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Abstract: In this study, we carried out further study on the transitive and primitive nature of dihedral group of prime
degrees that are not p-groups by numerical approach. Transitivity and primitivity are two pivotal properties that provide
deeper insights into group structures. Primitive groups represent the building blocks of all finite groups, akin to prime
numbers in number theory. Transitivity, on the other hand, reflects a group’s ability to act uniformly on a set, highlighting
its symmetrical properties. A group G acting on a set € is said to be transitive on € if it has one orbit and so a% = Q
for all a € Q. Equivalently, G is transitive if for every pair of point «, 8 € Q there exists g € G such that o9 = 3. A
permutation group G acting on a non empty set {2 is called primitive if G acts transitively on {2 and G preserves no
non trivial partition of 2. In other words, a group G is said to be primitive on a set €2 if the only sets of imprimitivity
are the trivial ones otherwise G is imprimitive on 2. In this work we generated some dihedral groups of prime degrees
that are not p -groups and used computational tools, including GAP (Groups, Algorithms, and Programming) coupled
with maximality theorem to analyze their structures and action properties and discuss their transitive and primitive
nature. The findings contribute to a deeper understanding of finite permutation groups, offering new insights into their
classification and properties. This study not only enriches the theoretical framework of abstract algebra but also provides

practical applications in areas such as cryptography, chemistry, and computational group theory.
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1. Introduction
1.1. Background of the Study

Group theory plays a pivotal role in many areas of mathematics, especially where symmetry is a key considera-
tion. Symmetry in any object is inherently tied to group theory, making it difficult to discuss symmetry without
referencing this mathematical framework. As one of the foundational branches of abstract algebra, group the-
ory seeks to classify groups up to isomorphism. This means that, for any given group, it should be possible to
identify a corresponding known group via an isomorphism. The use of groups was first effectively applied in
the early 19th century by mathematicians such as Joseph Louis Lagrange, Paolo Ruffini, and Evariste Galois.
They utilized groups to understand how permutations of polynomial roots behaved (Galois and Singh, 1897
[12]). At that time, the concept of groups was not based on an axiomatic foundation. Subsequent developments
by Augustin-Louis Cauchy and Arthur Cayley refined the theory, with Cayley (1854 [8]) proposing the first
formal group postulates. However, these postulates were largely overlooked until Leopold Kronecker formalized
the axioms for Abelian groups in 1870. Johanna Weber later provided definitions for finite and infinite groups
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in 1882 and 1883, respectively (Kleiner, 1986 [16]). According to Cameron (2013 [7]), before 1850, the term
7group” referred to a set G of transformations of a set {2, such that G closed under composition, contained
the identity transformation, and included the inverse of each element. This early interpretation corresponds to
what we now refer to as a ”permutation group.” The requirement for every element of G to have an inverse
implied that the function was both one-to-one and onto, effectively a permutation. In modern terms, a group
is defined as a non-empty set G equipped with a binary operation, denoted *, which satisfies the associative
property, contains an identity element, and ensures that every element has an inverse. Although this modern,
axiomatic approach differs from earlier interpretations, the two

perspectives are essentially equivalent. Today, permutation groups are viewed as algebraic structures where the
operation is function composition, which is inherently associative (Gallian, 2010 [11]; Roman, 2012 [18]).

Let 2 be a non-empty set. A permutation of €2 is a bijection a : Q — Q. The set of all permutations of  is
denoted Sq. For a finite set Q = {1,2,...,n}, the set of permutations S,,, the symmetric group of degree n
, with order |S,| = n!. During his work, Joseph-Louis Lagrange observed permutation as arrangements, that
is, as a list 41,149,...,1, with no repetition of any of the elements of 2. Given an arrangement, i1,is,...,,,
define a function a: Q — Q by «a(j) =1 for all j € Q. Thus, every rearrangement gives a bijection (Burness
and Tong-Viet, 2016 [6]).

Dihedral groups, which describe the symmetries of regular polygons, provide important examples of finite
permutation groups. These groups consist of rotations and reflections and have numerous applications in
natural sciences and engineering (Cameron, 2013 [7]). For a regular polygon with n sides, dihedral groups are
denoted as D, or Ds,. In this work, the notation D, , representing the symmetry group of a polygon with n
sides, is used.

When any group G, be it a dihedral or symmetric group acts on a set 2, a typical point « is moved by elements
of G to various other points. The set of these images is called the orbit of o under G, and we denote it by
a%:={a9| g€ G}. Agroup G acting on a set € is said to be transitive on € if it has one orbit and so a% = Q
for all @ € Q. Equivalently, G is transitive if for every pair of point «, 3 € 2 there exists g € G such that
a9 = . A group which is not transitive is called intransitive, see Fawcett (2013 [10]). A permutation group
G acting on a non empty set {2 is called primitive if G acts transitively on 2 and G preserves no non trivial
partition of Q. In other words, a group G is said to be primitive on a set € if the only sets of imprimitivity
are the trivial ones otherwise G is imprimitive on 2. (see Ben et al., 2022 [5] and Ben et al., [4]).

The concepts of transitivity and primitivity are fundamental for understanding group structures. Primitive
groups serve as the building blocks of finite groups, akin to prime numbers in number theory, while transitivity
highlights a group’s ability to act uniformly on a set. (see Apine and Jelten, 2014 [1] and Apine et al., 2015 [2]).
Graphical and numerical methods, combined with computational tools such as GAP, offer effective techniques
for studying these algebraic structures (Hulpke et al., 2016 [15] and Neerajah and Subramanian, 2025 [17]).
This study focuses on dihedral groups of prime degrees that are not p -groups, investigating their transitivity

and primitivity using numerical approaches.

2. Materials and Method

In this work, knowledge of the basic facts from both the theory of abstract finite groups and the theory of
permutation will be assumed throughout. Relevant theorems and results are given and quoted with example
where necessary, in order to enhance proper understanding of the subject matter. We also use the Groups

Algorithm and Programming (GAP) to enhance and validate our work.
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2.1. Theorem (Thomas Judson, 2007)

The symmetric group on n letters, S,, is a group with n! elements, where the binary operation is the

composition of maps.

Proof. The identity of S,, is just the identity map that sends 1 to 1,2 to 2,...,n to n. If f: S, — S,

is a permutation, then f~! exists, since f is one-to-one and onto; hence, every permutation has an inverse.

Composition of maps is associative, which makes the group operation associative. O]

Lemma 2.1. Let G be a dihedral group. Then G = D, has 2 n distinct elements.

Proof. Conventionally, we write D, = <r, flm=f=1fr=rm1f= r_1f> and we say that D, is the group
generated by the elements r and f subject to the conditions
==L fr =" =T f (1)
and the 2 n distinct elements of D, are
1,7’,7’2,’..’rrni]‘,f,rf,T'Qf".',T'nilf (2)
Here r is a rotation about the centre of the polygon through angle 27¢/n and f is a reflection about an axis

of symmetry of the polygon. O

2.2. Group Action (Dixon and Mortimer, 1996 [9])

If a group G is acting on a subgroup H of G, then H is equipped with the restriction of the operation of G.
Let G be a group and € be a non-empty set. We say that G acts on Q (or that G permutes Q ) if to each
a € and g1,92 in G we have that (ag1) g2 = a(g192) and ae = a, where e is the identity element of G.

2.3. Transitivity

Let G be a permutation group on €2, where € is a finite set.
1. We say that G is % - transitive if all the orbits have the same size.

2. Suppose that G has just one orbit Q. then for all r € Q, 7% =
Q and as such for any «, 8 € Q there exists g € G such that o9 = 3, and G is said to be transitive (or
that G acts transitively) on 2

3. The group G is said to be k -fold transitive (or, simply k -transitive) on € if, for any sequences a1, as, ..., ax
such that o; # o; when i # j; 31, 082,...,08, such that 81 # B; when i # j of k elements of €2, there
exists g € G such that

al =p;for 1 <i<k (3)
Thus for £ = 2 we have that for aq, a9, 81,82 in Q with a3 # as, 51 # B2 there exists g € G such that;

a£1]:/817ag:/62- (4)

and we say that G is doubly transitive.
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Corollary 2.1 (Rotman, 1979 [20]). A finite group G is a p-group if and only if |G| is a power of p

Proof. If |G| = p™, then Langrage’s theorem show that G is a p-group. Conversely, assume that there is a
prime g # p which divides |G|. By Cauchy’s theorem, G contains an element of order ¢, and this contradicts

G of being a p group. O
Lemma 2.2. Let G be a dihedral group of any order, then G is transitive.

Proof. For given «;,a; as any two vertices of the regular polygon with i < j, we readily see that

(a1, 00,...,04,...,0a5,... ,an)ﬁi is the rotation about the centre of the polygon through angle 27¢/n (where

n is the number of edges of the polygon) which take a; to «;. Assuch G is transitive. O

2.4. Primitivity (Aratjo et al., 2016 [3])

A permutation group G acting on a non empty set {2 is said to be primitive on a set 2 if and only if it preserves
the trivial block system otherwise G is imprimitive on 2. For example, the group

Ss = {(1),(12), (13), (23), (123), (132)} is primitive as {1,2}123) = {2 3} implying that A9 # A and AINA #
o for A ={1,2}.

On the other hand, a subset A of € is said to be a set of imprimitivity for the action of G on €, if for each
g € G, either A9 = A or AY and A are disjoint. In particular,  itself, the 1 -element subsets of Q and the
empty set are obviously sets of imprimitivity which are called trivial set of imprimitivity.

The group of symmetry Dg = {(1),(1234), (13)(24), (1432), (13), (24), (12)(34), (14)(23)} of the square with
vertices 1,2,3,4 is imprimitive. For take G1 = {(1), (24)}.

Let H = {(1),(13),(24), (13)(24)} which is a normal subgroup of G. Then H is a group greater than Gy, but
not equal to G.

Theorem 2.1 (Passman, 1968 [19]). Let G be a non-trivial transitive permutation group on Q. Then G is
primitive iff Gu, (a € Q) is a mazimal subgroup of G or equivalently, G is imprimitive if and only if there is

a subgroup H of G properly lying between Gq, (o € Q) and G.

Proof. Suppose G is imprimitive and v a non-trivial subset of imprimitivity of G. Let H = {g € G | ¢9 = ¢}.
Clearly H is a subgroup of G and a proper subgroup of G because ) C 2 and G is transitive.

Now choose o € ¢. If g € G then a9 = a, showing that « € ¢y N9 and so ¢ = 9.

Hence H < G. Which follow that G, < H < G.

Since || # 1, choose 8 € ¥ such that 3 # a. By transitivity of G, there exist some h € G with a" = 8 so
that h € Go. Now B €Ny, so ¢ =" and h € H — G, . Thus, H # G,.

Hence G, is not a maximal subgroup.

Conversely, suppose that G, < H < G for some subgroup H.

Let ¢ = oM. Since H > G, |¢| # 1.

Now if ¢ = , then H is transitive on € and hence || = |G: G,| = |H : G,| showing that H = G, a

contradiction.

Hence, ¢ = ().

Now we shall show that v is a subset of imprimitivity of G.

Let g€ G and B € ¥ Na? then 8= a" = a9 for some h, W € H.
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Hence a"'9""" = a. So W'gh~' € G, < H.
Thus ¥ = 9. Hence v is a non-trivial subset of imprimitivity. So G is imprimitive. O

3. Results and Discussion
3.1. Introduction
Here, we discuss in detail the transitivity and primitivity of dihedral groups of prime degrees that are not

p-groups using numerical approach.

3.2. Transitivity and Primitivity of Dihedral Groups of Prime Degrees.

The following are the main results on the constructed Wreath Product group of degree n (where n is prime).

3.2.1. The Dihedral Group of Degree n(n = 3)

Consider a regular triangle T', with vertices labeled 1,2, and 3. We show T below, also using dotted lines to

indicate a vertical line of symmetry of 7" and a rotation of T'.

Figure 1. An Equilateral Triangle with vertices labeled 1, 2, 3.

P

Note that if we reflect T over the vertical dotted line (indicated in the picture by f ), T maps onto itself, with
1 mapping to 1, and 2 and 3 mapping to each other. Similarly, if we rotate T clockwise by 120° (indicated in
the picture by r), T again maps onto itself, this time with 1 mapping to 2,2 mapping to 3, and 3 mapping to
1. Both of these maps are called symmetries of T; f is a reflection or flip, and r a rotation.

Of course, these are not the only symmetries of T'. If we compose two symmetries of 7', we obtain a symmetry
of T : for instance, if we apply the map for to T' (meaning first do r , then do f) we obtain reflection over the
line connecting 2 to the midpoint of line segment 1-3. Similarly, if we apply the map fo (ror) to T (first do
r twice, then do f ) we obtain reflection over the line connecting 3 to the midpoint of line segment 1 — 2. In
fact, every symmetry of T can be obtained by composing applications of f and applications of r.

For convenience of notation, we omit the composition symbols, writing, for instance, fr for f o r,r or as 72,

etc. It turns out there are exactly six symmetries of T, namely:

1. the map e from T to T sending every element to itself;
2. f (i.e, reflection over the line connecting 1 and the midpoint of 2-3);

3. r (that is, clockwise rotation by 120° );
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4. r? (that is, clockwise rotation by 240° );
5. fr (i.e., reflection over the line connecting 2 and the midpoint of 1-3); and

6. fr? (i.e, reflection over the line connecting 3 and the midpoint of 1-2).

Figure 2. A labeled triangle after individual elements of D3 have been applied

Clearly, f° =1° =e, the set
D3 ={e, f,r,7%, fr, fr*} is the collection of all symmetries of T

The Cayley table for the group Ds is as follows.

Table 1. Table 1. Calay’s table for D3
2

X e r r f rf rf
e e r r? f rf | r2f
r r r2 e rf [ 72f | f
2 2 e r r2f | f rf
f f r2f | of e r2 r
rf | rf f r2f | r e r2
r2f | r2f | rf f r2 r

The elements of the group D3 in cycle form is as follows.

Ds ={(1),(2,3),(1,2),(1,2,3),(1,3,2),(1,3)}

Routing calculations shows that the stabilizers of the points 1,2, and 3 are respectively given by:

Gy ={(1),(23)}

G2 ={(1),(13)}

Gs ={(1),(12)}

And the orbit of the points 1,2, and 3 is given by 1¢ = 2¢ = 3¢ = {1,2,3}

A group G = D3 acting on a set Q = {1,2, 3} is said to be transitive on Q if it has one orbit, and so a® = § for
all @ € Q. A group which is not transitive is called intransitive. Thus, D3 = {(1), (1,2), (1, 3), (2,3), (123), (132)}
is transitive.

D3 = {(1),(12),(13),(23),(123), (132)} is primitive as {1,2}11?3) = {23} implying that A9 # A and
AINA #£ g for A={1,2}.

On the other hand a subset A of 2 is said to be a set of imprimitivity for the action of G on , if for each
g € G, either A9 = A or AY9 and A are disjoint. In particular, € itself, the 1-element subsets of Q and the

empty set are obviously sets of imprimitivity which are called trivial set of imprimitivity.
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3.2.2. The Dihedral Group of Degree n(n = 5)

Let’s consider a pentagon with its corners numbered 1,2,3,4, and 5.

Figure 3. A labeled pentagon

Figure 4. A labeled pentagon after individual elements of Ds have been applied

] 4

% e r rZ |3 |t | f rf [ r2f | r3f | r*f
e e r r? = rt f rf | r2f | r3f | rtf
r r r2 | |t Je rf | r2f | r3f | rif | f
r? r? r3 rt e r r2f [ 3f | rif ] f rf
ol [t |e r r2 | r3friflf rf | r2f
rd rt e r r? r3 rf | f rf | r2f | r3f
f rAfe3f ] r2f ] rf |e R
rf | rf I rf L r3f ] rif e e rt r3 r?
r2f | r2f | rf I rif | 3f ] r? r e rd rs
rfle3fr2f | rf f rif | r? r e r?
e f L eSf 2 f rf | f rt rs r? r e

The elements of the group D3 in cycle form is as follows.
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Do _ [ (0.(2.5)(3,4),(1,2)(3,5),(1,2,3,4,5), (1,3)(4,5), (1,3,5,2,4),
5= { (1,4)(2,3),(1,4,2,5,3),(1,5,4,3,2), (1,5)(2,4) }

Routing calculations shows that the stabilizers of the points 1,2,3,4 and 5 are respectively given by:

Gr={(1),(2,5)(3,4)}
Gy = {(1),(1,3)(4,5)}
Gs = {(1),(1,5)(2,4)}
Ga={(1),(1,2)(3,5)}
Gs = {(1), (1,4)(2,3)}

And the orbit of the points 1,2, and 3 is given by 1¢ = 2¢ = 3¢ = 4% =5¢ = {1,2,3 4,5}
A group G = Ds acting on a set Q = {1,2,3,4,5} is said to be transitive on Q if it has one orbit, and so

a® =Q for all @ € Q. A group which is not transitive is called intransitive. Thus,

D- — (1),(2,5)(3,4),(1,2)(3,5),(1,2,3,4,5),(1,3)(4,5), (1, 3,5,2,4),
> { (1,4)(2,3),(1,4,2,5,3),(1,5,4,3,2),(1,5)(2,4)

Also the stabilizer of each element is maximal in D3 as there exists no normal subgroup of order greater than

} is transitive.

2. Thus, D5 is primitive.

3.2.3. GAP Results
We shall now construct dihedral groups of prime degrees and investigate their transitivity and primitivity using
the group algorithm and programing (GAP).

GAP 4.12.2 built on 2022-12-19 10:30:034-0000
GAP
https://www.gap-system.org
Architecture: x86_64-pc-cygwin-default64-kv8
Configuration: gmp 6.2.1, GASMAN, readline
Loading the library and packages...
Packages: AClib 1.3.2, Alnuth 3.2.1, AtlasRep 2.1.6, AutPGrp 1.11, Browse 1.8.19, CaratInterface 2.3.4, CRISP
1.4.6, Cryst 4.1.25, CrystCat 1.1.10, CTblLib 1.3.4, curllnterface 2.3.1, FactInt 1.6.3, Forms 1.2.9, GAPDoc
1.6.6, genss 1.6.8, 10 4.8.0, IRREDSOL 1.4.4, LAGUNA 3.9.5, orb 4.9.0, Polenta 1.3.10, Polycyclic 2.16, Prim-
Grp 3.4.3, RadiRoot 2.9, recog 1.4.2, ResClasses 4.7.3, SmallGrp 1.5.1, Sophus 1.27, SpinSym 1.5.2, TomLib
1.2.9, TransGrp 3.6.3, utils 0.81 Try ’?7help’ for help. See also ’?copyright’, '?cite’ and ’7authors’

gap>

gap> D3 := DihedralGroup(IsGroup 6);
Group([ (1,2,3), (2,3) 1)
gap> Order (D3);

6

gap> Elements (D3);;

gap>

gap> IsAbelian (D3);
false

gap> IsTransitive (D3);
true

gap> IsPrimitive (D3);
true
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gap>

gap> D5 := DihedralGroup(IsGroup, 10);
Group([ (1,2,3,4,5), (2,5)(3,4) 1)
gap> Order (D5);

10

gap> Elements (D5);;

gap> IsAbelian (D5);

false

gap> IsTransitive (D5);

true

gap> IsPrimitive (D5);

true

gap> D7 := DihedralGroup(IsGroup, 14);
Group([ (1,2,3,4,5,6,7), (2,7)(3,6)(4,5) 1)
gap> Order (D7);

14

gap> Elements (D7);;

gap> IsAbelian (D7);

false

gap> IsTransitive (D7);

true

gap> IsPrimitive (D7);

true

gap>

gap> D11 := DihedralGroup(IsGroup, 22);
Group([ (1,2,3,4,5,6,7,8,9,10,11), (2,11)(3,10)(4,9)(5,8)(6,7) 1)
gap> Order (D11);

22

gap> Elements (D11);;

gap> IsAbelian (D11);

false

gap> IsTransitive (D11);

true

gap> IsPrimitive (D11);

true

gap>

gap> D13 := DihedralGroup(IsGroup, 26);

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13), (2,13)(3,12)(4,11)(5,10)(6,9)(7,8) 1)

gap> Order (D13);

26

gap> Elements (D13);;
gap> IsAbelian (D13);
false

gap> IsTransitive (D13);
true

gap> IsPrimitive (D13);
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true

gap>

gap> D17 := DihedralGroup (IsGroup, 34);
Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),

(2,17) (3,16) (4,15) (5,14)(6,13)(7,12) (8,11) (9,100 1)

gap> Order (D17);

34

gap> Elements (D17);;

gap> IsAbelian (D17);

false

gap> IsTransitive (D17);

true

gap> IsPrimitive (D17);

true

gap>

gap> D19 := DihedralGroup(IsGroup, 38);

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),
(2,19)(3,18)(4,17)(5,16)(6,15) (7,14) (8,13) (9,12)(10,11) 1)
gap> Order (D19);

38

gap> Elements (D19);;

gap> IsAbelian (D19);

false

gap> IsTransitive (D19);

true

gap> IsPrimitive (D19);

true

gap>

gap> D23 := DihedralGroup(IsGroup, 46);
Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),
(2,23)(3,22) (4,21)(5,20) (6,19)(7,18)(8,17)(9,16)(10,15)(11,14) (12,13) 1)
gap> Order (D23);

46

gap> Elements (D23);;

gap> IsAbelian (D23);

false

gap> IsTransitive (D23);

true

gap> IsPrimitive (D23);

true

gap>

gap> D27 := DihedralGroup(IsGroup, 54);
Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),
(2,27)(3,26) (4,25) (5,24) (6,23) (7,22) (8,21) (9,20) (10,19) (11,18) (12,17) (13,16) (14,15) 1)
gap> Order (D27);

54
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gap> Elements (D27);;

gap> IsAbelian (D27);

false

gap> IsTransitive (D27);

true

gap> IsPrimitive (D27);

false

gap>

gap> D29 := DihedralGroup(IsGroup, 58);
Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),
(2,29) (3,28)(4,27) (5,26) (6,25) (7,24) (8,23) (9,22) (10,21) (11,20) (12,19) (13,18) (14,17) (15,16) 1)
gap> Order (D29);

58

gap> Elements (D29);;

gap> IsAbelian (D29);

false

gap> IsTransitive (D29);

true

gap> IsPrimitive (D29);

true

gap>

gap> D31 := DihedralGroup(IsGroup, 62);
Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31) (2,31) (3,30) (4,29) (5,28) (6,27) (7,26) (8,25) (9,24) (10,23)
(11,22) (12,21) (13,20) (14,19) (15,18) (16,17) 1)

gap> Order (D31);

62

gap> Elements (D31);;

gap> IsAbelian (D31);

false

gap> IsTransitive (D31);

true

gap> IsPrimitive (D31);

true

gap>

Based on the trend in 3.2.1, 3.2.2 and 3.2.3 we proved a proposition which concerns particularly on transitivity
and primitivity of all the dihedral groups of prime degree which are not p -group. This is the content of the
next proposition and therefore it forms an important part of this work.

Proposition 3.1. Let G be a dihedral group of degree p, where p is an odd prime number. Then G is (i)

transitive and (i) imprimitive.

Proof. (i) That G is transitive follows easily from Lemma 2.6. Next, name the vertices of G as 1,2,3,...,p

and let [ be the line of symmetry joining the vertex 1 and the middle of the vertices p—;l and p—;?’ so that
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a=2p)Bp-1)Ap=2). ... <P+1p+3) 5

is the reflection in ! (see figure 5). Then G = {(1), a} is the stabilizer of the point 1 . We readily see that Gy

is a non-identity proper subgroup of G' which has

1= {w.@n.Go-ap-2. (R o ()

as a subgroup properly lying between G; and G, that is, G; < H < G. It follows by virtue of Theorem 2.1
that G is imprimitive.

Figure 5. Diagram for Dihedral Groups of Degree p.
I

2

-
U
—
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4. Conclusion

The purpose of this research was to carry out further study on transitive and primitive dihedral groups of certain
degrees. In particular, the ultimate goal was to determine the transitive and primitive nature of dihedral groups
of prime degrees that are not p-groups using numerical approach. This entails generating dihedral groups of
these degrees, studying, investigating and analyzing them so as to determine their transitivity and primitivity
properties.

To do this, we set out specific objectives which were achieved as follows:

(i) All dihedral groups of prime degrees that are not p -groups were shown to be transitive and primitive.

(ii) The results in (i) above were validated using illustrations and a standard program namely Groups, Algo-
rithms and Programming (GAP) version 4.11.1 of 2021.

4.1. Recommendations

We highly recommend that future research should further examine the groups been considered in this work to
determine their nilpotency and regularity using numerical approach. This will further enhance already done
works towards completion of the rewriting of the proofs of the Classification of the Finite Simple Groups (CFSG)

that has been on course for a while now.

58



=
S = N e

Ben O. Johnson and Adagba T. Titus

References
Apine E, Jelten BN. Trends in transitive p-groups and their defining relations. J Math Theor Model 2014; 4(11):
192-209.
Apine E, Jelten BN, Homti EN. Transitive 5-groups of degree 52 = 25. Res J Math Stat 2015; 7(2): 17-19.

Aratjo JP, Cameron PJ, Hulpke A, Popes P. Imprimitive permutations in primitive groups. arXiv:1611.06450v1
[math.GR], 2016.

Ben OJ, Adagba TT, Auta TJ. Analysis on properties and structure of dihedral groups. Afr J Math Stat 2024;
7(2): 51-68.

Ben OJ, Hamma S, Adamu MS. On the transitivity and primitivity of permutation groups of degree 4p constructed
via wreath products using numerical approach. Int J Math Anal Model 2022; 5(2): 254-263.

Burness TC, Tong-Viet HP. Primitive permutation groups and derangements of prime power order. Manuscr Math
2016; 150(3): 255-291.

Cameron PJ. Notes on finite group theory. Bull Lond Math Soc 2013; 13(1): 1-22.

Cayley A. On the theory of groups as depending on the symbolic equation 6™ = 1. Philos Mag 1854; 7(42): 40-47.
Dixon JD, Mortimer B. Permutation Groups. Grad Texts Math, Vol. 163. New York, NY, USA: Springer, 1996.
Fawcett JM. The base size of a primitive diagonal group. J Algebra 2013; 375(1): 302-321.

Gallian JA. Contemporary Abstract Algebra. 7th ed. Brooks/Cole, Cengage Learning, 2010.

Galois E, Singh AR. The last mathematical testament of Galois. 1897. Available from: https://www.ias.ac.in/
article/fulltext/reso/004/10/0093-0100. (Retrieved August 2018).

Gandi TI, Hamma S. Investigating simple and regular dihedral groups of an even degree regular polygon using the
concept of p-groups. Frontiers Knowl Int J Pure Appl Sci 2018; 1.

Gandi TI, Hamma S. Investigating solvable and nilpotent concepts on dihedral groups of an even degree regular
polygon. Frontiers Knowl Int J Pure Appl Sci 2019; 2.

Hulpke A, Bettima I, Martin S, Heiko T, Robert A. GAP — Groups, Algorithms and Programming, Version 4.8.5.
Aachen—St Andrews, 2016.

Kleiner I. The evolution of group theory: a brief survey. Math Mag 1986; 59(4): 195-202.

Neerajah A, Subramanian P. Vertex graceful and difference labeling of some special graphs. Asia Mathematika 2025;
9(2).

Roman S. Fundamentals of Group Theory: An Advanced Approach. New York, NY, USA: Birkhduser, Springer,
2012.

Passman DS. Permutation Groups. Math Lecture Notes Ser. New York, NY, USA: W.A. Benjamin, 1968: 255-279.
Rotman JJ. An Introduction to the Theory of Groups. 4th ed. Springer-Verlag, 1979.

59


https://www.ias.ac.in/article/fulltext/reso/004/10/0093-0100
https://www.ias.ac.in/article/fulltext/reso/004/10/0093-0100

	Introduction
	Background of the Study

	Materials and Method
	Theorem (Thomas Judson, 2007)
	Group Action (Dixon and Mortimer, 1996 ref11)
	Transitivity
	Primitivity (Araújo et al., 2016 ref3)

	Results and Discussion
	Introduction
	Transitivity and Primitivity of Dihedral Groups of Prime Degrees.
	The Dihedral Group of Degree n(n=3)
	The Dihedral Group of Degree n(n=5)
	GAP Results


	Conclusion
	Recommendations


