Fixed Point Results for General Integral Type Contraction Mappings in Cone Metric Spaces with Banach Algebra
Received: 10 May 2025 | Accepted: 18 Jul 2025 | Final Version: 31 Aug 2025
Abstract
The aim of this paper is to present a novel concept of generalized integral type contraction mapping in relation to a cone. The approach developed by F. Khojasteh is ultimately expanded under specific new contractive conditions of integral mapping to demonstrate fixed point results within the framework of cone metric spaces.
Keywords:
- Banach algebra, generalized integral type contraction mapping, cone metric space.
1. Introduction
Huang and Zhang [1] introduced the cone metric space (CMS) in 2007...
References
- D. Ali Abdulsada, L. A. A. Al-Swidi, M. H. Hadi, On NCT-set theory, Neutrosophic Sets and Systems, vol. 68 (2024).
- K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96.
- G. B. Chae, J. Kim, J. G. Lee, K. Hur, Interval-valued intuitionistic sets and their application to topology, Annals of Fuzzy Mathematics and Informatics, vol. 21, no. 1 (Feb. 2021), pp. 1–28.
- D. Çoker, A note on intuitionistic sets and intuitionistic points, Turkish Journal of Mathematics, 20 (1996), 343–351.
- D. Çoker, An introduction to intuitionistic topological spaces, BUSEFAL 81 (2000), 51–56.
- S. Durga, L. Vidyarani, M. Vignheshwaran, T. Witczak, An introduction to picture topological spaces, Asia Mathematika, vol. 7, issue 3 (2023).
- S. Durga, L. Vidyarani, M. Vignheshwaran, T. Witczak, Properties of frontier, exterior and border in picture topological spaces, Turkish Journal of Mathematics, vol. 49, no. 1 (2025).
- J. H. Kim, P. K. Lim, J. G. Lee, K. Hur, Intuitionistic topological spaces, Annals of Fuzzy Mathematics and Informatics, vol. 15(2), pp. 101–122, 2018.
- A. G. Raoof, T. H. Jassim, Double intuitionistic continuous function in double intuitionistic topological spaces, Tikrit Journal of Pure Science, vol. 27(5) (2022).
- A. A. Salama, S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR Journal of Mathematics, vol. 3, pp. 31–35, 2012.
- A. M. Seif, Multi-fuzzifying topology, Asia Mathematika, vol. 8, issue 3 (2024), pp. 42–58.
- S. Ganesan, F. Smarandache, Some new classes of neutrosophic minimal open sets, Asia Mathematika, vol. 5, issue 1 (2021), pp. 103–112.
- F. Smarandache, Neutrosophy and neutrosophic logic, First International Conference on Neutrosophy, Neutrosophic Logic Set, Probability and Statistics, University of New Mexico, Gallup, NM, USA, 2002.
- O. A. E. Tantawy, S. A. El-Sheikh, S. Hussien, Topology of soft double sets, Annals of Fuzzy Mathematics and Informatics, vol. 12, no. 5 (Nov. 2016), pp. 641–657.
- Yong-jin L., Weak rough sets, Online PDF.
- T. Witczak, A note on the algebra of triple sets, Asia Mathematika, vol. 7, issue 2 (2023), pp. 15–33.
- T. Witczak, On the algebra of possibly paraconsistent sets, Neutrosophic Sets and Systems, vol. 73 (2024).
- L. Zadeh, Fuzzy sets, Information and Control, vol. 8(3), pp. 338–353, 1965.