, p(xn,xm) << d, then (z,) is said to be Cauchy

sequence in X .

Definition 1.7. Let (X, p) be a cone metric space. If every Cauchy sequence is convergent, then X is called
a CCM(Complete Cone Metric)-space.

2. Main Result
Theorem 2.1. Let (X,p) be a CCM-Space and the mapping A : X — X is continuous onto and satisfies

the generalized contractive condition:
p(Az, Ay) < ap(z,y) + Blo(z, Az) + py, Ay)] +7[p(x, Ay) + p(y, Az)]. 1)

For all x,y € X, where o, 8,7 >0 and % < g+ B <1 is constant. Then A has a fized point in X .

Proof. For each xy € X. Sine A is onto there exists x; € X such that xg = Axy similarly for each n > 1
there exists x,4+1 € X such that z, = Axp41. If 2,1 = x,, then z,, is a fixed point of A. Thus we suppose
that ©,_1 # x, for all n > 1. Then by (1) we have

P(Tn; Tn—1) = p(ATn 11, Azp),
> ap(Tnt1,n) + Blp(Tnt1, ATpir) + p(@n, Azn)] + v[p(Tnt1, Azn) + p(Tn, ATnia)],
= ap(@n+1, ) + Blp(Tn+1,Tn) + p(Tn, Tn-1)] + V[p(Tnt1, Tn-1) + p(Tn, T0)],
> (a+ B+7)p(Tn, Tny1) + (B +7)p(@n-1,2n),

1—(B+7)

Tn—1,Tn),

p(azn, xnfl) <

S kjp(mnfla :En)a

_ 1-(B+v)
where, k—m<l(md0 <k<l.

From this, we get that

(@, Tn—1) < k"p(z0,21),

_ 1-(B+7)
where k = R <land 0<k<1.

Now for n > m, we have
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P&, Tm) < p(Zn, Zrg1) + p(Tnt1, Tng2) + oo + P(Zm—1, Tm),
< (K" B R p(ao, 21),

k’n

< mp(ﬁﬁoﬂh)-

Let 0 < e be given, Choose a natural number N; such that %p(xo, x1) <e, forall n>Nj.

Thus, p(zn,z,) < e for n > m, Therefore, x,, n > 1 is a Cauchy sequence in (X, p), Since (X, p)
is a CCM-Space there exists z* € X such that z, — x* as n — oo, Since, A is continuous then
p(Az*, x*) < p(Axy, Ax*) + p(Az*,2*) — 0, as n — oo, Since =z, — z* and Az, — Az*, As
n —> oo, Therefore, p(Az*,2*) = 0 and so Az* = z*, Then A has a fixed point in X, This completes the
proof of the theorem. O

Remark 2.1. If we take o = 0 in the above theorem we get the Theorem 2.3, of [6].

3. Conclusion

Our results are more general than the results of [6]
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