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Abstract: In this study, we carried out further study on permutation group of degrees n , where n is a positive

integer. Commutativity and Transitivity are two pivotal properties that provide deeper insights into group structures.

Commutativity in Group Theory refers to the property where the order of elements in a group operation does not affect

the result. A group ( G, ∗ ) is said to be commutative or abelian if: a ∗ b = b ∗ a,∀a,b ∈ G . Transitivity, on the

other hand, reflects a group’s ability to act uniformly on a set, highlighting its symmetrical properties. A group G

acting on a set Ω is said to be transitive on Ω if it has one orbit and so αG = Ω for all α ∈ Ω. Equivalently, G is

transitive if for every pair of point α, β ∈ Ω there exists g ∈ G such that αg = β . In this work we generated some

symmetric groups of degree n as a good example of permutation group and used computational tools, including Groups,

Algorithms, and Programming (GAP) to analyze their structures and action properties and discuss their commutativity

and transitivity. It was found that symmetric groups of degrees n < 3 are commutative and transitive while non

commutative but transitive otherwise. These findings contribute to a deeper understanding of finite permutation groups,

offering new insights into their classification and properties. This study not only enriches the theoretical framework of

abstract algebra but also provides practical applications in areas such as cryptography and computational group theory.

Key words: commutative groups, transitive groups, permutation group, p-groups, numerical approach, group theory,

GAP

1. Introduction

1.1. Background of the Study

Group theory is a fundamental area in abstract algebra, essential for studying mathematical structures and

symmetry in various systems. It provides the framework to explore sets equipped with operations that satisfy

particular axioms, including closure, associativity, identity, and invertibility.

Until about 1850, according to Cameron (2013) [7], the term ’group’ referred to a set G of transformations

of a set Ω, such that G closed under composition of functions, contains the identity transformation and the

inverse of each of its elements. This implies that the function is one-to-one and onto, that is, a permutation.

Any permutation group is an algebraic structure whose elements are all the possible permutations of a given

set equipped with the binary operation of function composition ((Gallian, 2010 [9]) and (Roman, 2012 [15])).

According to Khukhro and Mazurov (2014) [12] and Müller, P. M. (2013) [14], several survey articles in the

research space written about the implications of the classification of finite simple group for permutation groups

reveal that finite permutation groups have been generated for research purposes using various approaches.
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Determination of such properties as commutativity, simplicity, transitivity, primitivity, solubility, almost-

simplicity, nilpotency and regularity of various categories of groups have been carried out with the view to classify

finite permutation groups by various authors ( Li and Praeger, 2012 [13]). Apine and Jelten (2014) [1] achieved

a classification of transitive and faithful p-groups (Abelian and Non-abelian) of degrees at most p3 whose centre

is elementary Abelian of rank two. Apine et al., (2015) [2] determined, up to equivalence, the actual transitive

p-groups (Abelian and Non-abelian) of degree p2 for p = 5 and achieved a classification of transitive 5 groups

of degree 52 . Ben et al, (2024) [4] on ”Analysis of Properties and Structure of Dihedral Groups” formulated

some new results and validated their claims using computational group theory.

Joseph-Louis Lagrange during his time observed permutation as arrangements, that is, as a list i1, i2, . . . , in

with no repetition of any of the elements of Ω. The implication is, an arrangement, i1, i2, . . . , in , define a func-

tion α : Ω → Ω by α(j) = i for all j ∈ Ω. Thus, every rearrangement gives a bijection (Burness and Tong-Viet,

2016 [6]). Let Ω be a nonempty set, a permutation of Ω is a bijection α : Ω → Ω. We denote the set of all

permutations of Ω by SΩ . When Ω is finite, that is, Ω = {1, 2, . . . , n} , we write Sn (the symmetric group of

degree n ) instead of SΩ where |Sn| = n! is the number of elements in Sn referred to as the order of the group

Sn . Symmetric groups contain all possible permutations of a set of elements, while alternating groups contain

only even permutations, allowing us to understand structural distinctions and behaviours within these groups.

Permutation groups are crucial for studying symmetries and transformations. Permutation groups,

particularly symmetric and alternating groups, play a significant role in multiple areas, including cryptography,

chemistry, and physics.

The algebraic properties of permutation groups hold importance due to their applications in various

mathematical and practical domains. However, understanding these properties is challenging due to the intricate

structures involved. This study aims to commutativity and transitivity of symmetric groups as good examples

of permutation groups to enhance deeper understanding of permutation group theory.

Graphical and numerical methods, combined with computational tools such as GAP, offer effective

techniques for studying these algebraic structures (Hulpke et al., 2016 and Johnson et al.[4, 6]).

2. Materials and Method

2.1. Introduction

In this work, knowledge of the basic facts from both the theory of abstract finite groups and the theory

of permutation will be assumed throughout. Relevant theorems and results are quoted with example where

necessary, in order to enhance proper understanding of the subject matter. We also use the Groups Algorithm

and Programming (GAP) to enhance and validate our work.

2.2. Definition of Permutations and Permutation Group

A permutation is a bijective function mapping a set onto itself, arranging its elements in different orders. A

permutation group is a group whose elements are permutations, with the group operation being function com-

position. Permutations are often represented in cycle notation, a concise way to denote element rearrangements.
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2.3. Basic Theorems on Commutativity and Transitivity

2.3.1. Symmetric Group, Sn

The symmetric group Sn is the set of all permutations on n elements, equipped with composition as the

operation. Symmetric groups are fundamental to group theory, serving as examples of nonAbelian groups when

n > 2 and illustrating properties such as closure, identity, and invertibility. The order of the symmetric group

of degree n (where n ∈ N ) is n! as proved by the following theorem.

Theorem 2.1 (Cameron, 2013 [7]). |Sn| = n! .

Proof. |Sn| is just the number of ways the integers 1 through n can be arranged. In other words, in how many

different ways can we fill the blanks? (
1 2 . . . n
− − . . . −

)
Well, we have n choices for the first entry and then n− 1 choices for the next entry, and so on yielding a total

of n · (n− 1) . . . 1 = n! Total choices.

For example |S3| = 3! = 6 just as |S2| = 2! = 2.

2.3.2. Alternating Group, An

The alternating group An is the subset of Sn containing only even permutations. An is simple for n ≥ 5

and plays a crucial role in finite simple groups. Even permutations are compositions of an even number of

transpositions, distinguishing An from Sn . The order of the alternating group of degree n, |An| = |Sn| /2.

2.3.3. Algebraic Properties of Permutation Groups

Permutation groups satisfy the algebraic properties of closure, associativity, identity, and inverses. These

properties form the foundation of group operations within Sn and An , making these groups ideal for studying

algebraic structures and transformations.

2.3.4. Subgroups and Normal Subgroups in Permutation Groups

Subgroups of permutation groups include all subsets that are themselves groups under the same operation.

Normal subgroups, invariant under conjugation, play a significant role in the structural analysis of Sn and An ,

impacting properties like solvability and simplicity.

Theorem 2.2 (Cayley, 1854 [8]). Any finite group G is isomorphic to a subgroup of the symmetric group Sn

of degree n , where n = |G| .

Proof. Let G act on itself by right multiplication gh = gh for all g, h ∈ G . If gh = g then gh = g and so h = 1.

That is, the kernel of the action is {1} . The mapping f : G → sym(G) define by f : g → fg where αfg = αg

for any α ∈ G is a homomorphism. Then G/ ker f ∼= im f . But ker f = {1} and im f ≤ sym(G) = Sn .

Accordingly G ≤ Sn . In general we have that if G acts on Ω with k kernel of the action then G/k ≤ sym(Ω).
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2.3.5. The Structure of Sn (Bäärnhielm, 2014 [3])

As always, Sn is the group of bijections or permutations of a set of n objects, say X = {1, 2, . . . ,n} . Its group
operation is the composition of bijections. We will frequently refer to the objects being permuted as letters.

Recall the notation σ(12 · · ·n) = σ(1)σ(2) · · ·σ(n). To simplify the notation, we will denote σ by writing

σ = [σ(1), σ(2), . . . , σ(n)] . We will also frequently denote the identity element of Sn by (1).

Let α and β be two elements in Sn such that

α =

(
1 2 3 4 . . . n
3 2 1 4 . . . n

)
and β =

(
1 2 3 4 . . . n
2 1 3 4 . . . n

)
.

Then, βα =

(
1 2 3 4 . . . n
3 1 2 4 . . . n

)
and αβ =

(
1 2 3 4 . . . n
2 3 1 4 . . . n

)
.

Theorem 2.3. Any k -cycle in Sn can be written as a product of transpositions (two cycles). (Here n > 1 or

else we have S1 = {e}).

Proof. If we have a 1 -cycle, then it is the identity element which can be written as (1, 2)2 = (1, 2)(1, 2) =

e . Now if we have ak-cycle were k ≥ 2 then we can work out the product just as (a1, a2, . . . , ak) =

(a1, a2) (a1a3) . . . (a1ak).

2.3.6. Orbit (Müller, 2013 [14])

When a group G acts on a set Ω, a typical point α is moved by elements of G to various other elements in

the set Ω. The set of these images is called the orbit of α under G , and we denote it by αG := {αx | x ∈ G} .
Thus, Ω is a union of disjoint orbits, say Ω = ∪s

i=1Ωi. A group G acting on a set Ω is said to be transitive on Ω

if it has one orbit and so αG = Ω for all α ∈ Ω. Equivalently, G is transitive if for every pair of point α, β ∈ Ω

there exists g ∈ G such that αg = β . A group which is not transitive is called intransitive.

2.3.7. Commutativity

A group G is commutative if for all x, y ∈ G, xy = yx .

3. Results and Discussion

3.1. Introduction

Throughout this chapter, unless otherwise explicitly indicated, ”n” is a positive integer.

3.2. Commutativity and Transitivity of Symmetric Groups of Degree n.

The following are the main results on the constructed symmetric groups of degree n.

3.2.1. The Symmetric Group of Degree n(n = 1)

The symmetric group G of degree 1 is a permutation group with one element namely the identity element.

That is {e} .
Thus, G = S1 = {e} as all the axioms of a group are trivially satisfied.

Since G is a one-element group, it is commutative as well as transitive.
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3.2.2. The Symmetric Group of Degree n(n = 2)

The symmetric group G of degree 2 is a permutation group with two elements namely the identity element and

one other element say ”a”. That is {e, a} .
Thus, G = S2 = {e, a} .

We write S2 = {e, a} , where e =

(
1 2
1 2

)
and a =

(
1 2
2 1

)
.

In cycle form, S2 = {(1), (1, 2)} .
The order of S2 = 2, denoted by |S2| = 2.

Table 1. Cayley’s table for G = {(1), (1, 2)}
◦ (1) (1, 2)
(1) (1) (1, 2)
(1, 2) (1, 2) (1)

Figure 1. Cayley’s diagram for G = {(1), (1, 2)}

(1) and S2 are the only normal subgroups of S2 since S2 is commutative.

The orbit of the points 1 and 2 in S2 are given by 1G = 2G = {1, 2} implying that

αG = Ω for all α ∈ Ω.

Thus, S2 is transitive.

3.2.3. The Symmetric Group of Degree n(n = 3)

The symmetric group G of degree 3 is a permutation group with 3! = 6 elements namely,(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
and

(
1 2 3
3 2 1

)
.

Thus, G = S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)}
.

In cycle form, S3 = {(1), (2, 3), (1, 2), (1, 3), (1, 2, 3), (1, 3, 2)} .
The order of S3 = 6, denoted by |S3| = 6.{(

1 2 3
1 2 3

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)}
= {(1), (1, 2, 3), (1, 3, 2)} forms a group called the alternating

group of degree 3, A3 , which is the only proper normal subgroup of S3 .

Clearly,

(
1 2 3
1 3 2

)◦ (
1 2 3
3 1 2

)
̸=

(
1 2 3
3 1 2

)◦ (
1 2 3
1 3 2

)
. Hence S3 is not commutative.

The orbit of the points 1,2 and 3 in S3 are given by 1G = 2G = 3G = {1, 2, 3} implying that
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Figure 2. Cayley’s diagram for G = S3

αG = Ω for all α ∈ Ω.

Thus, S3 is transitive.

3.2.4. The Symmetric Group of Degree n(n = 4)

The symmetric group G of degree 4 is a permutation group with 4! = 24 elements namely(
1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
1 3 2 4

)
,

(
1 2 3 4
2 1 3 4

)
,

(
1 2 3 4
2 3 1 4

)
,

(
1 2 3 4
3 1 2 4

)
,(

1 2 3 4
3 2 1 4

)
,

(
1 2 3 4
1 2 4 3

)
,

(
1 2 3 4
1 3 4 2

)
,

(
1 2 3 4
2 1 4 3

)
,

(
1 2 3 4
2 3 4 1

)
,(

1 2 3 4
3 1 4 2

)
,

(
1 2 3 4
3 2 4 1

)
,

(
1 2 3 4
1 4 2 3

)
,

(
1 2 3 4
1 4 3 2

)
,

(
1 2 3 4
2 4 1 3

)
,(

1 2 3 4
2 4 3 1

)
,

(
1 2 3 4
3 4 1 2

)
,

(
1 2 3 4
3 4 2 1

)
,

(
1 2 3 4
4 1 2 3

)
,

(
1 2 3 4
4 1 3 2

)
,(

1 2 3 4
4 2 1 3

)
,

(
1 2 3 4
4 2 3 1

)
,

(
1 2 3 4
4 3 1 2

)
and

(
1 2 3 4
4 3 2 1

)
.

In cycle form, S4 = {(1), (12), (13), (14), (34), (12)(34), (13)(24), (14)(23), (123), (124), (132), (134), (142), (143),
(234), (243), (243), (1234), (1324), (1342), (1423), (1432)} .
The order of S4 = 4! = 24, denoted by |S4| = 24.

{(1), (12)(34), (13)(24), (14)(23), (123), (124), (132), (134), (142), (143), (234), (243) } forms a group called the

alternating group of degree 4, A4 which is the only proper normal subgroup of S4 .

(12)(13) = (132) ̸= (123) = (13)(12). Hence, S4 is not commutative.

The orbit of the points 1,2 and 3 in S3 are given by 1G = 2G = 3G = 4G = {1, 2, 3, 4} implying that

αG = Ω for all α ∈ Ω.

Thus, S4 is transitive.

3.2.5. GAP Results

We shall now construct symmetric groups of degrees n and investigate their commutativity and transitivity

using the group, algorithm and programing GAP 4.12.2. [10]

[breaklines=true]
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GAP 4.12.2 built on 2022-12-19 10:30:03+0000

GAP https://www.gap-system.org

Architecture: x86_64-pc-cygwin-default64-kv8

Configuration: gmp 6.2.1, GASMAN, readline

Loading the library and packages ...

Packages: AClib 1.3.2, Alnuth 3.2.1, AtlasRep 2.1.6, AutPGrp 1.11, Browse 1.8.19,

Try ’??help’ for help. See also ’?copyright’, ’?cite’ and ’?authors’

gap>

gap> S1 := SymmetricGroup (1);

Group(())

gap> Order(S1);

1

gap> Elements(S1);

[()]

gap> Orbit(S1,1);

[1]

gap> IsAbelian(S1);

true

gap> IsTransitive(S1);

true

gap>

gap> S2 := SymmetricGroup(2);

Sym([ 1 .. 2 ])

gap> Order(S2);

2

gap> Elements(S2);

[breaklines=true]

[ (), (1,2) ]

gap> Orbit(S2,1);

[ 1, 2 ]

gap> Orbit(S2,2);

[ 1, 2 ]

gap> IsAbelian(S2);

true

gap> IsTransitive(S2);

true

gap>

gap> S3:= SymmetricGroup(3);

Sym([ 1 .. 3 ])

gap> Order(S3);

6

gap> Elements(S3);

[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> Orbit(S3,1);

[ 1, 3, 2]
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gap> Orbit(S3,2);

[ 1, 3, 2 ]

gap> Orbit(S3,3);

[ 1, 3, 2 ]

gap> IsAbelian(S3);

false

gap> IsTransitive(S3);

true

gap>

gap> S4 := SymmetricGroup(4);

Sym([ 1 ..4 ])

gap> Order(S4);

24

gap> Elements(S4);

[(), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4), (1,2,4,3), (1,2,4),

(1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4),

(1,4,2,3), (1,4)(2,3)]

gap> Orbit(S4,1);

[ 1, 4, 2, 3]

gap> Orbit(S4,2);

[ 1, 4, 2, 3]

gap> Orbit(S4,3);

[ 1, 4, 2, 3]

gap> Orbit(S4,4);

[ 1, 4, 2, 3]

gap> IsAbelian(S4);

false

gap> IsTransitive(S4);

true

[fontsize=\small,breaklines=true]

gap>

gap> S5 := SymmetricGroup(5);

Sym([ 1 .. 5])

gap> Order(S5);

120

gap> Elements(S5);

[(), (4,5), (3,4), (3,4,5), (3,5,4), (3,5), (2,3), (2,3)(4,5), (2,3,4), (2,3,4,5), (2,3,5,4), (2,3,5), (2,4,3), (2,4,5,3), (2,4),

(2,4,5), (2,4)(3,5), (2,4,3,5), (2,5,4,3), (2,5,3), (2,5,4), (2,5), (2,5,3,4), (2,5)(3,4), (1,2), (1,2)(4,5), (1,2)(3,4),

(1,2)(3,4,5), (1,2)(3,5,4), (1,2)(3,5), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,5), (1,2,3,5,4), (1,2,3,5), (1,2,4,3),

(1,2,4,5,3), (1,2,4), (1,2,4,5), (1,2,4)(3,5), (1,2,4,3,5), (1,2,5,4,3), (1,2,5,3), (1,2,5,4), (1,2,5), (1,2,5,3,4), (1,2,5)(3,4),

(1,3,2), (1,3,2)(4,5), (1,3,4,2), (1,3,4,5,2), (1,3,5,4,2), (1,3,5,2), (1,3), (1,3)(4,5), (1,3,4), (1,3,4,5), (1,3,5,4),

(1,3,5), (1,3)(2,4), (1,3)(2,4,5), (1,3,2,4), (1,3,2,4,5), (1,3,5,2,4), (1,3,5)(2,4), (1,3)(2,5,4), (1,3)(2,5), (1,3,2,5,4),

(1,3,2,5), (1,3,4)(2,5), (1,3,4,2,5), (1,4,3,2), (1,4,5,3,2), (1,4,2), (1,4,5,2), (1,4,2)(3,5), (1,4,3,5,2), (1,4,3), (1,4,5,3),
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(1,4), (1,4,5), (1,4)(3,5), (1,4,3,5), (1,4,2,3), (1,4,5,2,3), (1,4)(2,3), (1,4,5)(2,3), (1,4)(2,3,5), (1,4,2,3,5), (1,4,2,5,3),

(1,4,3)(2,5), (1,4)(2,5,3), (1,4,3,2,5), (1,4)(2,5), (1,4,2,5), (1,5,4,3,2), (1,5,3,2), (1,5,4,2), (1,5,2), (1,5,3,4,2),

(1,5,2)(3,4), (1,5,4,3), (1,5,3), (1,5,4), (1,5), (1,5,3,4), (1,5)(3,4), (1,5,4,2,3), (1,5,2,3), (1,5,4)(2,3), (1,5)(2,3),

(1,5,2,3,4), (1,5)(2,3,4), (1,5,3)(2,4), (1,5,2,4,3), (1,5,3,2,4), (1,5)(2,4,3), (1,5,2,4), (1,5)(2,4)]

gap> Orbit(S5,1);

[ 1, 5, 2, 3, 4 ]

gap> Orbit(S5,2);

[ 1, 5, 2, 3, 4 ]

gap> Orbit(S5,3);

[ 1, 5, 2, 3, 4 ]

gap> Orbit(S5,4);

[ 1, 5, 2, 3, 4 ]

gap> Orbit(S5,5);

[ 1, 5, 2, 3, 4]

gap> IsAbelian(S5);

false

gap> IsTransitive(S5);

true

gap> S6 := SymmetricGroup(6);

Sym([ 1 .. 6 ])

gap> Order(S6);

720

gap> Elements(S6);

[(), (5,6), (4,5), (4,5,6), (4,6,5), (4,6), (3,4), (3,4)(5,6), (3,4,5), (3,4,5,6), (3,4,6,5), (3,4,6), (3,5,4), (3,5,6,4), (3,5),

(3,5,6), (3,5)(4,6), (3,5,4,6), (3,6,5,4), (3,6,4), (3,6,5), (3,6), (3,6,4,5), (3,6)(4,5), (2,3), (2,3)(5,6), (2,3)(4,5),

(2,3)(4,5,6), (2,3)(4,6,5), (2,3)(4,6), (2,3,4), (2,3,4)(5,6), (2,3,4,5), (2,3,4,5,6), (2,3,4,6,5), (2,3,4,6), (2,3,5,4),

(2,3,5,6,4), (2,3,5), (2,3,5,6), (2,3,5)(4,6), (2,3,5,4,6), (2,3,6,5,4), (2,3,6,4), (2,3,6,5), (2,3,6), (2,3,6,4,5), (2,3,6)(4,5),

(2,4,3), (2,4,3)(5,6), (2,4,5,3), (2,4,5,6,3), (2,4,6,5,3), (2,4,6,3), (2,4), (2,4)(5,6), (2,4,5), (2,4,5,6), (2,4,6,5),

(2,4,6), (2,4)(3,5), (2,4)(3,5,6), (2,4,3,5), (2,4,3,5,6), (2,4,6,3,5), (2,4,6)(3,5), (2,4)(3,6,5), (2,4)(3,6), (2,4,3,6,5),

(2,4,3,6), (2,4,5)(3,6), (2,4,5,3,6), (2,5,4,3), (2,5,6,4,3), (2,5,3), (2,5,6,3), (2,5,3)(4,6), (2,5,4,6,3), (2,5,4), (2,5,6,4),

(2,5), (2,5,6), (2,5)(4,6), (2,5,4,6), (2,5,3,4), (2,5,6,3,4), (2,5)(3,4), (2,5,6)(3,4), (2,5)(3,4,6), (2,5,3,4,6), (2,5,3,6,4),

(2,5,4)(3,6), (2,5)(3,6,4), (2,5,4,3,6), (2,5)(3,6), (2,5,3,6), (2,6,5,4,3), (2,6,4,3), (2,6,5,3), (2,6,3), (2,6,4,5,3),

(2,6,3)(4,5), (2,6,5,4), (2,6,4), (2,6,5), (2,6), (2,6,4,5), (2,6)(4,5), (2,6,5,3,4), (2,6,3,4), (2,6,5)(3,4), (2,6)(3,4),

(2,6,3,4,5), (2,6)(3,4,5), (2,6,4)(3,5), (2,6,3,5,4), (2,6,4,3,5), (2,6)(3,5,4), (2,6,3,5), (2,6)(3,5), (1,2), (1,2)(5,6),

(1,2)(4,5), (1,2)(4,5,6), (1,2)(4,6,5), (1,2)(4,6), (1,2)(3,4), (1,2)(3,4)(5,6), (1,2)(3,4,5), (1,2)(3,4,5,6), (1,2)(3,4,6,5),

(1,2)(3,4,6), (1,2)(3,5,4), (1,2)(3,5,6,4), (1,2)(3,5), (1,2)(3,5,6), (1,2)(3,5)(4,6), (1,2)(3,5,4,6), (1,2)(3,6,5,4),

(1,2)(3,6,4), (1,2)(3,6,5), (1,2)(3,6), (1,2)(3,6,4,5), (1,2)(3,6)(4,5), (1,2,3), (1,2,3)(5,6), (1,2,3)(4,5), (1,2,3)(4,5,6),

(1,2,3)(4,6,5), (1,2,3)(4,6), (1,2,3,4), (1,2,3,4)(5,6), (1,2,3,4,5), (1,2,3,4,5,6), (1,2,3,4,6,5), (1,2,3,4,6), (1,2,3,5,4),

(1,2,3,5,6,4), (1,2,3,5), (1,2,3,5,6), (1,2,3,5)(4,6), (1,2,3,5,4,6), (1,2,3,6,5,4), (1,2,3,6,4), (1,2,3,6,5), (1,2,3,6),

(1,2,3,6,4,5), (1,2,3,6)(4,5), (1,2,4,3), (1,2,4,3)(5,6), (1,2,4,5,3), (1,2,4,5,6,3), (1,2,4,6,5,3), (1,2,4,6,3), (1,2,4),

(1,2,4)(5,6), (1,2,4,5), (1,2,4,5,6), (1,2,4,6,5), (1,2,4,6), (1,2,4)(3,5), (1,2,4)(3,5,6), (1,2,4,3,5), (1,2,4,3,5,6),

(1,2,4,6,3,5), (1,2,4,6)(3,5), (1,2,4)(3,6,5), (1,2,4)(3,6), (1,2,4,3,6,5), (1,2,4,3,6), (1,2,4,5)(3,6), (1,2,4,5,3,6),
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(1,2,5,4,3), (1,2,5,6,4,3), (1,2,5,3), (1,2,5,6,3), (1,2,5,3)(4,6), (1,2,5,4,6,3), (1,2,5,4), (1,2,5,6,4), (1,2,5), (1,2,5,6),

(1,2,5)(4,6), (1,2,5,4,6), (1,2,5,3,4), (1,2,5,6,3,4), (1,2,5)(3,4), (1,2,5,6)(3,4), (1,2,5)(3,4,6), (1,2,5,3,4,6), (1,2,5,3,6,4),

(1,2,5,4)(3,6), (1,2,5)(3,6,4), (1,2,5,4,3,6), (1,2,5)(3,6), (1,2,5,3,6), (1,2,6,5,4,3), (1,2,6,4,3), (1,2,6,5,3), (1,2,6,3),

(1,2,6,4,5,3), (1,2,6,3)(4,5), (1,2,6,5,4), (1,2,6,4), (1,2,6,5), (1,2,6), (1,2,6,4,5), (1,2,6)(4,5), (1,2,6,5,3,4), (1,2,6,3,4),

(1,2,6,5)(3,4), (1,2,6)(3,4), (1,2,6,3,4,5), (1,2,6)(3,4,5), (1,2,6,4)(3,5), (1,2,6,3,5,4), (1,2,6,4,3,5), (1,2,6)(3,5,4),

(1,2,6,3,5), (1,2,6)(3,5), (1,3,2), (1,3,2)(5,6), (1,3,2)(4,5), (1,3,2)(4,5,6), (1,3,2)(4,6,5), (1,3,2)(4,6), (1,3,4,2),

(1,3,4,2)(5,6), (1,3,4,5,2), (1,3,4,5,6,2), (1,3,4,6,5,2), (1,3,4,6,2), (1,3,5,4,2), (1,3,5,6,4,2), (1,3,5,2), (1,3,5,6,2),

(1,3,5,2)(4,6), (1,3,5,4,6,2), (1,3,6,5,4,2), (1,3,6,4,2), (1,3,6,5,2), (1,3,6,2), (1,3,6,4,5,2), (1,3,6,2)(4,5), (1,3),

(1,3)(5,6), (1,3)(4,5), (1,3)(4,5,6), (1,3)(4,6,5), (1,3)(4,6), (1,3,4), (1,3,4)(5,6), (1,3,4,5), (1,3,4,5,6), (1,3,4,6,5),

(1,3,4,6), (1,3,5,4), (1,3,5,6,4), (1,3,5), (1,3,5,6), (1,3,5)(4,6), (1,3,5,4,6), (1,3,6,5,4), (1,3,6,4), (1,3,6,5), (1,3,6),

(1,3,6,4,5), (1,3,6)(4,5), (1,3)(2,4), (1,3)(2,4)(5,6), (1,3)(2,4,5), (1,3)(2,4,5,6), (1,3)(2,4,6,5), (1,3)(2,4,6), (1,3,2,4),

(1,3,2,4)(5,6), (1,3,2,4,5), (1,3,2,4,5,6), (1,3,2,4,6,5), (1,3,2,4,6), (1,3,5,2,4), (1,3,5,6,2,4), (1,3,5)(2,4), (1,3,5,6)(2,4),

(1,3,5)(2,4,6), (1,3,5,2,4,6), (1,3,6,5,2,4), (1,3,6,2,4), (1,3,6,5)(2,4), (1,3,6)(2,4), (1,3,6,2,4,5), (1,3,6)(2,4,5),

(1,3)(2,5,4), (1,3)(2,5,6,4), (1,3)(2,5), (1,3)(2,5,6), (1,3)(2,5)(4,6), (1,3)(2,5,4,6), (1,3,2,5,4), (1,3,2,5,6,4), (1,3,2,5),

(1,3,2,5,6), (1,3,2,5)(4,6), (1,3,2,5,4,6), (1,3,4)(2,5), (1,3,4)(2,5,6), (1,3,4,2,5), (1,3,4,2,5,6), (1,3,4,6,2,5), (1,3,4,6)(2,5),

(1,3,6,4)(2,5), (1,3,6,2,5,4), (1,3,6,4,2,5), (1,3,6)(2,5,4), (1,3,6,2,5), (1,3,6)(2,5), (1,3)(2,6,5,4), (1,3)(2,6,4), (1,3)(2,6,5),

(1,3)(2,6), (1,3)(2,6,4,5), (1,3)(2,6)(4,5), (1,3,2,6,5,4), (1,3,2,6,4), (1,3,2,6,5), (1,3,2,6), (1,3,2,6,4,5), (1,3,2,6)(4,5),

(1,3,4)(2,6,5), (1,3,4)(2,6), (1,3,4,2,6,5), (1,3,4,2,6), (1,3,4,5)(2,6), (1,3,4,5,2,6), (1,3,5,2,6,4), (1,3,5,4)(2,6),

(1,3,5)(2,6,4), (1,3,5,4,2,6), (1,3,5)(2,6), (1,3,5,2,6), (1,4,3,2), (1,4,3,2)(5,6), (1,4,5,3,2), (1,4,5,6,3,2), (1,4,6,5,3,2),

(1,4,6,3,2), (1,4,2), (1,4,2)(5,6), (1,4,5,2), (1,4,5,6,2), (1,4,6,5,2), (1,4,6,2), (1,4,2)(3,5), (1,4,2)(3,5,6), (1,4,3,5,2),

(1,4,3,5,6,2), (1,4,6,3,5,2), (1,4,6,2)(3,5), (1,4,2)(3,6,5), (1,4,2)(3,6), (1,4,3,6,5,2), (1,4,3,6,2), (1,4,5,2)(3,6),

(1,4,5,3,6,2), (1,4,3), (1,4,3)(5,6), (1,4,5,3), (1,4,5,6,3), (1,4,6,5,3), (1,4,6,3), (1,4), (1,4)(5,6), (1,4,5), (1,4,5,6),

(1,4,6,5), (1,4,6), (1,4)(3,5), (1,4)(3,5,6), (1,4,3,5), (1,4,3,5,6), (1,4,6,3,5), (1,4,6)(3,5), (1,4)(3,6,5), (1,4)(3,6),

(1,4,3,6,5), (1,4,3,6), (1,4,5)(3,6), (1,4,5,3,6), (1,4,2,3), (1,4,2,3)(5,6), (1,4,5,2,3), (1,4,5,6,2,3), (1,4,6,5,2,3),

(1,4,6,2,3), (1,4)(2,3), (1,4)(2,3)(5,6), (1,4,5)(2,3), (1,4,5,6)(2,3), (1,4,6,5)(2,3), (1,4,6)(2,3), (1,4)(2,3,5), (1,4)(2,3,5,6),

(1,4,2,3,5), (1,4,2,3,5,6), (1,4,6,2,3,5), (1,4,6)(2,3,5), (1,4)(2,3,6,5), (1,4)(2,3,6), (1,4,2,3,6,5), (1,4,2,3,6), (1,4,5)(2,3,6),

(1,4,5,2,3,6), (1,4,2,5,3), (1,4,2,5,6,3), (1,4,3)(2,5), (1,4,3)(2,5,6), (1,4,6,3)(2,5), (1,4,6,2,5,3), (1,4)(2,5,3), (1,4)(2,5,6,3),

(1,4,3,2,5), (1,4,3,2,5,6), (1,4,6,3,2,5), (1,4,6)(2,5,3), (1,4)(2,5), (1,4)(2,5,6), (1,4,2,5), (1,4,2,5,6), (1,4,6,2,5),

(1,4,6)(2,5), (1,4)(2,5)(3,6), (1,4)(2,5,3,6), (1,4,2,5)(3,6), (1,4,2,5,3,6), (1,4,3,6,2,5), (1,4,3,6)(2,5), (1,4,2,6,5,3),

(1,4,2,6,3), (1,4,3)(2,6,5), (1,4,3)(2,6), (1,4,5,2,6,3), (1,4,5,3)(2,6), (1,4)(2,6,5,3), (1,4)(2,6,3), (1,4,3,2,6,5), (1,4,3,2,6),

(1,4,5)(2,6,3), (1,4,5,3,2,6), (1,4)(2,6,5), (1,4)(2,6), (1,4,2,6,5), (1,4,2,6), (1,4,5)(2,6), (1,4,5,2,6), (1,4)(2,6,3,5),

(1,4)(2,6)(3,5), (1,4,2,6,3,5), (1,4,2,6)(3,5), (1,4,3,5)(2,6), (1,4,3,5,2,6), (1,5,4,3,2), (1,5,6,4,3,2), (1,5,3,2), (1,5,6,3,2),

(1,5,3,2)(4,6), (1,5,4,6,3,2), (1,5,4,2), (1,5,6,4,2), (1,5,2), (1,5,6,2), (1,5,2)(4,6), (1,5,4,6,2), (1,5,3,4,2), (1,5,6,3,4,2),

(1,5,2)(3,4), (1,5,6,2)(3,4), (1,5,2)(3,4,6), (1,5,3,4,6,2), (1,5,3,6,4,2), (1,5,4,2)(3,6), (1,5,2)(3,6,4), (1,5,4,3,6,2),

(1,5,2)(3,6), (1,5,3,6,2), (1,5,4,3), (1,5,6,4,3), (1,5,3), (1,5,6,3), (1,5,3)(4,6), (1,5,4,6,3), (1,5,4), (1,5,6,4), (1,5),

(1,5,6), (1,5)(4,6), (1,5,4,6), (1,5,3,4), (1,5,6,3,4), (1,5)(3,4), (1,5,6)(3,4), (1,5)(3,4,6), (1,5,3,4,6), (1,5,3,6,4),

(1,5,4)(3,6), (1,5)(3,6,4), (1,5,4,3,6), (1,5)(3,6), (1,5,3,6), (1,5,4,2,3), (1,5,6,4,2,3), (1,5,2,3), (1,5,6,2,3), (1,5,2,3)(4,6),

(1,5,4,6,2,3), (1,5,4)(2,3), (1,5,6,4)(2,3), (1,5)(2,3), (1,5,6)(2,3), (1,5)(2,3)(4,6), (1,5,4,6)(2,3), (1,5,2,3,4), (1,5,6,2,3,4),

(1,5)(2,3,4), (1,5,6)(2,3,4), (1,5)(2,3,4,6), (1,5,2,3,4,6), (1,5,2,3,6,4), (1,5,4)(2,3,6), (1,5)(2,3,6,4), (1,5,4,2,3,6),

(1,5)(2,3,6), (1,5,2,3,6), (1,5,3)(2,4), (1,5,6,3)(2,4), (1,5,2,4,3), (1,5,6,2,4,3), (1,5,2,4,6,3), (1,5,3)(2,4,6), (1,5,3,2,4),
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(1,5,6,3,2,4), (1,5)(2,4,3), (1,5,6)(2,4,3), (1,5)(2,4,6,3), (1,5,3,2,4,6), (1,5,2,4), (1,5,6,2,4), (1,5)(2,4), (1,5,6)(2,4),

(1,5)(2,4,6), (1,5,2,4,6), (1,5,2,4)(3,6), (1,5,3,6,2,4), (1,5)(2,4)(3,6), (1,5,3,6)(2,4), (1,5)(2,4,3,6), (1,5,2,4,3,6),

(1,5,3)(2,6,4), (1,5,4,2,6,3), (1,5,2,6,4,3), (1,5,4,3)(2,6), (1,5,2,6,3), (1,5,3)(2,6), (1,5,3,2,6,4), (1,5,4)(2,6,3),

(1,5)(2,6,4,3), (1,5,4,3,2,6), (1,5)(2,6,3), (1,5,3,2,6), (1,5,2,6,4), (1,5,4)(2,6), (1,5)(2,6,4), (1,5,4,2,6), (1,5)(2,6),

(1,5,2,6), (1,5,2,6,3,4), (1,5,3,4)(2,6), (1,5)(2,6,3,4), (1,5,3,4,2,6), (1,5)(2,6)(3,4), (1,5,2,6)(3,4), (1,6,5,4,3,2),

(1,6,4,3,2), (1,6,5,3,2), (1,6,3,2), (1,6,4,5,3,2), (1,6,3,2)(4,5), (1,6,5,4,2), (1,6,4,2), (1,6,5,2), (1,6,2), (1,6,4,5,2),

(1,6,2)(4,5), (1,6,5,3,4,2), (1,6,3,4,2), (1,6,5,2)(3,4), (1,6,2)(3,4), (1,6,3,4,5,2), (1,6,2)(3,4,5), (1,6,4,2)(3,5), (1,6,3,5,4,2),

(1,6,4,3,5,2), (1,6,2)(3,5,4), (1,6,3,5,2), (1,6,2)(3,5), (1,6,5,4,3), (1,6,4,3), (1,6,5,3), (1,6,3), (1,6,4,5,3), (1,6,3)(4,5),

(1,6,5,4), (1,6,4), (1,6,5), (1,6), (1,6,4,5), (1,6)(4,5), (1,6,5,3,4), (1,6,3,4), (1,6,5)(3,4), (1,6)(3,4), (1,6,3,4,5),

(1,6)(3,4,5), (1,6,4)(3,5), (1,6,3,5,4), (1,6,4,3,5), (1,6)(3,5,4), (1,6,3,5), (1,6)(3,5), (1,6,5,4,2,3), (1,6,4,2,3), (1,6,5,2,3),

(1,6,2,3), (1,6,4,5,2,3), (1,6,2,3)(4,5), (1,6,5,4)(2,3), (1,6,4)(2,3), (1,6,5)(2,3), (1,6)(2,3), (1,6,4,5)(2,3), (1,6)(2,3)(4,5),

(1,6,5,2,3,4), (1,6,2,3,4), (1,6,5)(2,3,4), (1,6)(2,3,4), (1,6,2,3,4,5), (1,6)(2,3,4,5), (1,6,4)(2,3,5), (1,6,2,3,5,4),

(1,6,4,2,3,5), (1,6)(2,3,5,4), (1,6,2,3,5), (1,6)(2,3,5), (1,6,5,3)(2,4), (1,6,3)(2,4), (1,6,5,2,4,3), (1,6,2,4,3), (1,6,3)(2,4,5),

(1,6,2,4,5,3), (1,6,5,3,2,4), (1,6,3,2,4), (1,6,5)(2,4,3), (1,6)(2,4,3), (1,6,3,2,4,5), (1,6)(2,4,5,3), (1,6,5,2,4), (1,6,2,4),

(1,6,5)(2,4), (1,6)(2,4), (1,6,2,4,5), (1,6)(2,4,5), (1,6,3,5,2,4), (1,6,2,4)(3,5), (1,6,3,5)(2,4), (1,6)(2,4)(3,5), (1,6,2,4,3,5),

(1,6)(2,4,3,5), (1,6,4,2,5,3), (1,6,3)(2,5,4), (1,6,4,3)(2,5), (1,6,2,5,4,3), (1,6,3)(2,5), (1,6,2,5,3), (1,6,4)(2,5,3),

(1,6,3,2,5,4), (1,6,4,3,2,5), (1,6)(2,5,4,3), (1,6,3,2,5), (1,6)(2,5,3), (1,6,4)(2,5), (1,6,2,5,4), (1,6,4,2,5), (1,6)(2,5,4),

(1,6,2,5), (1,6)(2,5), (1,6,3,4)(2,5), (1,6,2,5,3,4), (1,6,3,4,2,5), (1,6)(2,5,3,4), (1,6,2,5)(3,4), (1,6)(2,5)(3,4)]

[breaklines=true]

gap> Orbit(S6,1);

[ 1, 6, 2, 3, 4, 5 ]

gap> Orbit(S6,2);

[ 1,6,2,3,4,5 ]

gap> Orbit(S6,3)

[ 1, 6, 2, 3, 4, 5]

gap> Orbit(S6,4);

[ 1, 6, 2, 3, 4, 5]

gap> Orbit(S6,5);

[ 1, 6, 2, 3, 4, 5 ]

gap> Orbit(S6,6);

[ 1, 6, 2, 3, 4, 5 ]

gap> IsAbelian(S6);

false

gap> IsTransitive(S6);

true

gap>

Based on the trend in 4.2.1, 4.2.2, 4.2.3, 4.2.4, and 4.2.5, we proved a proposition that concerns particularly on

the commutativity and transitivity of symmetric groups of degree n ≥ 1. This forms an important part of this

work.
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3.3. Proposition

Let G be a symmetric group of degree n, where n is a positive integer. Then G is (i) commutative and transitive

if n ≤ 2 and (ii) non-commutative but transitive if n > 2.

Proof. (i) Case n = 1

Let G be a symmetric group of degree 1, (S1). Then G contains only the identity element e, since every group

must have an identity element. It follows that G = {e} satisfies all the axioms of a group and is commutative

and transitive since it is a singleton set.

Case n = 2
Now let G be a symmetric group of degree 2, ( S2 ). Then G = {e, a} ∼= Z2 . With the mapping e → 0 and a

→ 1, the Cayley’s table for G is as follows.

Table 2. Cayley’s table for G = {e, a}
◦ e a
e e a
a a e

Clearly, G = {e, a} is commutative since it has only two elements and (a)�(a)=e. Also, S2 acts transitively on

X = {1, 2} because for any two elements x, y, there exists a permutation (specifically (12)) that maps x to y .

Thus, any symmetric group G , of degree n , where n ≤ 2 is commutative (abelian) and transitive.

(ii) Case n ≥ 3

Case S3

The symmetric group S3 consists of the permutations:

S3 = {e, (12), (13), (23), (123), (132)} where:

e is the identity, (12), (13), (23) are transpositions (swap two elements), while (123) and (132) are cyclic

permutations.

It is obvious some elements do not commute. For instance:

(12) · (13) = (132) ̸= (123) = (13) · (12).

Thus, S3 is not commutative since not all elements commute.

Also, S3 acts transitively on X = {1, 2, 3} since for every pair of point x, y ∈ X there exists g ∈ G such that

xg = y .

S3 is not commutative but transitive.

In general, let G be a symmetric group of degree n > 2. Then G = Sn is the group of bijections or permutations

of a set of n objects, say X = {1, 2, . . . ,n} . Its group operation is the composition of bijections. We will

frequently refer to the objects being permuted as letters. Recall the notation σ(12 · · ·n) = σ(1)σ(2) · · ·σ(n).
To simplify the notation, we will denote σ by writing σ = [σ(1), σ(2), . . . , σ(n)] . We will also frequently

denote the identity element of Sn by (1). Clearly G is transitive since for any two elements x, y, there is some

permutation in Sn that maps x to y .

Now let α and β be two elements in G such that
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α =

(
1 2 3 4 . . . n
3 2 1 4 . . . n

)
and β =

(
1 2 3 4 . . . n
2 1 3 4 . . . n

)
.

Then, βα =

(
1 2 3 4 . . .
3 1 2 4 . . . n

)
̸=

(
1 2 3 4 . . . n
2 3 1 4 . . . n

)
= αβ . Thus, G is non-commutative.

Thus, any symmetric group G , of degree n, where n ≥ 3 is non-commutative (abelian) but transitive.

3.4. Illustrating Examples

3.4.1. Example 1: Symmetric Group of Degree n(n = 5)

The Symmetric Group of Degree n(n = 5) is denoted S5 |S5| = n! = 120.

S5 =

{(
1 2 3 4 5
1 2 3 4 5

)
,

(
1 2 3 4 5
2 1 3 4 5

)
, . . . . . . ..,

(
1 2 3 4 5
5 4 3 2 1

)}
. These can be represented

in cycle form as follows.

{(1), (4,5), (3,4), (3,4,5), (3,5,4), (3,5), (2,3), (2,3)(4,5), (2,3,4), (2,3,4,5), (2,3,5,4),

(2,3,5), (2,4,3), (2,4,5,3), (2,4), (2,4,5), (2,4)(3,5), (2,4,3,5), (2,5,4,3), (2,5,3),

(2,5,4), (2,5), (2,5,3,4), (2,5)(3,4), (1,2), (1,2)(4,5), (1,2)(3,4), (1,2)(3,4,5), (1,2)(3,5,4),

(1,2)(3,5), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,5), (1,2,3,5,4), (1,2,3,5), (1,2,4,3),

(1,2,4,5,3), (1,2,4), (1,2,4,5), (1,2,4)(3,5), (1,2,4,3,5), (1,2,5,4,3), (1,2,5,3), (1,2,5,4),

(1,2,5), (1,2,5,3,4), (1,2,5)(3,4), (1,3,2), (1,3,2)(4,5), (1,3,4,2), (1,3,4,5,2), (1,3,5,4,2),

(1,3,5,2), (1,3), (1,3)(4,5), (1,3,4), (1,3,4,5), (1,3,5,4), (1,3,5), (1,3)(2,4), (1,3)(2,4,5),

(1,3,2,4), (1,3,2,4,5), (1,3,5,2,4), (1,3,5)(2,4), (1,3)(2,5,4), (1,3)(2,5), (1,3,2,5,4), (1,3,2,5),

(1,3,4)(2,5), (1,3,4,2,5), (1,4,3,2), (1,4,5,3,2), (1,4,2), (1,4,5,2), (1,4,2)(3,5), (1,4,3,5,2),

(1,4,3), (1,4,5,3), (1,4), (1,4,5), (1,4)(3,5), (1,4,3,5), (1,4,2,3), (1,4,5,2,3), (1,4)(2,3),

(1,4,5)(2,3), (1,4)(2,3,5), (1,4,2,3,5), (1,4,2,5,3), (1,4,3)(2,5), (1,4)(2,5,3), (1,4,3,2,5),

(1,4)(2,5), (1,4,2,5), (1,5,4,3,2), (1,5,3,2), (1,5,4,2), (1,5,2), (1,5,3,4,2), (1,5,2)(3,4),

(1,5,4,3), (1,5,3), (1,5,4), (1,5), (1,5,3,4), (1,5)(3,4), (1,5,4,2,3), (1,5,2,3), (1,5,4)(2,3),

(1,5)(2,3), (1,5,2,3,4), (1,5)(2,3,4), (1,5,3)(2,4), (1,5,2,4,3), (1,5,3,2,4), (1,5)(2,4,3),

(1,5,2,4), (1,5)(2,4) }

Now let α and β be two elements in G = S5 such that

α =

(
1 2 3 4 5
3 2 1 4 5

)
and β =

(
1 2 3 4 5
2 1 3 4 5

)
.

Then, βα =

(
1 2 3 4 5
3 1 2 4 5

)
̸=

(
1 2 3 4 5
2 3 1 4 5

)
= αβ . Thus, G is non-commutative.

The orbit of the points 1, 2, 3, 4, 5 is given by 1G = 2G = 3G = 4G = 5G = {1, 2, 3, 4, 5}
Thus, S5 is transitive.

4. Conclusion

The purpose of this research was to carry out further study on commutative and transitive permutation groups

of any degree. In particular, the ultimate goal was to determine the commutative and transitive nature

of symmetric groups of any degree. This entails generating symmetric groups of various degrees, studying,

investigating and analyzing them so as to determine their commutativity and transitivity.
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To do this, we set out specific objectives which were achieved as follows:

i) All symmetric groups of degrees n ≤ 2 are commutative and transitive while those of degrees 3 and above

are non-commutative but transitive.
ii) The results in (i) above were validated using illustrations and a standard program namely Groups, Algorithms

and Programming (GAP) version 4.12.2 of 2022.

4.1. Recommendations

We highly recommend that future research should further examine the groups been considered in this work to

determine their nilpotency and regularity using numerical approach. This will further enhance already done

works towards completion of the rewriting of the proofs of the Classification of the Finite Simple Groups (CFSG)

that has been on course for a while now.
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[3] Bäärnhielm H. A practical model for computation with matrix groups. J Symb Comput 2014.

[4] Ben OJ, Adagba TT, Auta TJ. Analysis on properties and structure of dihedral groups. Afr J Math Stat 2024;

7(2): 51–68.

[5] Ben OJ, Hamma S, Adamu MS. On the transitivity and primitivity of permutation groups of degree 4p constructed

via wreath products using numerical approach. Int J Math Anal Model 2022; 5(2): 254–263.

[6] Burness TC, Tong-Viet HP. Primitive permutation groups and derangements of prime power order. Manuscr Math

2016; 150(1–2): 255–291.

[7] Cameron PJ. Notes on finite group theory. Bull Lond Math Soc 2013; 13(1): 1–22.

[8] Cayley A. On the theory of groups as depending on the symbolic equation θn = 1. Philos Mag 1854; 7(42): 40–47.

[9] Gallian JA. Contemporary Abstract Algebra. 7th ed. Belmont, CA, USA: Brooks/Cole, Cengage Learning, 2010.

[10] GAP 4.12.2. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.12.2. Available from:

https://www.gap-system.org. 2022.

[11] Johnson BO, Hamma S, Adamu MS. Investigating the solvability of wreath products group of degree 3p using

numerical approach. Asia Mathematika 2022; 6(1): 1–13.

[12] Khukhro EI, Mazurov VD. The Kourovka Notebook: Unsolved Problems in Group Theory. 18th ed. Novosibirsk,

Russia: Institute of Mathematics, 2014.

[13] Li CH, Praeger CE. On finite permutation groups with a transitive cyclic subgroup. J Algebra 2012; 349(1): 117.

[14] Müller PM. Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Laurent polynomials.

Ann Sc Norm Super Pisa Cl Sci Ser 5 2013; 12(2): 369–438.

[15] Roman S. Fundamentals of Group Theory: An Advanced Approach. New York, NY, USA: Birkhäuser, Springer,

2012.

73

https://www.gap-system.org

	Introduction
	Background of the Study

	Materials and Method
	Introduction
	Definition of Permutations and Permutation Group
	Basic Theorems on Commutativity and Transitivity
	Symmetric Group, bold0mu mumu SSprogram@epstopdfSSSSn
	Alternating Group, An
	Algebraic Properties of Permutation Groups
	Subgroups and Normal Subgroups in Permutation Groups
	The Structure of Sn (Bäärnhielm, 2014 ref3)
	Orbit (Müller, 2013 ref21)
	Commutativity


	Results and Discussion
	Introduction
	Commutativity and Transitivity of Symmetric Groups of Degree n.
	The Symmetric Group of Degree n(n=1)
	The Symmetric Group of Degree n(n=2)
	The Symmetric Group of Degree n(n=3)
	The Symmetric Group of Degree n(n=4)
	GAP Results

	Proposition
	Illustrating Examples
	Example 1: Symmetric Group of Degree n(n=5)


	Conclusion
	Recommendations


