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Abstract: In this study, we carried out further study on permutation group of degrees n , where n is a positive
integer. Commutativity and Transitivity are two pivotal properties that provide deeper insights into group structures.
Commutativity in Group Theory refers to the property where the order of elements in a group operation does not affect
the result. A group ( G,* ) is said to be commutative or abelian if: a* b = bx*a,Va,b € G. Transitivity, on the
other hand, reflects a group’s ability to act uniformly on a set, highlighting its symmetrical properties. A group G
acting on a set  is said to be transitive on € if it has one orbit and so a® = Q for all a € Q. Equivalently, G is
transitive if for every pair of point «, 5 € 2 there exists g € G such that oY = . In this work we generated some
symmetric groups of degree n as a good example of permutation group and used computational tools, including Groups,
Algorithms, and Programming (GAP) to analyze their structures and action properties and discuss their commutativity
and transitivity. It was found that symmetric groups of degrees n < 3 are commutative and transitive while non
commutative but transitive otherwise. These findings contribute to a deeper understanding of finite permutation groups,
offering new insights into their classification and properties. This study not only enriches the theoretical framework of

abstract algebra but also provides practical applications in areas such as cryptography and computational group theory.

Key words: commutative groups, transitive groups, permutation group, p-groups, numerical approach, group theory,
GAP

1. Introduction
1.1. Background of the Study

Group theory is a fundamental area in abstract algebra, essential for studying mathematical structures and
symmetry in various systems. It provides the framework to explore sets equipped with operations that satisfy
particular axioms, including closure, associativity, identity, and invertibility.

Until about 1850, according to Cameron (2013) [7], the term ’group’ referred to a set G of transformations
of a set 2, such that G closed under composition of functions, contains the identity transformation and the
inverse of each of its elements. This implies that the function is one-to-one and onto, that is, a permutation.
Any permutation group is an algebraic structure whose elements are all the possible permutations of a given
set equipped with the binary operation of function composition ((Gallian, 2010 [9]) and (Roman, 2012 [15])).

According to Khukhro and Mazurov (2014) [12] and Miiller, P. M. (2013) [14], several survey articles in the
research space written about the implications of the classification of finite simple group for permutation groups

reveal that finite permutation groups have been generated for research purposes using various approaches.
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Determination of such properties as commutativity, simplicity, transitivity, primitivity, solubility, almost-
simplicity, nilpotency and regularity of various categories of groups have been carried out with the view to classify
finite permutation groups by various authors ( Li and Praeger, 2012 [13]). Apine and Jelten (2014) [1] achieved
a classification of transitive and faithful p-groups (Abelian and Non-abelian) of degrees at most p® whose centre
is elementary Abelian of rank two. Apine et al., (2015) [2] determined, up to equivalence, the actual transitive
p-groups (Abelian and Non-abelian) of degree p? for p =5 and achieved a classification of transitive 5 groups
of degree 52. Ben et al, (2024) [4] on ”Analysis of Properties and Structure of Dihedral Groups” formulated
some new results and validated their claims using computational group theory.

Joseph-Louis Lagrange during his time observed permutation as arrangements, that is, as a list 1,2, ..., %5
with no repetition of any of the elements of 2. The implication is, an arrangement, 41,12, ... ,%,, define a func-
tion a: Q@ — Q by a(j) =i for all j € Q. Thus, every rearrangement gives a bijection (Burness and Tong-Viet,
2016 [6]). Let © be a nonempty set, a permutation of € is a bijection o : Q2 — Q. We denote the set of all
permutations of © by Su. When  is finite, that is, Q = {1,2,...,n}, we write S,, (the symmetric group of
degree n ) instead of Sq where |S,,| = n! is the number of elements in S,, referred to as the order of the group
S, . Symmetric groups contain all possible permutations of a set of elements, while alternating groups contain
only even permutations, allowing us to understand structural distinctions and behaviours within these groups.

Permutation groups are crucial for studying symmetries and transformations. Permutation groups,
particularly symmetric and alternating groups, play a significant role in multiple areas, including cryptography,
chemistry, and physics.

The algebraic properties of permutation groups hold importance due to their applications in various
mathematical and practical domains. However, understanding these properties is challenging due to the intricate
structures involved. This study aims to commutativity and transitivity of symmetric groups as good examples
of permutation groups to enhance deeper understanding of permutation group theory.

Graphical and numerical methods, combined with computational tools such as GAP, offer effective

techniques for studying these algebraic structures (Hulpke et al., 2016 and Johnson et al.[4, 6]).

2. Materials and Method
2.1. Introduction

In this work, knowledge of the basic facts from both the theory of abstract finite groups and the theory
of permutation will be assumed throughout. Relevant theorems and results are quoted with example where
necessary, in order to enhance proper understanding of the subject matter. We also use the Groups Algorithm

and Programming (GAP) to enhance and validate our work.

2.2. Definition of Permutations and Permutation Group

A permutation is a bijective function mapping a set onto itself, arranging its elements in different orders. A
permutation group is a group whose elements are permutations, with the group operation being function com-

position. Permutations are often represented in cycle notation, a concise way to denote element rearrangements.
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2.3. Basic Theorems on Commutativity and Transitivity
2.3.1. Symmetric Group, S,

The symmetric group S, is the set of all permutations on n elements, equipped with composition as the
operation. Symmetric groups are fundamental to group theory, serving as examples of nonAbelian groups when
n > 2 and illustrating properties such as closure, identity, and invertibility. The order of the symmetric group

of degree n (where n € N ) is n! as proved by the following theorem.

Theorem 2.1 (Cameron, 2013 [7]). |S,| =n!.

Proof. |Sy| is just the number of ways the integers 1 through n can be arranged. In other words, in how many

(L2

Well, we have n choices for the first entry and then n — 1 choices for the next entry, and so on yielding a total

different ways can we fill the blanks?

of n-(n—1)...1=n! Total choices.

For example |S3| = 3! =6 just as |Sa| = 2! = 2. O

2.3.2. Alternating Group, A,
The alternating group A, is the subset of S, containing only even permutations. A, is simple for n > 5
and plays a crucial role in finite simple groups. Even permutations are compositions of an even number of

transpositions, distinguishing A, from S, . The order of the alternating group of degree n,|A4,| = |S,|/2.

2.3.3. Algebraic Properties of Permutation Groups

Permutation groups satisfy the algebraic properties of closure, associativity, identity, and inverses. These
properties form the foundation of group operations within S, and A, , making these groups ideal for studying

algebraic structures and transformations.

2.3.4. Subgroups and Normal Subgroups in Permutation Groups

Subgroups of permutation groups include all subsets that are themselves groups under the same operation.
Normal subgroups, invariant under conjugation, play a significant role in the structural analysis of S, and A,

impacting properties like solvability and simplicity.

Theorem 2.2 (Cayley, 1854 [8]). Any finite group G is isomorphic to a subgroup of the symmetric group Sy,

of degree n, where n = |G|.

Proof. Let G act on itself by right multiplication g" = gh for all g,h € G. If g* = g then gh = g andso h = 1.
That is, the kernel of the action is {1}. The mapping f : G — sym(G) define by f:g — f, where af, = o
for any a € G is a homomorphism. Then G/ker f = im f. But ker f = {1} and im f < sym(G) = S,.
Accordingly G < S,,. In general we have that if G acts on Q with k kernel of the action then G/k < sym(Q).

O

62



Ben O. Johnson and Mtema Zakaa

2.3.5. The Structure of S,, (Bé&rnhielm, 2014 [3])

As always, Sy, is the group of bijections or permutations of a set of n objects, say X = {1,2,...,n}. Its group
operation is the composition of bijections. We will frequently refer to the objects being permuted as letters.
Recall the notation o(12---n) = o(1)o(2)---o(n). To simplify the notation, we will denote o by writing
o=[o(1),0(2),...,0(n)]. We will also frequently denote the identity element of S, by (1).

Let a and 8 be two elements in S;, such that

1 234 ...n 1
Then’ﬂo‘_<3 12 4 .. n)ando‘ﬂ_<2

Theorem 2.3. Any k-cycle in S, can be written as a product of transpositions (two cycles). (Here n > 1 or
else we have Sy = {e} ).

Proof. If we have a 1 -cycle, then it is the identity element which can be written as (1,2)? = (1,2)(1,2) =

e. Now if we have ak-cycle were k > 2 then we can work out the product just as (ai,as,...,ar) =

(al,ag) (alag) N (alak).

2.3.6. Orbit (Miiller, 2013 [14])

When a group G acts on a set {2, a typical point « is moved by elements of G to various other elements in
the set . The set of these images is called the orbit of @ under G, and we denote it by a“ := {a® | z € G}.

Thus, €2 is a union of disjoint orbits, say € = U;_; Qi A group G acting on a set 2 is said to be transitive on §2

if it has one orbit and so a® = Q for all « € Q. Equivalently, G is transitive if for every pair of point «, 8 € Q
there exists g € G such that a9 = #. A group which is not transitive is called intransitive.

2.3.7. Commutativity

A group G is commutative if for all x,y € G,zy = yx.

3. Results and Discussion
3.1. Introduction

Throughout this chapter, unless otherwise explicitly indicated, ”n” is a positive integer.

3.2. Commutativity and Transitivity of Symmetric Groups of Degree n.

The following are the main results on the constructed symmetric groups of degree n.

3.2.1. The Symmetric Group of Degree n(n =1)

The symmetric group G of degree 1 is a permutation group with one element namely the identity element.
That is {e}.
Thus, G = 51 = {e} as all the axioms of a group are trivially satisfied.

Since G is a one-element group, it is commutative as well as transitive.
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3.2.2. The Symmetric Group of Degree n(n = 2)

The symmetric group G of degree 2 is a permutation group with two elements namely the identity element and
one other element say ”a”. That is {e,a}.

Thus, G = Sy = {e,a}.
We write Sy = {e,a}, where e = ( 1 g ) and a = ( ; ? )
In cycle form, Se = {(1),(1,2)}.
The order of Sy = 2, denoted by |Sa| = 2.

Table 1. Cayley’s table for G = {(1),(1,2)}
o | (1) (1,2

L 1M |12
(1,2) | (1,2) | (1)

Figure 1. Cayley’s diagram for G = {(1),(1,2)}

(1) and S are the only normal subgroups of Sy since Sy is commutative.

The orbit of the points 1 and 2 in Sy are given by 1¢ = 2¢ = {1,2} implying that

a% =Q for all a € Q.

Thus, S, is transitive.

3.2.3. The Symmetric Group of Degree n(n = 3)

The symmetric group G of degree 3 is a permutation group with 3! = 6 elements namely,
1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 3
(1 2 3)’(1 3 2)’(2 1 3)’(2 3 1)’(3 1 )and<3 2 1)'
mea=s={(135)(133)(13)Gl)GT) G l)}
(1,3
The order of S5 =6, denoted by |S5| =6.

{( 1 ; g ),( ; i 3 >,< ;) ; i’ )} ={(1),(1,2,3),(1,3,2)} forms a group called the alternating

group of degree 3, Az, which is the only proper normal subgroup of Ss.

12 3\°/1 2 3 1 2 3\°/1 2 3 : :
Clearly,(1 3 2) (3 1 2)75<3 1 2) (1 3 2).HenceS;),lbnotcommutatlve.

The orbit of the points 1,2 and 3 in S5 are given by 1¢ = 2% = 3% = {1,2,3} implying that

W N NIV
—_ w
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o e

Figure 2. Cayley’s diagram for G = S;3

a® = for all a € Q.

Thus, S3 is transitive.

3.2.4. The Symmetric Group of Degree n(n = 4)

The symmetric group G of degree 4 is a permutation group with 4! = 24 elements namely

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
123 4)'\1324)'\2134)\2314)\3124)
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
321 4)'\1 243)\1342)\2143)\2341)
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
31 42)'\3241)°\1423)\1432)\124113)
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2 431)'\3412)\3421)\s4123)1a132)
1 2 3 4 1 2 3 4 1 2 3 4 (1234

421 3)0 V423 1)'\a312)*N4 321

In cycle form, Sy = {(1), (12), (34), (12)(34)

(13), (14), ,
(234), (243), (243), (1234), (1324), (1342), (1423), (1432)
The order of Sy = 4! = 24, denoted by |S4| = 24.

{(1),(12)(34), (13)(24), (14)(23), (123), (124), (132), (134), (142), (143),(234), (243) } forms a group called the
alternating group of degree 4, A, which is the only proper normal subgroup of Sy.
(12)(13) = (132) # (123) = (13)(12). Hence, S, is not commutative.

The orbit of the points 1,2 and 3 in S3 are given by 1¢ = 2¢ = 3% = 4% = {1,2,3,4} implying that

(13)(24), (14)(23), (123), (124), (132), (134), (142), (143),
}.

a® =Q for all a € Q.

Thus, Sy is transitive.

3.2.5. GAP Results
We shall now construct symmetric groups of degrees n and investigate their commutativity and transitivity

using the group, algorithm and programing GAP 4.12.2. [10]

[breaklines=true]
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GAP 4.12.2 built on 2022-12-19 10:30:03+0000
GAP https://www.gap-system.org

Architecture: x86_64-pc-cygwin-default64-kv8
Configuration: gmp 6.2.1, GASMAN, readline
Loading the library and packages ...
Packages: AClib 1.3.2, Alnuth 3.2.1, AtlasRep 2.1.6, AutPGrp 1.11, Browse 1.8.19,
Try ’7?7help’ for help. See also ’7copyright’, ’7cite’ and ’7authors’
gap>

gap> S1 := SymmetricGroup (1);

Group(())

gap> Order(S1);

1

gap> Elements(S1);

O]

gap> Orbit(S1,1);

(1]

gap> IsAbelian(S1);

true

gap> IsTransitive(S1);

true

gap>

gap> S2 := SymmetricGroup(2);

Sym([ 1 .. 21

gap> Order(S2);

2

gap> Elements(S2);

[breaklines=true]

[ O, (1,2) ]

gap> Orbit(S2,1);

[1, 2]

gap> Orbit(82,2);

[1, 2]

gap> IsAbelian(82);

true

gap> IsTransitive(S2);

true

gap>

gap> S3:= SymmetricGroup(3);
Sym([ 1 ..31)

gap> Order(S3);

6

gap> Elements(S3);

o, 2,3, 1,2, 1,2,3), (1,3,2), (1,3)]
gap> Orbit(83,1);

[ 1, 3, 2]
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gap> Orbit(83,2);

[1, 3, 2]

gap> Orbit(S3,3);

[1, 3, 2]

gap> IsAbelian(S3);

false

gap> IsTransitive(S3);

true

gap>

gap> S4 := SymmetricGroup(4);
Sym([ 1 ..4 1)

gap> Order(S4);

24

gap> Elements(S4);

(O, 3,4, (2,3), (2,3,4), (2,4,3), (2,4, (1,2, (1,2(,4, (1,2,3), (1,2,3,4), (1,2,4,3),
1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4),
(1,4,2,3), (1,4)(2,3)]

gap> Orbit(84,1);

[ 1, 4, 2, 3]

gap> Orbit(84,2);

[ 1, 4, 2, 3]

gap> Orbit(S4,3);

[ 1, 4, 2, 3]

gap> Orbit(84,4);

[ 1, 4, 2, 3]

gap> IsAbelian(84);

false

gap> IsTransitive(S4);

true

[fontsize=\small,breaklines=truel
gap>

gap> S5 := SymmetricGroup(5);
Sym([ 1 .. 81D

gap> Order(85);

120
gap> Elements(S5);

[0, (4,5), (3,4), (3,4,5), (3,5,4), (3,5), (2,3), (2,3)(4,5), (2,3,4), (2,3,4,5), (2,3,5,4), (2,3,5), (2,4,3), (2,4,5,3), (2,4),
(2,4,5), (2,4)(3,5), (2,4,3,5), (2,5,4,3), (2,5,3), (2,5,4), (2,5), (2,5,3,4), (2,5)(3,4), (1,2), (1,2)(4,5), (1,2)(3,4),
(1,2)(3,4,5), (1,2)(3,5,4), (1,2)(3,5), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,5), (1,2,3,5,4), (1,2,3,5), (1,2,4,3),
(1,2,4,5,3), (1,2,4), (1,2,4,5), (1,2,4)(3,5), (1,2,4,3,5), (1,2,5,4,3), (1,2,5,3), (1,2,5,4), (1,2,5), (1,2,5,3,4), (1,2,5)(3,4),
(1,3,2), (1 3,2)(4,5), (1,3,4,2), (1,3,4,5,2), (1,3,5,4,2), (1,3,5,2), (1,3), (1,3)(4,5), (1,3,4), (1,3,4,5), (1,3,5,4),
(1,3,5), (1,3)(2,4), (1,3)(2,4,5), (1,3,2,4), (1,3,2,4,5), (1,3,5,2,4), (1,3,5)(2,4), (1,3)(2,5,4), (1,3)(2,5), (1,3,2,5,4),

(1,3,2,5), (1 3,4)(2,5), (1,3,4,2,5), (1,4,3,2), (1,4,5,3,2), (1,4,2), (1,4,5,2), (1,4,2)(3,5), (1,4,3,5,2), (1,4,3), (1,4,5,3),
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1,4), (1,4,5), (1,4)(3,5), (1,4,3,5), (1,4,2,3),
1,4,3)(2,5), (1,4)(2,5,3), (1,4,3,2,5), (1,4)
1,5,2)(3,4), (1,5,4,3), (1,5,3), (1,5,4), (1,5),

1,5,2,3,4), (1,5)(2,3,4), (1,5,3)(2,4), (1,5,2,4,3

4,5,2.3), (1,4)(2,3), (1,4,5)(2,3), (1,4)(2,3,5), (1,4,2,3,5), (1,4,2,5,3),
5), (1,4,25), (1,54,3,2), (1,5,3,2), (1,5,4,2), (1,5,2), (1,5,3,4,2),
1,5,34), (1,5)(3.4), (1,5,4,2,3), (1,5,2,3), (1,5,4)(2,3), (1,5)(2,3),
L (1,5,3,2,4), (1,5)(2,4,3), (1,5,2,4), (1,5)(2,4)]

(1
(2

—~ o~ —~
—~

~

gap> Orbit(85,1);

[1, 5,2, 3,4]

gap> Orbit(S5,2);

[1, 5,2, 3, 4]

gap> Orbit(85,3);

[1, 5,2, 3, 4]

gap> Orbit(85,4);

[1, 5,2, 3,4]

gap> Orbit(S5,5);

[ 1, 5, 2, 3, 4]

gap> IsAbelian(S5);
false

gap> IsTransitive(S5);
true

gap> S6 := SymmetricGroup(6);
Sym([ 1 .. 61)

gap> Order(S6);

720
gap> Elements(S6) ;

(), (5,6), (4,5), (4,5,6), (4,6,5), (4,6), (3,4), (3,4)(5,6), (3,4,5), (3,4,5,6), (3,4,6,5), (3,4,6), (3,5.4), (3,5,6,4), (3.5),
3,5,6), (3,5)(4,6), (3,5.4.,6), (3,6,5,4), (3,6.4), (3,6,5), (3.6), (3,6,4,5), (3,6)(4,5), (2,3), (2,3)(5,6), (2,3)(4,5),
3)(4,5,6), (2,3)(4,6,5), (2,3)(4,6), (2,3.4), (2,3,4)(5.,6), (2,3.4,5), (2,3,4,5,6), (2,3,4,6,5), (2,3,4,6), (2,3,5,4),
2.3,5,6,4), (2,3,5), (2,3,5,6), (2,3,5)(4,6), (2,3,5,4,6), (2,3,6,5,4), (2,3,6,4), (2,3,6,5), (2,3.6), (2,3,6,4,5), (2,3,6)(4,5),
2.4,3), (243)(5,6) (2,4,5,3), (2,4,5,6,3), (2,4,6,5,3), (2,4,6,3), (2,4), (2,4)(5,6), (2,4,5), (2,4,5,6), (2,4,6,5),
2.4,6), (2,4)(3,5), (2,4)(3,5,6), (2,4,3,5), (2,4,3,5,6), (2,4,6,3,5), (2,4,6)(3,5), (2,4)(3.6,5), (2,4)(3.,6), (2,4,3,6,5),
2.4,3,6), (2 4,5)(3,6), (2,4,5,3,6), (2,5,4,3), (2,5,6,4,3), (2,5,3), (2,5,6,3), (2,5,3)(4,6), (2,5,4,6,3), (2,5,4), (2,5,6,4),
5), (2,5,6), (2,5)(4,6), (2,5,4,6), (2,5,3,4), (2,5,6,3,4), (2,5)(3,4), (2,5,6)(3,4), (2,5)(3,4,6), (2,5,3,4,6), (2,5,3,6,4),
54)(3,6), (2,5)(3,6,4), (2,5,4,3,6), (2,5)(3,6), (2,5,3,6), (2,6,5.4,3), (2,6,4,3), (2,6,5,3), (2,6,3), (2,6,4,5,3),
6,3)(4,5), (2,6,5.4), (2,6,4), (2,6,5), (2,6), (2,6,4,5), (2,6)(4,5), (2,6,5,3.4), (2,6,3,4), (2,6,5)(3.4), (2,6)(3,4),
63,4,5) (2,6)(3,4,5), (2,6,4)(3,5), (2,6,3,5,4), (2,6,4,3,5), (2,6)(3,5,4), (2,6,3,5), (2,6)(3,5), (1,2), (1,2)(5,6),
2)(4,5), (1,2)(4,5,6), (1,2)(4,6,5), (1,2)(4,6), (1,2)(3,4), (1,2)(3,4)(5,6), (1,2)(3,4,5), (1,2)(3,4,5,6), (1,2)(3,4,6,5),
)(346) (1,2)(3,5.4), (1,2)(3,5,6,4), (1,2)(3,5), (1,2)(3,5,6), (1,2)(3,5)(4,6), (1,2)(3,5,4,6), (1,2)(3,6,5,4),
2)(3,6,4), (1,2)(3,6,5), (1,2)(3,6), (1,2)(3,6,4,5), (1,2)(3,6)(4,5), (1,2,3), (1,2,3)(5,6), (1,2,3)(4,5), (1,2,3)(4,5,6),
1,2,3)(4,6,5), (1,2,3)(4,6), (1,2,3,4), (1,2,3,4)(5,6), (1,2,3,4,5), (1,2,3,4,5,6), (1,2,3,4,6,5), (1,2,3,4,6), (1,2,3,5,4),
1,2,3,5,6,4), (1,2,3,5), (1,2,3,5,6), (1,2,3,5)(4,6), (1,2,3,5,4,6), (1,2,3,6,5,4), (1,2,3,6,4), (1,2,3,6,5), (1,2,3,6),
1,2,3,6,4,5), (1,2,3,6)(4,5), (1,2,4,3), (1,24,3)(5,6), (1,2,4,5,3), (1,2,4,5,6,3), (1,2,4,6,5,3), (1,2,4,6,3), (1,2,4),
)
)

2
2
2

—~

1 2 4)( ) (1727475)7 (172747576) 1 2747675)7 (1727476)7 (17274)(375)’ (172’4)(3’576)’ (172’47375)’ (172’4737576 )

[
(
(2,
(
(
(
(
(2,
(
(
(
(1
(1,
(1
(
(
(
(
(1,2,4,6,3,5), (1,2,4,6)(3,5), (1,2,4)(3,6,5), (1,24)(3,6), (1,2.4,3,6,5), (1,2,4,3,6), (1,2,4,5)(3,6), (1,2,4,5,3,6),

N
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1,2,5.4,3), (1,2,5,6,4,3), (1,2,5,3), (1,2,5,6,3), (1,2,5,3)(4,6), (1,2,5,4,6,3), (1,2,5,4), (1,2,5,6,4), (1,2,5), (1,2,5,6),
1,2,5)(4,6), (1,2,5,4,6), (1,2,5,3,4), (1,2,5,6,3,4), (1,2,5)(3,4), (1,2,5,6)(3,4), (1,2,5)(3,4,6), (1,2,5,3,4,6), (1,2,5,3,6,4),
1,2,5,4)(3,6), (1,2,5)(3,6.4), (1,2,5,4,3,6), (1,2,5)(3.6), (1,2,5,3,6), (1,2,6,5,4,3), (1,2,6,4,3), (1,2,6,5,3), (1,2,6,3),
1,2,6,4,5,3), (1,2,6,3)(4,5), (1,2,6,5.4), (1,2,6,4), (1,2,6,5), (1,2,6), (1,2,6,4,5), (1,2,6)(4,5), (1,2,6,5,3,4), (1,2,6,3,4),
1,2,6,5)(3.4), (1,2,6)(3,4), (1,2,6,3,4,5), (1,2,6)(3,4,5), (1,2,6,4)(3,5), (1,2,6,3,5.4), (1,2,6,4,3,5), (1,2,6)(3,5,4
1,2,6,3,5), (1,2,6)(3,5), (1,3,2), (1,3,2)(5,6), (1,3,2)(4,5), (1,3,2)(4,5,6), (1,3,2)(4,6,5), (1,3,2)(4,6), (1,3,4,2),
1,3,4,2)(5,6), (1,3,4,5,2), (1,3,4,5,6,2), (1,3,4,6,5,2), (1,3,4,6,2), (1,3,5,4,2), (1,3,5,6,4,2), (1,3,5,2), (1,3,5,6,2
1,3,5.2)(4,6), (1,3,5,4,6.2), (1,3,6,5,4,2), (1,3,6,4,2), (1,3,6,5.2), (1,3,6,2), (1,3,6,4,5,2), (1,3,6,2)(4,5), (1,3),

(1,

(

(

(1,

( )
( )
( )s
( 3)
(1,3)(5,6), (1,3)(4,5), (1,3)(4,5,6), (1,3)(4,6,5), (1,3)(4,6), (1,3,4), (1,3,4)(5,6), (1,3,4,5), (1,3,4,5,6), (1,3,4,6,5),
(1,3,4,6), (1,3,5,4), (1,3,5,6,4), (1,3,5), (1,3,5,6), (1,3,5)(4,6), (1,3,5,4,6), (1,3,6,5,4), (1,3,6,4), (1,3,6,5), (1,3,6),
(1,3,6,4,5), (1,3,6)(4,5), (1,3)(2,4), (1,3)(2,4)(5,6), (1,3)(2,4,5), (1,3)(2,4,5,6), (1,3)(2,4,6,5), (1,3)(2,4,6), (1,3,2,4),
(1,3,2,4)(5,6), (1,3,2,4,5), (1,3,2,4,5,6), (1,3,2,4,6,5), (1,3,2,4,6), (1,3,5,2,4), (1,3,5,6,2,4), (1,3,5)(2,4), (1,3,5,6)(2,4),
(1,3,5)(2,4,6), (1,3,5,2,4,6), (1,3,6,5,2,4), (1,3,6,2,4), (1,3,6,5)(2,4), (1,3,6)(2,4), (1,3,6,2,4,5), (1,3,6)(2,4,5),
(1,3)(2,5,4), (1,3)(2,5,6,4), (1,3)(2,5), (1,3)(2,5,6), (1,3)(2,5)(4,6), (1,3)(2,5,4,6), (1,3,2,5,4), (1,3,2,5,6,4), (1,3,2,5),
(1,3,2,5,6), (1,3,2,5)(4,6), (1,3,2,5,4,6), (1,3,4)(2,5), (1,3,4)(2,5,6), (1,3,4,2,5), (1,3,4,2,5,6), (1,3,4,6,2,5), (1,3,4,6)(2,5),
(1,3,6 4)( 5), (1,3,6,2,5,4), (1,3,6,4,2,5), (1,3,6)(2,5,4), (1,3,6,2,5), (1,3,6)(2,5), (1,3)(2,6,5,4), (1,3)(2,6,4), (1,3)(2,6,5),
(1,3)(2,6), (1,3)(2,6,4,5), (1,3)(2,6)(4,5), (1,3,2,6,5,4), (1,3,2,6,4), (1,3,2,6,5), (1,3,2,6), (1,3,2,6,4,5), (1,3,2,6)(4,5),
(1,3 4)(2 6 5), (1,3,4)(2,6), (1,34,2,6,5), (1,3,4,2,6), (1,3,4,5)(2,6), (1,3,4,5,2,6), (1,3,5,2,6,4), (1,3,5,4)(2,6),
(1,3,5)(2,6,4), (1,3,5,4,2,6), (1,3,5)(2,6), (1,3,5,2,6), (1,4,3,2), (1,4,3,2)(5,6), (1,4,5,3,2), (1,4,5,6,3,2), (1,4,6,5,3,2),
(1,4,6,3,2), (1,4,2), (1,4,2)(5,6), (1,4,5,2), (1,4,5,6,2), (1,4,6,5,2), (1,4,6,2), (1,4,2)(3,5), (1,4,2)(3,5,6), (1,4,3,5,2),

(

(

(

(

(

(

(

(

(

(

(
(1,

(

(

(

(

(

(
(1,
(1,

1,4,3,5,6,2), (1,4,6,3,5.2), (1,4,62)(3,5), (1,4,2)(3,6,5), (1,4,2)(3,6), (1,4,3,6,5,2), (1,4,3,6,2), (1,4,5,2)(3,6),
1,4,5,3,6,2), (1,4,3), (1,4,3)(5,6), (1,4,5,3), (1,4,5,6,3), (1,4,6,5,3), (1,4,6,3), (1,4), (1,4)(5,6), (1,4,5), (1,4,5,6),
1,4,6,5), (1,4,6), (1,4)(3,5), (1,4)(3,5,6), (1,4,3,5), (1,4,3,5,6), (1,4,6,3,5), (1,4,6)(3,5), (1,4)(3,6,5), (1,4)(3,6),
1,4,3,6,5), (1,4,3,6), (1,4,5)(3,6), )
1,4,6,2,3), (1,4)(2,3), (1, (
1,4,2,3.5), (1,4,2,3,5.,6), (1,4,6,2,3,5), (1,4,6)(2,3,5), (1,4)(2,3,6,5), (1,4)(2,3,6), (1,4,2,3,6,5), (1,4,2,3,6), (1,4,5)(2,3.6),
1,4,5,2,3,6), (1,4,2,5,3), (1,4,2,5,6,3), (1,4,3)(2,5), (1,4,3)(2,5,6), (1,4,6,3)(2,5), (1,4,6,2,5,3), (1,4)(2,5,3), (1,4)(2,5,6,3),
1,4,3.2,5), (1,4,3,2,5,6), (1,4,6,3,2,5), (1,4,6)(2,5,3), (1,4)(2,5), (1,4)(2,5,6), (1,4,2,5), (1,4,2,5,6), (1,4,6,2,5),
1,4,6)(2,5), (1,4)(2,5)(3,6), (1,4)(2,5,3,6), (1,4,2,5)(3,6), (1,4,2,5,3,6), (1,4,3,6,2,5), (1,4,3,6)(2,5), (1,4,2,6,5,3),
1,4,2,6,3), (1,4,3)(2,6,5), (1,4,3)(2,6), (1,4,5,2,6,3), (1,4,5,3)(2,6), (1,4)(2,6,5,3), (1,4)(2,6,3), (1,4,3,2,6,5), (1,4,3,2,6),
1,4,5)(2,6,3), (1,4,5,3,2,6), (1,4)(2,6,5), (1,4)(2,6), (1,4,2,6,5), (1,4,2,6), (1,4,5)(2,6), (1,4,5,2,6), (1,4)(2,6,3,5),

4)(2,6)(3,5), (1,4,2,6,3,5), (1,4,2,6)(3,5), (1,4,3,5)(2,6), (1,4,3,5,2,6), (1,5.4,3,2), (1,5,6,4,3,2), (1,5,3,2), (1,5,6,3,2),
1,5,3,2)(4,6), (1,5,4,6,3,2), (1,5,4,2), (1,5,6,4,2), (1,5,2), (1,5,6,2), (1,5,2)(4,6), (1,5,4,6,2), (1,5,3,4,2), (1,5,6,3,4,2),
1,5,2)(3,4), (1,5,6,2)(3,4), (1,5,2)(3,4,6), (1,5,3,4,6,2), (1,5,3,6,4,2), (1,5,4,2)(3,6), (1,5,2)(3,6,4), (1,5,4,3,6,2),

(

]' 4 5 3 6) (]‘74’273)’ (1’472’3)(576)7 (1’4757273)7 (17475)6?273)’ (1,476357273 I

(
4)(2,3)(5,6), (1,4,5)(2,3), (1,4,5,6)(2,3), (1,4,6,5)(2,3), (1,4,6)(2,3), (1,4)(2,3,5), (1,4)(2,3,5,6),
)

)
1,5,2)(3.,6), (1,5,3,6,2), (1,5,4,3), (1,5,6,4,3), (1,5,3), (1,5,6,3), (1,5,3)(4,6), (1,5,4,6,3), (1,5.4), (1,5,6,4), (1,5),
1,5,6), (1,5)(4,6), (1,5,4,6), (1,5,3,4), (1,5,6,3,4), (1,5)(3,4), (1,5,6)(3,4), (1,5)(3,4,6), (1,5,3,4,6), (1,5,3,6,4),
1,5,4)(3,6), (1,5)(3,6,4), (1,5,4,3,6), (1,5)(3,6), (1,5,3,6), (1,5,4,2,3), (1,5,6,4,2,3), (1,5,2,3), (1,5,6,2,3), (1,5,2,3)(4,6),
1,5,4,6,2,3), (1,5,4)(2,3), (1,5,6,4)(2,3), (1,5)(2,3), (1,5,6)(2,3), (1,5)(2,3)(4,6), (1,5,4,6)(2,3), (1,5,2,3,4), (1,5,6,2,3,4),
5)(2,3,4), (1,5,6)(2,3,4), (1,5)(2,3,4,6), (1,5,2,3,4,6), (1,5,2,3,6,4), (1,5,4)(2,3,6), (1,5)(2,3,6,4), (1,5,4,2,3,6),
5)(2,3,6), (1,5,2,3,6), (1,5,3)(2,4), (1,5,6,3)(2,4), (1,5,2,4,3), (1,5,6,2.4,3), (1,5,2,4,6,3), (1,5,3)(2,4,6), (1,5,3,2,4),
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(1,5,6,3,2,4), (1,5)(2,4,3), (1,5,6)(2,4,3), (1,5)(2,4,6,3), (1,5,3,2,4,6), (1,5,2,4), (1,5,6,2,4), (1,5)(2,4), (1,5,6)(2,4),
(1,5)(2,4,6), (1,5,2,4,6), (1,5,2,4)(3,6), (1,5,3,6,2,4), (1,5)(2,4)(3.,6), (1,5,3,6)(2,4), (1,5)(2,4,3,6), (1,5,2,4,3,6),
(1,5,3)(2,6,4), (1,5,4,2,6,3), (1,5,2,6,4,3), (1,5,4,3)(2,6), (1,5,2,6,3), (1,5,3)(2,6), (1,5,3,2,6,4), (1,5,4)(2,6,3),
(1,5)(2,6,4,3), (1,5,4,3,2,6), (1,5)(2,6,3), (1,5,3,2,6), (1,5,2,6,4), (1,5,4)(2,6), (1,5)(2,6,4), (1,5,4,2,6), (1,5)(2,6),
(1,5,2,6), (1,5,2,6,3,4), (1,5,3,4)(2,6), (1,5)(2,6,3,4), (1,5,3,4,2,6), (1,5)(2,6)(3,4), (1,5,2,6)(3,4), (1,6,5,4,3,2),
(1,6,4,3,2), (1,6,5,3,2), (1,6,3,2), (1,6,4,5,3,2), (1,6,3,2)(4,5), (1,6,5,4,2), (1,6,4,2), (1,6,5,2), (1,6,2), (1,6,4,5,2),
(1,6,2)(4,5), (1,6,5,3,4,2), (1,6,3,4,2), (1,6,5,2)(3,4), (1,6,2)(3,4), (1,6,3,4,5,2), (1,6,2)(3,4,5), (1,6,4,2)(3,5), (1,6,3,5,4,2),
(1,6,4,3,5,2), (1,6,2)(3,5.4), (1,6,3,5,2), (1,6,2)(3,5), (1,6,5.4,3), (1,6,4,3), (1,6,5,3), (1,6,3), (1,6,4,5,3), (1,6,3)(4,5),
(1,6,5,4), (1,6,4), (1,6,5), (1,6), (1,6,4,5), (1,6)(4,5), (1,6,5,3,4), (1,6,3,4), (1,6,5)(3,4), (1,6)(3,4), (1,6,3,4,5),
(1,6)(3,4,5), (1,6,4)(3,5), (1,6,3,5,4), (1,6,4,3,5), (1,6)(3,5,4), (1,6,3,5), (1,6)(3,5), (1,6,5,4,2,3), (1,6,4,2,3), (1,6,5,2,3),
(1,6,2,3), (1,6,4,5,2,3), (1,6,2,3)(4,5), (1,6,5,4)(2,3), (1,6,4)(2,3), (1,6,5)(2,3), (1,6)(2,3), (1,6,4,5)(2,3), (1,6)(2,3)(4,5),
(1,6,5,2,3,4), (1,6,2,3.4), (1,6,5)(2,3,4), (1,6)(2,3,4), (1,6,2,3,4,5), (1,6)(2,3,4,5), (1,6,4)(2,3,5), (1,6,2,3,5,4),
(1,6,4,2,3,5), (1,6)(2,3,5,4), (1,6,2,3,5), (1,6)(2,3,5), (1,6,5,3)(2,4), (1,6,3)(2,4), (1,6,5,2,4,3), (1,6,2,4,3), (1,6,3)(2,4,5),
(1,6,2,4,5,3), (1,6,5,3,2,4), (1,6,3,2,4), (1,6,5)(2,4,3), (1,6)(2,4,3), (1,6,3,2,4,5), (1,6)(2,4,5,3), (1,6,5,2,4), (1,6,2,4),
(1,6,5)(2,4), (1,6)(2,4), (1,6,2,4,5), (1,6)(2,4,5), (1,6,3,5,2,4), (1,6,2,4)(3,5), (1,6,3,5)(2,4), (1,6)(2,4)(3,5), (1,6,2,4,3,5),
(1,6)(2,4,3,5), (1,6,4,2,5,3), (1,6,3)(2,5,4), (1,6,4,3)(2,5), (1,6,2,5,4,3), (1,6,3)(2,5), (1,6,2,5,3), (1, 64)(2 5,3),
(1,6,3,2,5.4), (1,6,4,3,2.5), (1,6)(2,5:4,3), (1,6,3,2,5), (1,6)(2,5,3), (1,6,4)(2,5), (1,6,2,5,4), (1,6,4,2,5), (1,6)(2,5,4),
(1,6,2,5), (1,6)(2,5), (1,6,3,4)(2,5), (1,6,2,5,3,4), (1,6,3,4,2,5), (1,6)(2,5,3,4), (1,6,2,5)(3,4), (1,6)(2, )( 4)]

[breaklines=true]
gap> Orbit(86,1);
[1, 6, 2, 3, 4, 5]
gap> 0rbit(S6,2);

[ 1,6,2,3,4,5 1]

gap> Orbit(S6,3)
[1, 6, 2, 3, 4, 5]
gap> Orbit(S86,4);

[ 1, 6, 2, 3, 4, 5]
gap> Orbit(86,5);
[1, 6, 2, 3, 4, 5]
gap> Orbit(S6,6);
[1, 6,2, 3, 4, 5]
gap> IsAbelian(S6);
false

gap> IsTransitive(S6);
true

gap>

Based on the trend in 4.2.1, 4.2.2, 4.2.3, 4.2.4, and 4.2.5, we proved a proposition that concerns particularly on
the commutativity and transitivity of symmetric groups of degree n > 1. This forms an important part of this
work.
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3.3. Proposition

Let G be a symmetric group of degree n, where n is a positive integer. Then G is (i) commutative and transitive

if n <2 and (ii) non-commutative but transitive if n > 2.

Proof. (i) Case n=1
Let G be a symmetric group of degree 1,(S7). Then G contains only the identity element e, since every group
must have an identity element. It follows that G = {e} satisfies all the axioms of a group and is commutative

and transitive since it is a singleton set.

Case n =2
Now let G be a symmetric group of degree 2, ( Sy ). Then G = {e,a} = Zy. With the mapping e — 0 and a

— 1, the Cayley’s table for G is as follows.

Table 2. Cayley’s table for G = {e,a}

o e a
(& € a
a a e

Clearly, G = {e,a} is commutative since it has only two elements and (a)e(a)=e. Also, Sy acts transitively on
X = {1,2} because for any two elements x,y, there exists a permutation (specifically (12)) that maps z to y.

Thus, any symmetric group G, of degree n , where n < 2 is commutative (abelian) and transitive.

(i) Case n > 3
Case S3
The symmetric group S3 consists of the permutations:

S3 = {e, (12), (13), (23),(123), (132)} where:

e is the identity, (12), (13), (23) are transpositions (swap two elements), while (123) and (132) are cyclic
permutations.

It is obvious some elements do not commute. For instance:

(12) - (13) = (132) # (123) = (13) - (12).

Thus, S5 is not commutative since not all elements commute.

Also, S3 acts transitively on X = {1,2,3} since for every pair of point x,y € X there exists g € G such that
9 =y.

S3 is not commutative but transitive.

In general, let G be a symmetric group of degree n > 2. Then G = S, is the group of bijections or permutations
of a set of n objects, say X = {1,2,...,n}. Its group operation is the composition of bijections. We will
frequently refer to the objects being permuted as letters. Recall the notation o(12---n) = o(1)o(2)---o(n).
To simplify the notation, we will denote o by writing o = [0(1), ¢(2),...,0(n)]. We will also frequently
denote the identity element of S, by (1). Clearly G is transitive since for any two elements x,y, there is some
permutation in S, that maps x toy .

Now let o and 8 be two elements in G such that
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(1234 ... n ag- (L 234
““\s3 214 .. n)™PT\ 2134 ... n)
1 2 3 4 ... 1 2 3 4 n . .
Then, Ba—<3 192 4 n>7é<2 31 4 n)—aﬁ. Thus, G is non-commutative.

Thus, any symmetric group G, of degree n, where n > 3 is non-commutative (abelian) but transitive. O

3.4. Illustrating Examples
3.4.1. Example 1: Symmetric Group of Degree n(n = 5)
The Symmetric Group of Degree n(n = 5) is denoted Ss |S5| = n! = 120.

1 2 3 4 5 1 2 3 45 1 2 3 45
55—{<1 9 3 4 5),<2 1 3 4 5), ........ ,(5 43 9 1)}.Thebecanbereprebented

in cycle form as follows.

{1, (4,5, (3,4), (3,4,5), (3,5,4), (3,5), (2,3), (2,3)(4,5), (2,3,4), (2,3,4,5), (2,3,5,4),
(2,3,5), (2,4,3), (2,4,5,3), (2,4), (2,4,5), (2,4)(3,5), (2,4,3,5), (2,5,4,3), (2,5,3),

(2,5,4), (2,5), (2,5,3,4), (2,5)(3,4), (1,2), (1,2)(4,5), (1,2)(3,4), (1,2)(3,4,5), (1,2)(3,5,4),
1,2)(@3,s5), (1,2,3), (1,2,3)4,5), (1,2,3,4), (1,2,3,4,5), (1,2,3,5,4), (1,2,3,5), (1,2,4,3),
(1,2,4,5,3), (1,2,4), (1,2,4,5), (1,2,4)(3,5), (1,2,4,3,5), (1,2,5,4,3), (1,2,5,3), (1,2,5,4),
1,2,5), (1,2,5,3,4), (1,2,5)(3,4), (1,3,2), (1,3,2)(4,5), (1,3,4,2), (1,3,4,5,2), (1,3,5,4,2),
(1,3,5,2), (1,3), (1,3)(4,5), (1,3,4), (1,3,4,5), (1,3,5,4), (1,3,5), (1,3)(2,4), (1,3)(2,4,5),
1,3,2,4), (1,3,2,4,5), (1,3,5,2,4), (1,3,5)(2,4), (1,3)(2,5,4), (1,3)(2,5), (1,3,2,5,4), (1,3,2,5),
(1,3,4)(2,5), (1,3,4,2,5), (1,4,3,2), (1,4,5,3,2), (1,4,2), (1,4,5,2), (1,4,2)(3,5), (1,4,3,5,2),
(1,4,3), (1,4,5,3), (1,4), (1,4,5), (1,4)(3,5), (1,4,3,5), (1,4,2,3), (1,4,5,2,3), (1,4)(2,3),
(1,4,5)(2,3), (1,4)(2,3,5), (1,4,2,3,5), (1,4,2,5,3), (1,4,3)(2,5), (1,4)(2,5,3), (1,4,3,2,5),
(1,4)(,5), (1,4,2,5), (1,5,4,3,2), (1,5,3,2), (1,5,4,2), (1,5,2), (1,5,3,4,2), (1,5,2)(3,4),
(1,5,4,3), (1,5,3), (1,5,4), (1,5), (1,5,3,4), (1,5)(3,4), (1,5,4,2,3), (1,5,2,3), (1,5,4)(2,3),
(1,5)(2,3), (1,5,2,3,4), (1,5)(2,3,4), (1,5,3)(2,4), (1,5,2,4,3), (1,5,3,2,4), (1,5)(2,4,3),
(1,5,2,4), (1,5)(2,4) }

Now let a and 8 be two elements in G = S5 such that

/12345 ag_ (L2345
““\3 2145 )P 213 45)
1 2 3 4 5 1 2 3 4 5 . .
Then, Ba—<3 1 92 4 5>7é<2 3 1 4 5>—a6.Thus,Gls non-commutative.

The orbit of the points 1,2,3,4,5 is given by 1¢ = 2¢ = 3¢ =4¢ = 5¢ = {1,2,3 4,5}

Thus, Ss is transitive.

e~

4. Conclusion

The purpose of this research was to carry out further study on commutative and transitive permutation groups
of any degree. In particular, the ultimate goal was to determine the commutative and transitive nature
of symmetric groups of any degree. This entails generating symmetric groups of various degrees, studying,
investigating and analyzing them so as to determine their commutativity and transitivity.
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To do this, we set out specific objectives which were achieved as follows:

i) All symmetric groups of degrees n < 2 are commutative and transitive while those of degrees 3 and above

are non-commutative but transitive.
ii) The results in (i) above were validated using illustrations and a standard program namely Groups, Algorithms

and Programming (GAP) version 4.12.2 of 2022.

4.1.

Recommendations

We highly recommend that future research should further examine the groups been considered in this work to

determine their nilpotency and regularity using numerical approach. This will further enhance already done

works towards completion of the rewriting of the proofs of the Classification of the Finite Simple Groups (CFSG)

that has been on course for a while now.
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